
On the global robustness of generalized

S-estimators
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Abstract

A generalized S-estimator (GS-estimator) of regression is obtained by min-
imizing an M-estimator of scale applied to the pairwise differences of residuals
ri(θ) − rj(θ), i < j. In this paper, we focus on the global robustness proper-
ties of these estimators. It was pointed out by Croux et al. (1994) that two
GS-estimators with the same breakdown point may have very different global
robustness behavior. Accordingly, we supplement the information given by the
breakdown point with the explosion rate, a summary measure of the robustness
behavior of the estimator when the amount of contamination is large. We pro-
vide formulas that allow the computation of explosion rates and establish a link
between the local behavior at zero of the score function on which the M-estimator
is based and the robustness of the corresponding GS-estimator. Finally, we apply
the explosion rate to quantify the loss of robustness when using GS-estimators
instead of the simpler non-generalized S-estimators.
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1 Introduction

Consider the linear regression model with p–dimensional regressors and intercept pa-

rameter

yi = α0 + θ′0xi + σ0ui, i = 1, . . . , n, (1)

and let ri = ri(α, θ) = yi − α− θ′x, i = 1, . . . , n be the residuals corresponding to the

parameter set (α, θ). Since classical least squares estimators of α0 and θ0 are extremely

sensitive to departures from this model, different more stable or robust alternatives have

been proposed in the statistical literature. A general approach to find robust estimators

of α0 and θ0 is looking for the vector of parameters that minimizes a robust scale of

the residuals. Following this scheme, Rousseeuw and Yohai (1984) defined regression

S-estimators as the minimizers of an M-scale of the residuals. S-estimators possess very

attractive robustness properties but, unfortunately, their efficiencies are quite low (see,

for instance, Hössjer, 1992). To increase the efficiency, Croux, Rousseeuw and Hössjer

(1994) defined the class of generalized S-estimators (GS-estimators) as the vector of

parameters that minimizes an M-scale of the pairwise differences of residuals. More

precisely, a GS-estimator, θ̂, is defined as θ̂ = arg minθ Sn(θ), where

Sn(θ) = inf{s > 0 :

(
n

2

)−1∑
i<j

χ

(
ri(α, θ)− rj(α, θ)

s

)
< b}.

That is, Sn(θ) is the M-scale of the pairwise differences of the residuals based on the

score function χ and the constant b. Notice that ri(α, θ) − rj(α, θ) does not depend

on the intercept parameter α, which can be estimated later on with a robust location

estimator. The asymptotic distribution of regression GS-estimators has been studied

by Hössjer, Croux and Rousseeuw (1994). In this note, we address some aspects of

their robustness properties.

A useful measure of the degree of robustness of an estimator T is given by its

maximum bias curve or maxbias curve, BT (ε). This function measures the maximum

asymptotic bias of an estimator when the data includes up to a fraction ε of contam-

ination (see more formal definitions in equations (3) and (14) below). In this paper,

we are mainly interested in the global robustness of the estimators. Loosely speaking,

an estimator whose maxbias is relatively small for large fractions of contamination is
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called globally robust. Usually, the breakdown point of T , defined as

ε∗ = sup{ε > 0 : BT (ε) <∞},

is computed to assess the global robustness of T . For ε < ε∗, the estimator T is still

informative, in the sense that its asymptotic value is not arbitrarily determined by the

contaminations. However, as Croux et al. (1994) pointed out, it is possible (and indeed

frequent) for a pair of GS-estimators to have the same breakdown point and drastically

different global robustness behavior. The following example illustrates this fact:

Example. Let θ̂1 and θ̂2 be a pair of GS-estimators based on the score function χ1(x) =

I{|x| ≥ 1}, with constants b1 = 0.9375 and b2 = 0.4375 respectively (I(A) stands for

the indicator function on the set A). A simple reasoning shows that θ̂i, for i = 1, 2, is

the vector of parameters that minimizes the (1−bi)-quantile of the pairwise differences

of residuals. Using Theorem 4 in Croux et al. (1994), it can be checked that the

breakdown point of both estimators is ε∗ = 0.25. The corresponding maxbias curves,

B1(ε) and B2(ε), are displayed in Figure 1. Notice that both maxbias curves are

practically identical for ε < 0.1. However, as ε→ ε∗, B1(ε) goes to infinity much faster

than B2(ε). In fact, the behavior of B2(ε) is only explosive for values of ε very close to

the breakdown point. On the other hand, although the theoretical breakdown point

of θ̂1 is 0.25, we would say that its practical breakdown point is less than 0.25. The

conclusion is that having the same breakdown point cannot be taken, without further

analysis, as an indication that the maxbias curves will have similar behaviors for large

values of ε.

Figure 1 about here

The preceding example motivates the study of the relative maxbias behavior of a

pair of GS-estimators, θ̂1 and θ̂2, with common breakdown point ε∗, as ε → ε∗. We

will address this question using the relative explosion rate of θ̂1 and θ̂2, defined by

Berrendero et al. (1998) as

r(θ̂1, θ̂2) = lim
ε→ε∗

B1(ε)

B2(ε)
,
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provided that the limit exists. If 0 < r(θ̂1, θ̂2) < ∞, we say that θ̂1 and θ̂2 have the

same order of global robustness. Moreover, if r(θ̂1, θ̂2) = 0, then θ̂1 has higher order

than θ̂2. Obviously, estimators with higher order should be preferred. In Sections

2 and 3 below, we derive formulas for the relative explosion rates of GS-estimators

and establish conditions under which two GS-estimators have the same order of global

robustness.

It is well-known that some robustness properties of an estimator are determined by

some features of its score function χ. For instance, regression S- and GS-estimators

have a strictly positive breakdown point if and only if χ is also bounded. This kind of

relationships are useful because they allow to determine the properties of the estimator

by simple inspection of χ. By looking closely to the global robustness of the estimators,

in Sections 2 and 3 we will establish a link between the global robustness of a GS-

estimator and the local behavior at zero of its score function.

The paper is organized as follows: Section 2 is devoted to obtain explosion rates for

dispersion GS-estimators as a previous step to the more complicated regression model,

which is considered in Section 3. Some further remarks and conclusions are given in

Section 4. All the proofs are deferred to the Appendix.

2 Global robustness of dispersion GS-estimators

In this section, we give some results concerning the maxbias curves of dispersion GS-

estimators. Assume that we have i.i.d. observations yi, i = 1, . . . , n, which follow a

location-dispersion model yi = θ0 + σ0ui, where the errors, ui, have a distribution F0,

with variance 1, satisfying

A1. F0 has a continuous unimodal density f0 which is symmetric about the origin.

To allow for a fraction ε of outliers we suppose that the actual true distribution of

the observations y1, . . . , yn belongs to the contamination neighborhood

Vε(F0) = {F : F (y) = (1− ε)F0[(y − θ0)/σ0] + εH(y), H arbitrary distribution}.

In this setup, a GS-estimator for the dispersion parameter σ0 is defined as σ̂n = S(Fn),

where Fn is the empirical distribution function of the sample, and S(F ) is defined as

S(F ) = inf{s > 0 : EF×Fχ[(X − Y )/s] < b} (2)
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We will assume that the score function χ satisfies

A2. χ is even, nondecreasing on (0,∞) and continuous at 0, with χ(0) = 0 and at

most a finite number of discontinuities. Moreover, χ(c) = χ(∞) = 1 for some number

0 < c <∞, called the tuning constant.

In order S(F ) be Fisher-consistent (i.e. S(F0) = σ0) the score function and the

constant b cannot be chosen independently. Define Ca = {χ : EF0×F0χ(X − Y ) = a},
for 0 < a < 1. Then, Fisher-consistency requires that χ and b are related by the

restriction χ ∈ Cb. Usually this condition is guaranteed by a suitable choice of the

tuning constant so that we will assume it holds in the rest of the paper.

Fisher-consistency ensures that dispersion GS-estimators converge to σ0 in absence

of contamination. However, a fraction ε of contamination produces an asymptotic bias

which is bounded by the maxbias curve. We must distinguish between implosion and

explosion maxbias curves (see Martin and Zamar, 1993) defined by

B+
S (ε) = sup

F∈Vε(F0)

S(F )/σ0 and B−S (ε) = inf
F∈Vε(F0)

S(F )/σ0, (3)

which take into account the effect of outliers and inliers respectively. Accordingly, we

define the explosion and the implosion breakdown points as ε+ = inf{ε > 0 : B+
S (ε) <

∞} and ε− = inf{ε > 0 : B−S (ε) > 0}. By equivariance considerations, we can assume

w.l.o.g. that σ0 = 1 in equation (3).

In Theorem 1 below, we give formulas to compute the maxbias curves for dispersion

GS-estimators. We will need some previous notation. Define the functions

g(s) = EF0×F0χ[(X − Y )/s], h(s) = EF0χ(X/s), and (4)

m(s; ε) = (1− ε)2g(s) + 2ε(1− ε)h(s). (5)

Define also

S+(ε) = g−1[(b− 2ε+ ε2)(1− ε)−2] and S−(ε) = m−1(b; ε), (6)

where m−1(· ; ε) is the inverse of m(· ; ε) for a fixed value of ε. We have the following

result:

Theorem 1. Let S(F ) be the dispersion GS-functional defined in equation (2). Under

A1 and A2, B+
S (ε) = S+(ε) and B−S (ε) = S−(ε), where S+(ε) and S−(ε) are defined

in equation (6).
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Notice that Theorem 1 implies that the explosion and implosion breakdown points

of dispersion GS-estimators are given by ε+ = 1−
√

1− b and ε− =
√

1− b respectively.

In Figure 2, we display the explosion and implosion maxbias curves for several

dispersion GS-estimators (as we are mainly interested in the global robustness behavior,

we have only considered fractions of contamination larger than 0.25). The definition of

the score functions can be found in Table 1 below. All the estimators have been tuned

to have 0.5 explosion and implosion breakdown points. The implosion maxbias curves

are almost identical. Therefore, the robustness properties of the estimators should be

compared on the ground of their explosion maxbias curves. Regarding these curves, the

most robust estimator is that based on χ6, followed in decreasing order of robustness

by the estimators based on Huber, Tukey and linear score functions.

Figure 2 about here

In Theorem 2 below, the maxbias curves of dispersion GS-estimators are explored

further to detect which features of the score function are more important in determining

the global robustness of the estimators. It turns out that the concept of local order at

zero of χ will be very useful.

Definition 1. The function χ has local order κ at zero if χ(j)(0) = 0, for all j < κ

and χ(κ)(0) > 0, where χ(j) denotes the jth right derivative at zero of χ.

Using the concept of local order at zero of χ, the following theorem gives approxima-

tions for the explosion and implosion maxbias curves of dispersion GS-estimators. We

use the standard notation f(x) ∼ g(x) as x→ x0 meaning that limx→x0 f(x)/g(x) = 1.

Theorem 2. Under the same assumptions of Theorem 1,

(a) if χ has local order κ > 0 at zero and lims→∞ s
κ+1f0(s) = 0, then

S+(ε) ∼ C

[
(1− ε)2

b− 2ε+ ε2

]1/κ

∼ C̃(ε+ − ε)−1/κ, as ε→ ε+, (7)

where

C =

[
χ(κ)(0)

k!
EF0×F0|X − Y |κ

]1/κ

(8)
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and C̃ = (
√

1− b/2)1/κC.

(b) If χ(x) is differentiable for x ∈ (0, c), where c is the tuning constant, then

S−(ε) ∼ D(ε− − ε), as ε→ ε−, (9)

where

D =

[(
f ∗0 (0)

(1−
√

1− b)2

√
1− b

+ 2f0(0)(1−
√

1− b)
)∫ c

0

(1− χ(x))dx

]−1

. (10)

Here, f ∗0 is the density function corresponding to the distribution of X − Y for a pair

of independent random variables, X and Y , distributed as F0.

From (7) it follows that score functions with larger local order produce estimators

with better maxbias performance. Since functions with large local order are “flat” near

zero, the “flatness” of χ in a neighborhood of zero yields more robust estimators (at

least for large ε). This accounts for the fact that χ6 (κ = 6) produces the more robust

estimator whereas the linear function (κ = 1) corresponds to the less robust estimator

(see Figure 2 (a)).

It also follows from equation (7) that a pair of dispersion GS-estimators S1 and S2

have the same order of global robustness if the corresponding score functions χ1 and

χ2 have the same local order at zero. In this case, from (7) and (8) we have that

r+(S1, S2) = lim
ε→ε+

B+
S1

(ε)

B+
S2

(ε)
=

(
χ

(κ)
1 (0)

χ
(κ)
2 (0)

)1/κ

. (11)

That is, the relative explosion maxbias behavior of S1 and S2 is determined by the

curvatures at zero of χ1 and χ2.

From (9), the implosion maxbias curve is roughly proportional to ε− − ε, when ε

is close to ε−, for any score function. For this reason, no great differences among the

implosion bias curves of dispersion GS-estimators should be expected (see Figure 2

(b)). Furthermore, from (9) and (10),

r−(S1, S2) = lim
ε→ε−

B−S1
(ε)

B−S2
(ε)

=

∫ c2
0

(1− χ2(y))dy∫ c1
0

(1− χ1(y))dy
. (12)

In Table 1, both the explosion and the implosion rates are displayed for several dis-

persion GS-estimators. The tuning constants have been chosen to yield 0.5 breakdown
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points. The score function taken as baseline is Huber’s. The corresponding efficiencies

under the normal model have been computed using Lemma 3.5 in Hössjer et al. (1994)

and are also displayed. It is surprising that the breakdown point, the implosion rate

and the efficiency are almost the same for all the considered score functions. As a

consequence, the local order at zero of the score function is crucial to compare the

estimators. The larger the local order at zero, the better is the estimator.

Table 1 about here

Remark 1: Due to the considerations above, the estimator based on a jump score

function χj (that is, the limiting case when κ → ∞) seems to be the best in the

class of dispersion GS-estimators. This estimator was introduced by Rousseeuw and

Croux (1993), who called it q. This estimator is a more efficient alternative to the

median absolute deviation (mad) and the shortest half (shorth). It is perhaps of

interest to compare the global robustness of this estimator with that of the mad or

the shorth. In Berrendero and Zamar (1999) it is shown that, in the Gaussian case,

r+(q,shorth) = 2.12 and r+(q,mad) = 1.06. Moreover, it holds that (see Remark 4

in the Appendix)

r−(q,mad) = r−(q,shorth) = 1.11. (13)

Therefore, there is a trade-off in this case between the gain in efficiency when using

pairwise differences of observations (since the shorth converges at a slow rate to a

non-gaussian distribution whereas q converges to a gaussian distribution at the usual

n−1/2 rate) and the loss of robustness, which is quantified by an increment in the

relative explosion rate. For large amounts of contamination the explosion maxbias of

q is roughly twice as great as the explosion maxbias of the shorth. However, the

implosion maxbias of q is still very close to that of the shorth or mad.

3 Global robustness of regression GS-estimators

In this section we come back to the regression model (1). We will assume that the

errors, ui, and the regressors, xi, are independent and normally distributed. Let µ and

8



Σ0 be the mean vector and the covariance matrix of xi. Under these assumptions, the

joint p+ 1-dimensional distribution of (yi,xi), H0, is multivariate normal. However, as

in Section 2, we assume that the actual true distribution H of (yi,xi) belongs to the

contamination neighborhood

Vε(H0) = {H : H = (1− ε)H0 + εH̃, H̃ arbitrary distribution}.

Let F
H,α,θ be the distribution of the residuals ri(α, θ). A regression GS-estimator is

given by θ̂n = T(Hn), where Hn is the empirical distribution of the data, T is given

by T(H) = arg minθ S(F
H,α,θ), and S(F ) was defined in equation (2) above. Notice

that S(F
H,α,θ) does not depend on the intercept α, which can be estimated in a second

step. The maxbias curve of T is defined as

BT(ε) = sup
H∈Vε

[(T(H)− θ0)
′Σ0(T(H)− θ0)]

1/2
/σ0. (14)

SinceBT(ε) is defined to be a regression and affine invariant quantity and GS-estimators

are regression and affine equivariant, we can assume w.l.o.g. that µ = 0, Σ0 = I, θ0 = 0

and σ0 = 1.

To obtain a formula for the maxbias curve of GS-estimators under the Gaussian

model we follow the indications given by Croux et al. (1994) (see remarks under

Theorem 4 in that paper). We must compute s1 = g−1[(b− 2ε+ ε2)(1− ε)−2] = S+(ε)

and find the solution of the following equation in γ:

(1− ε)2g

(
S+(ε)√
1 + γ2

)
+ 2ε(1− ε)h

(
S+(ε)√
1 + γ2

)
= b.

With our notation, see (5), the last equation amounts to m[S+(ε)/
√

1 + γ2; ε] = b. It

follows that S+(ε)/
√

1 + γ2 = m−1(b; ε) = S−(ε) and, therefore,

γ = BT(ε) =

[(
S+(ε)

S−(ε)

)2

− 1

]1/2

, for ε < min{ε−, ε+}, (15)

and BT(ε) = ∞, for ε > min{ε−, ε+}. Here, S+(ε) and S−(ε) are the explosion and

the implosion maxbias curves for the dispersion GS-estimator based on the same score

function as T (see equation (6) and Theorem 1 above). Equation (15) shows a nice

relationship between the maxbias curves of dispersion and regression GS-estimators.

9



This relationship allows to extend the conclusions obtained in Section 2 to the Gaussian

regression model.

Notice that the breakdown point of T is ε∗ = min{ε−, ε+} = min{
√

1− b, 1 −√
1− b}. Using this expression it is easy to check that ε∗ = 0.25 for the estimators of

the example in the Introduction. In general, two score functions χ1 ∈ Cb1 and χ2 ∈ Cb2
such that

√
1− b1 +

√
1− b2 = 1 will produce two regression GS-estimators with the

same breakdown point. However if both score functions have the same local order at

zero κ > 1, the estimator corresponding to the lower constant is always preferable.

This fact is shown in the following theorem.

Theorem 3. Let T1 and T2 be two regression GS-estimators based on a pair of score

functions χ1 ∈ Cb1 and χ2 ∈ Cb2 satisfying A2 with the same local order at zero κ > 1.

Assume that
√

1− b1 +
√

1− b2 = 1. If b1 > b2, then r(T1,T2) =∞.

Theorem 3 explains the behavior of the estimators in the example of the Intro-

duction. What Theorem 3 shows is that the estimator θ̂2 has higher order of global

robustness than θ̂1 and it is therefore more globally robust.

Given b ∈ (0, 1), and a pair of score functions χ1 ∈ Cb and χ2 ∈ Cb with the

same local order at zero, the corresponding regression GS-estimators share a common

breakdown point and also a common order of global robustness. In this case, from

(15), the relative explosion rate is given by

r(T1,T2) =
r+(S1, S2)

r−(S1, S2)
,

where S1 and S2 are the dispersion GS-estimators based on χ1 and χ2. We have applied

this fact together with (11) and (12) to obtain the relative explosion rate (with respect

to the estimator based on Huber’s function) of several regression GS-estimators with

breakdown point ε∗ = 0.5. The results are displayed in Table 2. The efficiencies of

the estimators are also reported. Note that these efficiencies are remarkably similar

for all the considered estimators. Again, as in the dispersion setup, the explosion rate

and, therefore, the local order at zero of the score function, is of concern to rank the

estimators. Similarly to the dispersion case, the estimator based on a jump function

(which coincides with the vector of parameters that gives the least quartile of differences

(lqd) of the residuals) appears to be the best one among the considered estimators.
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Table 2 about here

To conclude this section we compare the global robustness of a regression GS-estimator,

T∗, with that of a simpler non-generalized S-estimator, T, when both are based on the

same score function. Our aim is to quantify the trade-off between the gain in efficiency

and the loss of robustness when considering pairwise differences of residuals instead

of the residuals themselves. Obviously, for each score function we must consider two

different tuning constants c∗ and c, in order to match the breakdown point of the two

estimators. For the sake of simplicity we will only consider the case when the common

breakdown point is ε∗ = 0.5 although similar expressions could be obtained for ε∗ < 0.5.

We show in Theorem 4 below that although both estimators have the same breakdown

point and the same order of global robustness, using pairwise differences produces a

loss of robustness since the relative explosion rate is usually greater than one.

Theorem 4. Let T∗ be a regression GS-estimator based on χc∗ and let T be a regres-

sion S-estimator based on χc. Assume that the score functions satisfy A2 and have

local order κ at zero. Finally, assume that the tuning constants are chosen so that both

estimators have a common breakdown point ε∗ = 0.5. Then,

r(T∗,T) = 2
κ−2
2κ

2
√

2

2
√

2 + 1

(∫ c∗
0

[1− χc∗(y)] dy∫ c
0
[1− χc(y)] dy

)(
χ

(κ)
c∗ (0)

χ
(κ)
c (0)

)1/κ

. (16)

Remark 2: When the score functions χc and χc∗ only differ in the tuning constant

(that is, χc(x) = χ(x/c) and χc∗(x) = χ(x/c∗) for some score function χ with tuning

constant equal to 1) then the last two factors of (16) cancel and (16) reduces to

r(T∗,T) = 2
κ−2
2κ

2
√

2

2
√

2 + 1
(17)

and so the relative explosion rate only depends on χ through its local order at zero, κ.

Remark 3: Note that Theorem 4 above does not cover the important case when χ

is a jump function, that is, when T∗ is the lqd-estimator and T is the lms-estimator

(see Rousseeuw, 1984). However, in this case we have that (see Remark 1 above)

r(lqd,lms) =
r+(q,shorth)

r−(q,shorth)
=

2.12

1.11
= 1.91.
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This result coincides with the corresponding computation of Croux, et al. (1994),

equation (16).

We have applied formula (17) to several score functions and collected the results in

Table 3. As shown by the proof of Theorem 4, the relative rate for the regression esti-

mators is the quotient between the explosion and implosion rates of the corresponding

dispersion estimators, which are also included. We see in Table 3 that, as the local or-

der at zero of the score function increases, the loss of robustness also increases. For the

truncated linear score function (κ = 1), the maxbias curves of T and T∗ are very sim-

ilar for large amount of contamination; however, for the jump score function (κ =∞)

the maxbias curve of T∗ for large amount of contamination is roughly twice as great as

that of T. It is somewhat surprising that dispersion generalized S-estimators handle

inliers slightly better than non-generalized ones as the implosion rates of the table are

all slightly greater than one.

Table 3 about here

4 Conclusions

In this paper we have applied the concept of relative explosion rate to study the global

robustness properties of dispersion and regression generalized S-estimators. First, we

have observed that two estimators with the same breakdown point may have very

different maxbias curves. This fact motivates a further study of the factors that govern

the relative maxbias performance of two estimators with common breakdown point.

Regarding this question, we have showed that the local behavior at zero of the score

functions on which the estimators are based is crucial. In fact, the relative rate between

two explosion maxbias curves is determined by the rate between the curvatures at zero

of the corresponding score functions. As a consequence, score functions which are “flat”

near zero produce more robust estimators.

The choice of the score function is not very important for the efficiency of the

estimators. In the dispersion model, all the considered estimators have an efficiency

12



of approximately 82% under the Gaussian central model whereas in the regression

setup, the efficiency of all the estimators decreases to roughly 68%. Therefore, it seems

reasonable to rank the estimators attending to robustness criteria. From the results of

this paper, jump score functions, which are totally flat near zero, should be selected to

compute regression and dispersion generalized S-estimators.

Finally, we have also applied the explosion rate to quantify the loss of robustness

when using regression GS-estimators instead of non-generalized S-estimators. Given a

score function, the corresponding GS- and S-estimators have the same order of global

robustness (finite explosion rate). However, there is a cost in terms of robustness since

the explosion rate ranges from approximately 1 (linear score function) to roughly 2

(jump score function). The results obtained in this paper suggest that the robustness

loss caused by using pairwise differences of residuals instead of the residuals themselves

increases with the flatness at zero of the score function.

Acknowledgements: The author wish to thank two referees for their helpful com-

ments and suggestions.

Appendix. Proofs.

Proof of Theorem 1: First, we will show that, if F is a continuous distribution, the

function f(s) = EFχ(X/s) is continuous and decreasing for all s > 0. Let sn be a

sequence such that sn → s > 0. Since χ has at most a finite number of discontinuities,

χ(u/sn) → χ(u/s) a.s. with respect to Lebesgue measure. Moreover, |χ(u/sn)| ≤ 1,

and we can apply Dominated Convergence Theorem to obtain f(sn) → f(s). It is

straightforward to show that f is decreasing.

Now, define sn = S[(1−ε)F0+εVn], where Vn is the uniform distribution on the interval

(n, 2n). Assume that supn sn < ∞ (if this is not the case, B+
S (ε) = ∞). Then, there

exists a convergent subsequence, denoted also by sn. Let s = limn→∞ sn. We will show

that s = S+(ε) and that s ≥ S[(1− ε)F0 + εH] for any arbitrary distribution H. Since

F0 and Vn are continuous, sn satisfies

(1− ε)2EF0×F0χ

(
X − Y
sn

)
+ 2ε(1− ε)EF0×Vnχ

(
X − Y
sn

)
+ ε2EVn×Vnχ

(
X − Y
sn

)
= b.

(18)
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For large enough n and u > 0, we have that V ∗n (u) ≡ PVn×Vn{X − Y ≤ u} = 1/2 +∫ u
0

(n− x)/n2dx = 1/2 + u/n[1− u/(2n)]. Then, V ∗n (u)→ 1/2 as n→∞ for all u > 0.

Let k > 0 be any (large enough) real number such that χ(k/sn) is continuous for all n.

Then,

EVn×Vnχ

(
X − Y
sn

)
= 2

∫ ∞
0

χ(u/sn)dV ∗n (u)

≥ 2χ(k/sn)[1− V ∗n (k)]→ χ(k/s), as n→∞.

Letting k →∞, it follows that limn→∞EVn×Vnχ[(X − Y )/sn] = 1. In a similar way, it

can also be proved that limn→∞EF0×Vnχ[(X − Y )/sn] = 1. Therefore, taking limits in

(18) as n→∞, yields

(1− ε)2EF0×F0χ

(
X − Y
s

)
+ 2ε(1− ε) + ε2 = b. (19)

This proves that s = S+(ε). Now let H be an arbitrary distribution, denote sH =

S[(1− ε)F0 + εH] and assume to find a contradiction that

(1− ε)2EF0×F0χ

(
X − Y
sH

)
+ 2ε(1− ε) + ε2 < b.

By continuity, there exists s∗ < sH such that

(1− ε)2EF0×F0χ

(
X − Y
s∗

)
+ 2ε(1− ε)EF0×Hχ

(
X − Y
s∗

)
+ ε2EH×Hχ

(
X − Y
s∗

)
≤

(1− ε)2EF0×F0χ

(
X − Y
s∗

)
+ 2ε(1− ε) + ε2 < b,

but this contradicts the definition of sH . Therefore,

(1− ε)2EF0×F0χ

(
X − Y
sH

)
+ 2ε(1− ε) + ε2 ≥ b.

Comparing the last inequality with (19), it follows that s ≥ sH and therefore s = B+
S (ε).

To find the implosion maxbias, define s0 = S−(ε) = m−1(b, ε). Therefore, m(s0, ε) =

b. Since m(·, ε) is decreasing, it is enough to show that m(sH , ε) ≤ b. To find a

contradiction, assume that m(sH , ε) > b. By continuity, there exists s∗ > sH such that

m(s∗, ε) > b and therefore

(1− ε)2EF0×F0χ

(
X − Y
s∗

)
+ 2ε(1− ε)EF0×Hχ

(
X − Y
s∗

)
+

ε2EH×Hχ

(
X − Y
s∗

)
≥ m(s∗, ε) > b. (20)
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The first inequality follows since F0 symmetrical and unimodal implies that

EF0×Hχ[(X − Y )/s] ≥ EF0χ(X/s), for all s > 0. Notice that (20) contradicts the

definition of sH .

Proof of Theorem 2: (a) For δ > 0 and s > 0, define the sets Aδ,s = {(x, y) ∈ IR2 :

0 < x − y < δs} and Bδ,s = {(x, y) ∈ IR2 : δs < x − y}. Since κ is the local order at

zero of χ, there exists δ > 0 such that the following expansion is valid for all s > 0 and

(x, y) ∈ Aδ,s

χ

(
x− y
s

)
=
χ(κ)(0)

k!

(
x− y
s

)κ
+ o

((
x− y
s

)κ)
.

Then,

g(s) = 2

∫∫
{x>y}

χ

(
x− y
s

)
f0(x)f0(y)dxdy = 2

∫∫
Aδ,s

χ(κ)(0)

k!

(
x− y
s

)κ
f0(x)f0(y)dxdy

+ 2

∫∫
Aδ,s

o

((
x− y
s

)κ)
f0(x)f0(y)dxdy + 2

∫∫
Bδ,s

χ

(
x− y
s

)
f0(x)f0(y)dxdy

≡ 2[I1(δ, s) + I2(δ, s) + I3(δ, s)].

Therefore, sκg(s) = 2sκ[I1(δ, s) + I2(δ, s) + I3(δ, s)]. Since lims→∞Aδ,s = {(x, y) ∈ IR2 :

x > y}, we have that lims→∞ 2sκI1(δ, s) = C, where

C ≡
[
χ(κ)(0)

k!
EF0×F0|X − Y |κ

]1/κ

. (21)

Moreover, by Dominated Convergence Theorem lims→∞ s
κI2(δ, s) = 0. Finally,

lim
s→∞

sκI3(δ, s) ≤ lim
s→∞

sκPF0×F0{X − Y > δs} = lim
s→∞

∫ ∞
−∞

sκ[1− F0(y + δs)]f0(y)dy

The assumption lims→∞ s
κ+1f0(s) = 0 implies that lims→∞ s

κ[1 − F0(y + δs)] = 0.

Then, by Dominated Convergence Theorem lims→∞ s
κI3(δ, s) = 0. Therefore, we have

shown that lims→∞ s
κg(s) = C. We obtain the first approximation of (7) by letting

s = S+(ε) in this expression. The second part of (7) follows from

C

(
(1− ε)2

b− 2ε+ ε2

)1/κ

= C

(
(1− ε)2

ε− (1 +
√

1− b)

)1/κ

(ε+ − ε)−1/κ ∼ C̃(ε+ − ε)−1/κ.
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(b) It remains to show the approximation (9). Since limε→
√

1−b S
−(ε) = 0, by

L’Hôpital’s Rule it is enough to compute limε→
√

1−b
dS−(ε)
dε
≡ −D. By definition of

S−(ε), we have

(1− ε)2g[S−(ε)] + 2ε(1− ε)h[S−(ε)] = b.

Differentiating in this equation with respect to ε and taking limits as ε→
√

1− b , we

have

lim
ε→
√

1−b

dS−(ε)

dε
=

2
√

1− b
(1−

√
1− b)2g′(0) + 2

√
1− b(1−

√
1− b)h′(0)

. (22)

Now, notice that h(s) = 2
[∫ cs

0
χ(y/s)f0(y)dy + 1− F0(cs)

]
. In order to compute

h′(s) we apply Leibniz’s formula and, after that, use the change of variable x = y/s.

We obtain h′(s) = −2
∫ c

0
χ′(x)xf0(sx)dx. Evaluating at s = 0 and integrating by

parts, h′(0) = −2f0(0)
∫ c
0
[1 − χ(y)]dy. Analogously, it can be proved that g′(0) =

−2f ∗0 (0)
∫ c

0
[1− χ(y)]dy. Replacing these expressions in the right hand side of (22) we

obtain limε→
√

1−b
dS−(ε)
dε

= −D, where

D ≡
[(
f ∗0 (0)

(1−
√

1− b)2

√
1− b

+ 2f0(0)(1−
√

1− b)
)∫ c

0

(1− χ(x))dx

]−1

(23)

Proof of Theorem 3: Notice that T1 and T2 have the same breakdown point ε∗ =√
1− b1 = 1 −

√
1− b2. Let S1 and S2 be the dispersion GS-estimators based on the

same score functions as T1 and T2. From Theorem 2 and Equation (15),

[1 +B2

T1
(ε)]1/2 ∼ −

B+
S1

(
√

1− b1)
D1 · (ε−

√
1− b1)

, as ε→ ε∗,

and

[1 +B2

T2
(ε)]1/2 ∼ C2 · [(1− ε)2(b2 − 2ε+ ε2)−1]

1/κ

B−S2
(1−

√
1− b2)

, as ε→ ε∗.

Since B+
S1

(
√

1− b1) <∞ and B−S2
(1−

√
1− b2) > 0, to show that

r(T1,T2) = lim
ε→ε∗

[1 +B2
T1

(ε)]1/2

[1 +B2
T2

(ε)]1/2
=∞,
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it is enough to prove that

lim
ε→ε∗

(ε−
√

1− b1)
[(

b2 − 2ε+ ε2

(1− ε)2

)]−1/κ

= 0,

but this fact can be checked easily applying L’Hôpital’s Rule.

Proof of Theorem 4: Let S∗ and S be the dispersion GS- and S-estimators based on

the same score functions as T∗ and T respectively. By (15), it holds that r(T∗,T) =

r+(S∗, S)/r−(S∗, S), so that we will compute r+(S∗, S) and r−(S∗, S) separately. From

(7),

B+
S∗(ε) ∼ C∗

(
(1− ε)2

3/4− 2ε+ ε2

)1/κ

, as ε→ 1/2,

where C∗ is given by (8). Moreover, Theorem 1(a) in Berrendero et al. (1998) implies

that

B+
S (ε) ∼ C

(
1− ε

1/2− ε

)1/κ

, as ε→ 1/2,

where C = [χ(κ)(0)EF0|X|κ]1/κ/κ!. Then,

r+(S∗, S) =
C∗

C
lim
ε→1/2

(
(1−ε)2

3/4−2ε+ε2

)1/κ

(
(1−ε)
1/2−ε

)1/κ
= 2−1/κC

∗

C
= 2

κ−2
2κ

(
χ

(κ)
c∗ (0)

χ
(κ)
c (0)

)1/κ

, (24)

since, under the Gaussian model, it is easy to check that C∗/C =
√

2
(
χ

(κ)
c∗ (0)/χ

(κ)
c (0)

)1/κ

.

On the other hand, from (9),

B−S∗(ε) ∼ D∗(1/2− ε), as ε→ 1/2, (25)

where the constant D∗ is given by (10). Under the Gaussian model, (10) reduces to

D∗ =
1

ϕ(0)

[(
2
√

2 + 1

2
√

2

)∫ c∗

0

[1− χc∗(x)] dx

]−1

.

Furthermore, Theorem 4(b) in Martin and Zamar (1993) implies that the implosion

maxbias curve of S satisfies (1− ε)f [B−S (ε)] = 1/2, where f(s) = EF0χc(X/s). Differ-

entiating with respect to ε, evaluating at ε = 1/2 and rearranging terms, we get[
dB−S (ε)

dε

]
ε=1/2

= − 1

ϕ(0)

[∫ c

0

[1− χc(x)] dx

]−1

≡ −D

17



and, therefore,

B−S (ε) ∼ D(1/2− ε), as ε→ 1/2. (26)

From (25) and (26),

r−(S∗, S) =
D∗

D
=

2
√

2

2
√

2 + 1

∫ c
0
[1− χc(x)] dx∫ c∗

0
[1− χc∗(x)] dx

. (27)

Finally, the result follows from (24) and (27).

Remark 4: Note that equation (13) in Section 2 is only a particular case (for jump

score functions) of (27).
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Score function Tuning constant r+(χ, χh) r−(χ, χh) Eff

χ1(y) = min{|y/c|, 1} 0.92 ∞ 0.989 83.4 %

χt(y) = min{3(y/c)2 − 3(y/c)4 + (y/c)6, 1} 0.99 1.182 0.996 82.9 %

χh(y) = min{(y/c)2, 1} 0.68 1 1 82.6 %

χ6(y) = min{(y/c)6, 1} 0.53 0 1.005 82.2 %

χj(y) = I{|y| ≥ 0} 0.45 0 1.006 82.2 %

Table 1: Explosion and implosion rates for several dispersion GS-estimators.

Score function Tuning constant Explosion rate Eff

χ1(y) = min{|y/c|, 1} 0.92 ∞ 69.26 %

χt(y) = min{3(y/c)2 − 3(y/c)4 + (y/c)6, 1} 0.99 1.187 68.38 %

χh(y) = min{(y/c)2, 1} 0.68 1 67.88 %

χ6(y) = min{(y/c)6, 1} 0.53 0 67.26 %

χj(y) = I{|y| ≥ 0} 0.45 0 67.14 %

Table 2: Explosion rates for several regression GS-estimators.

Score function c c∗ r+(S∗, S) r−(S∗, S) r(T∗,T)

χ1(y) = min{|y/c|, 1} 1.47 0.92 1.13 1.18 0.96

χt(y) = min{3(y/c)2 − 3(y/c)4 + (y/c)6, 1} 1.55 0.99 1.57 1.16 1.35

χh(y) = min{(y/c)2, 1} 1.04 0.68 1.53 1.13 1.35

χ6(y) = min{(y/c)6, 1} 0.79 0.53 1.88 1.10 1.71

χj(y) = I{|y| ≥ 0} 0.67 0.45 2.12 1.11 1.91

Table 3: Comparison between generalized and non-generalized S-estimators based on

the same score function.
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Figure 1: Maxbias curves of θ̂1 (dashed line) and θ̂2 (solid line). For both estimators,

the breakdown point is ε∗ = 0.25.
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Figure 2: Explosion and implosion maxbias curves for four dispersion GS-estimators

with the following score functions: χ6 (solid line), Huber function χh (dashed line),

Tukey function χt (dashed-dotted line) and truncated linear function χ1 (dotted line).
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