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Introduction

We study the following Cauchy problem (heat or diffusion equation){
∂tu = 1

2∆u (x , t) ∈ Rd × (0,∞)

u(x ,0) = δ0(x) x ∈ Rd , (1)

where δ0 is the Dirac delta centered at the origin. A solution of (1)
is called a fundamental solution.
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Fundamental solution
Let

φ̂(ξ) := F(φ)(ξ) =
1

(2π)
d
2

ˆ
Rd

e−iξ·xφ(x) dx ,

then F(∆φ)(ξ) = −|ξ|2F(φ)(ξ) (integration by parts). Taking the
Fourier transform of (1) yields

∂û
∂t

= −1
2
|ξ|2û

û(ξ, t) = Ce−
1
2 t |ξ|2 ,

and using that F(δ0) = (2π)−
d
2 we get

û(ξ, t) = (2π)−
d
2 e−

1
2 t |ξ|2 . (2)
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û(ξ, t) = Ce−
1
2 t |ξ|2 ,

and using that F(δ0) = (2π)−
d
2 we get
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Fundamental solution

Now, take the Fourier inverse of (2)

(don’t worry û(·, t) ∈ S(Rd ))

u(x , t) =F−1((2π)−
d
2 e−

1
2 t |·|2)(x)

=(2π)−
d
2

ˆ
Rd

eiξ·x (2π)−
d
2 e−

1
2 t |ξ|2 dξ

=
1

(2πt)
d
2

e−
|x|2
2t .

(3)

Hopefully this is a well-known function! It is e.g. the probability
density function of the normal distribution (with µ = 0 and Σ = tI).
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u(x , t) =F−1((2π)−
d
2 e−

1
2 t |·|2)(x)

=(2π)−
d
2

ˆ
Rd

eiξ·x (2π)−
d
2 e−

1
2 t |ξ|2 dξ

=
1

(2πt)
d
2

e−
|x|2
2t .

(3)

Hopefully this is a well-known function! It is e.g. the probability
density function of the normal distribution (with µ = 0 and Σ = tI).

www.ntnu.no , Walking randomly in the realm of partial differential equations and probability theory



4

Fundamental solution

Now, take the Fourier inverse of (2) (don’t worry û(·, t) ∈ S(Rd ))
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Normal distribution (or Gaussian
distribution) with µ = 0 and t = 1
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Family of probability measures

Consider the family {Qt , t ≥ 0} where "Qt ( dx) = qt (x) dx".

Then
this family is a family of probability measures if qt (x) := u(x , t)
satisfies

i) qt (x) is non-negative; and
ii)
´
Rd qt (x) dx = 1,

and it does. In addition, qt (x) satisfies
iii) qt+s(x) = (qt ∗ qs)(x); and
iv) Qt is weakly convergent to δ0.

(All of these properties can be proved using (3).)
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Random variable
Definition
(Ω,F ,P) is called a probability space.

If Ω = R, F = B(R) and P(A) =
´

A
e−x2/2
√

2π
dm, then we have the

normal distribution with µ = 0 and σ2 = 1.

Definition
X : Ω→ Rd is a random variable if X is F measurable (i.e.,
(F ,B(Rd )) measurable).

Think of this as assigning a number to each outcome of an
experiment.
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Stochastic process

Definition
A stochastic process is parametrized collection of random
variables

{Xt}t∈T

defined on a probability space (Ω,F ,P) and assuming values in
Rd .

Note that Xt = Xt (ω) where ω ∈ Ω. Here it is useful to think of t as
time, and ω as a particle (or an experiment). Then t 7→ Xt (ω) would
represent the position (or the result) as a function of time t of the
particle (experiment) ω.
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Transition probabilities

Definition
For each 0 ≤ s ≤ t <∞, B ∈ B(Rd ), x ∈ Rd , we define

Ps,t (x ,B) = P(Xt ∈ B|Xs = x)

as the transition probability.

Note that Ps,t gives the probability of going from the point x at time
s to the set B at time t .
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Chapman-Kolmogorov equations
If we let

Ps,t (x , dy) = qt−s(y − x) dy = (2π(t − s))−
d
2 e−

|y−x|2
2(t−s) dy ,

or equivalently

Ps,t (x ,B) =

ˆ
B

qt−s(y − x) dy ,

then the transition probabilities satisfies (remember that
qt+s = qt ∗ qs)

Pr ,t (x ,B) =

ˆ
Rd

Ps,t (y ,B)Pr ,s(x , dy) (4)

for all 0 ≤ r ≤ s ≤ t <∞, x ∈ Rd , and B ∈ B(Rd ). Note that (4)
says that the probability of going from x to dy is independent of
going from dy to B.
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Finite-dimensional distribution
For 0 ≤ t1 ≤ . . . ≤ tn we define a measure νt1,...,tn by

νt1,...,tn (B1 × · · · × Bn)

=

ˆ
B1×...×Bn

qt1(x1) · · · qtn−tn−1(xn − xn−1) dx1 . . . dxn

=

ˆ
B1×...×Bn

(2π(t1))−
d
2 e−

|x1|
2

2(t1)

· · · (2π(tn − tn−1))−
d
2 e
−
|xn−xn−1|

2

2(tn−tn−1) dx1 . . . dxn.

(5)

Note that νt1,...,tn answers the question "what is the probability of
Xt1 ∈ B1, and, . . . , and Xtn ∈ Bn?". Hence, it is closely related to
transition probabilities.
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Kolmogorov’s existence theorem

Theorem
Given a family of probability measures {νt1,...,tn , ti ∈ R+ and n ∈ N}
satisfying the Kolmogorov consistency criteria. Then there exists a
probability space (Ω,F ,P) and a stochastic process {Xt}t≥0 on Ω;
Xt : Ω→ Rd such that

νt1,...,tn (B1 × · · · × Bn) = P(Xt1 ∈ B1, . . . ,Xtn ∈ Bn),

for all ti ∈ R+, k ∈ N and all Borel sets Bi .
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Existence of a stochastic process

We "know" that νt1,...,tn defined by (5) satisfies Kolmogorov’s
consistency criteria. Hence, there exists a stochastic process
{Xt}t≥0 on Ω such that

νt1,...,tn (B1 × · · · × Bn) = P(Xt1 ∈ B1, . . . ,Xtn ∈ Bn),

that is, the stochastic process Xt has νt1,...,tn as its finite
dimensional distribution.
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Brownian motion

Definition
A stochastic process Bt : Ω× [0,∞)→ Rd is called Brownian
motion if

i) B0 = 0
ii) Btn − Btn−1 is N (0, (tn − tn−1)I)
iii) Bt1 , . . . ,Btn − Btn−1 is independent

The process Xt with finite dimensional distribution given by (5)
satisfies all of these axioms! That is, we have constructed
Brownian motion using the fundamental solution of (1).
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Why??

Let us write down the finite dimensional distribution
ˆ

B1×...×Bn

(2π(t1))−
d
2 e−

|x1|
2

2(t1)

· · · (2π(tn − tn−1))−
d
2 e
−
|xn−xn−1|

2

2(tn−tn−1) dx1 . . . dxn.

Consider the first axiom; B0 = 0.
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Figure of Brownian motion in R1
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Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these
properties

i) for all 0 ≤ t1, . . . ,≤ tn the random variable Z = (Bt1 , . . . ,Btn ) is
multinormal distributed;

ii) the function t 7→ Bt (ω) is continuous;
iii) the function t 7→ Bt (ω) continuous is nowhere differentiable;
iv) the function t 7→ Bt (ω) continuous has infinite variation on each

interval (of t); and
v) 1

c Bc2t is also a Brownian motion; it is scalar invariant.
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Pollen particles
In 1827, Robert Brown studied pollen grains suspended in water
under a microscope.
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Pollen particles

He noticed that the path created by a single pollen particle was
very irregular.

To exclude life-like motion, the experiment was
repeated with non-organic material. The result was, indeed, the
same.

In 1905, Albert Einstein considered the density of Brownian
particles. He showed that the density satisfies (1) up to some
constant.

We then know that the path of one of these particles ω will be given
by (B1(t , ω),B2(t , ω)); two dimensional Brownian motion.
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Pollen particles
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Kolmogorov’s forward equation
(Also called the Fokker-Planck equation.)

Assume that Bt has a nice, smooth transition probability density
ps,t (x , y), that is,

P(Bt ∈ B|B0 = 0) =

ˆ
B

ps,t (0, y) dy ∀B ∈ B(Rd ).

Then this density will satisfy{
∂tp = 1

2∆yp (y , t) ∈ Rd × (0,∞)

p0(0, y) = δ0(y) (y , t) ∈ Rd × {0}
.

www.ntnu.no , Walking randomly in the realm of partial differential equations and probability theory



23

Kolmogorov’s forward equation
(Also called the Fokker-Planck equation.)

Assume that Bt has a nice, smooth transition probability density
ps,t (x , y), that is,

P(Bt ∈ B|B0 = 0) =

ˆ
B

ps,t (0, y) dy ∀B ∈ B(Rd ).

Then this density will satisfy{
∂tp = 1

2∆yp (y , t) ∈ Rd × (0,∞)

p0(0, y) = δ0(y) (y , t) ∈ Rd × {0}
.

www.ntnu.no , Walking randomly in the realm of partial differential equations and probability theory



23

Kolmogorov’s forward equation
(Also called the Fokker-Planck equation.)

Assume that Bt has a nice, smooth transition probability density
ps,t (x , y), that is,

P(Bt ∈ B|B0 = 0) =

ˆ
B

ps,t (0, y) dy ∀B ∈ B(Rd ).

Then this density will satisfy{
∂tp = 1

2∆yp (y , t) ∈ Rd × (0,∞)

p0(0, y) = δ0(y) (y , t) ∈ Rd × {0}
.

www.ntnu.no , Walking randomly in the realm of partial differential equations and probability theory



24

Fractional Laplace
We turn our attention to the following Cauchy problem (heat or
diffusion equation){

∂tu = −(−∆)
α
2 u (x , t) ∈ Rd × (0,∞)

u(x ,0) = δ0(x) x ∈ Rd , (6)

where δ0 is the Dirac delta centered at the origin, and −(−∆)
α
2 is

defined by the Fourier transform

F(−(−∆)
α
2 φ)(ξ) = −|ξ|αF(φ)(ξ) (7)

for all φ ∈ S(Rd ). Note that the (7) is consistent with the Fourier
transform of ∆.
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Lévy processes

By more theoretically advanced theory, we can do similar
computations as in the case of the Laplace operator.

These
computations will show that we can obtain α-stable isotropic
(rotationally invariant) Lévy processes from the fundamental
solution of (6), where the fundamental solution is given by

u(x , t) = F−1((2π)−
d
2 e−t |ξ|α)(x) α ∈ (0,2).

Observe that if we take α = 2 in the above equation, we get
Brownian motion up to some constant (there is a one-half missing).
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α-stable distributions with µ = 0
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Figures of Lévy processes

Picture due to A. Meucci (2009).
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Figures of Lévy processes
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The Black-Scholes option pricing model

Let us look at an European call option. That is, the right to buy one
stock for K NOK at a fixed time T > t . We call K the strike price
(the agreed price) and St the spot price (the price of the stock at
time t). If we are lucky we earn ST − K NOK, so the pay-off is
max{ST − K ,0}.

The problem is how much does this European call option cost? Or,
how do we get a good estimate on St?
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The Black-Scholes option pricing model
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The Black-Scholes option pricing model
In 1997, Fischer Black and Myron Scholes won the Nobel Prize in
Economics for the equation{

∂V
∂t + σ2

2 S2 ∂2V
∂S2 + rS ∂V

∂S − rV = 0 t ∈ [0,T )

V (S,T ) = max{S − K ,0} t = T
,

where V = V (S, t) is the price of the option, r is the risk-free
interest rate, and σ is the volatility of the stock.

The solution of this problem is given by the Feynman-Kac formula

V (S, t) = E
[
e−r(T−t) max{St ,x

T − K ,0}
]
.
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The Black-Scholes option pricing model
In the previous slide, St was actually modelled as geometric
Brownian motion:

dSt = rSt dt + σSt dBt .

This model has a lot of weaknesses. One crucial example is that
Browninan motion has a continuous version; so, this model cannot
model sudden jumps in price (which we know occurs in real life).
Furthermore, since the tail of a gaussian distribution is very thin,
the probability of extreme events is very low.

This is where Lévy processes enter. We allow sudden
discontinuous jumps in such processes, and this is a very useful
tool when modelling stock prices.

www.ntnu.no , Walking randomly in the realm of partial differential equations and probability theory



34

The Black-Scholes option pricing model
In the previous slide, St was actually modelled as geometric
Brownian motion:

dSt = rSt dt + σSt dBt .

This model has a lot of weaknesses. One crucial example is that
Browninan motion has a continuous version; so, this model cannot
model sudden jumps in price

(which we know occurs in real life).
Furthermore, since the tail of a gaussian distribution is very thin,
the probability of extreme events is very low.

This is where Lévy processes enter. We allow sudden
discontinuous jumps in such processes, and this is a very useful
tool when modelling stock prices.

www.ntnu.no , Walking randomly in the realm of partial differential equations and probability theory



34

The Black-Scholes option pricing model
In the previous slide, St was actually modelled as geometric
Brownian motion:

dSt = rSt dt + σSt dBt .

This model has a lot of weaknesses. One crucial example is that
Browninan motion has a continuous version; so, this model cannot
model sudden jumps in price (which we know occurs in real life).
Furthermore, since the tail of a gaussian distribution is very thin,
the probability of extreme events is very low.

This is where Lévy processes enter. We allow sudden
discontinuous jumps in such processes, and this is a very useful
tool when modelling stock prices.

www.ntnu.no , Walking randomly in the realm of partial differential equations and probability theory



35

The Black-Scholes option pricing model
As a consequence of this fact, it is common nowadays (at least in
finance) to add

ˆ
|y |>0

u(x + y , t)− u(x , t)− (ey − 1)∂xu(x , t)ν( dy)

to the Black-Scholes equation.

Note that ν is a positive Radon
measure at least satisfying

ˆ
R\{0}

min{|y |2,1}ν( dy).

The solution is still given by a formula similar to Feynman-Kac’, but
St is now a Lévy process.
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