Walking randomly in the realm of partial differential equations and probability theory
 The Laplace operator and Brownian motion

Department of mathematical sciences
12 March 2014

Introduction

We study the following Cauchy problem (heat or diffusion equation)

$$
\begin{cases}\partial_{t} u=\frac{1}{2} \Delta u & (x, t) \in \mathbb{R}^{d} \times(0, \infty) \tag{1}\\ u(x, 0)=\delta_{0}(x) & x \in \mathbb{R}^{d}\end{cases}
$$

where δ_{0} is the Dirac delta centered at the origin. A solution of (1) is called a fundamental solution.

Fundamental solution

Let

$$
\hat{\phi}(\xi):=\mathcal{F}(\phi)(\xi)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i} \xi \cdot x} \phi(x) \mathrm{d} x
$$

0

Fundamental solution

Let

$$
\hat{\phi}(\xi):=\mathcal{F}(\phi)(\xi)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i} \xi \cdot x} \phi(x) \mathrm{d} x
$$

then $\mathcal{F}(\Delta \phi)(\xi)=-|\xi|^{2} \mathcal{F}(\phi)(\xi)$ (integration by parts).

Fundamental solution

Let

$$
\hat{\phi}(\xi):=\mathcal{F}(\phi)(\xi)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i} \xi \cdot x} \phi(x) \mathrm{d} x
$$

then $\mathcal{F}(\Delta \phi)(\xi)=-|\xi|^{2} \mathcal{F}(\phi)(\xi)$ (integration by parts). Taking the Fourier transform of (1) yields

$$
\begin{aligned}
\frac{\partial \hat{u}}{\partial t} & =-\frac{1}{2}|\xi|^{2} \hat{u} \\
\hat{u}(\xi, t) & =C e^{-\frac{1}{2} t|\xi|^{2}}
\end{aligned}
$$

Fundamental solution

Let

$$
\hat{\phi}(\xi):=\mathcal{F}(\phi)(\xi)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i} \xi \cdot x} \phi(x) \mathrm{d} x
$$

then $\mathcal{F}(\Delta \phi)(\xi)=-|\xi|^{2} \mathcal{F}(\phi)(\xi)$ (integration by parts). Taking the Fourier transform of (1) yields

$$
\begin{aligned}
\frac{\partial \hat{u}}{\partial t} & =-\frac{1}{2}|\xi|^{2} \hat{u} \\
\hat{u}(\xi, t) & =C e^{-\frac{1}{2} t|\xi|^{2}}
\end{aligned}
$$

and using that $\mathcal{F}\left(\delta_{0}\right)=(2 \pi)^{-\frac{d}{2}}$ we get

$$
\begin{equation*}
\hat{u}(\xi, t)=(2 \pi)^{-\frac{d}{2}} \mathrm{e}^{-\frac{1}{2} t|\xi|^{2}} \tag{2}
\end{equation*}
$$

Fundamental solution

Now, take the Fourier inverse of (2)

Fundamental solution

Now, take the Fourier inverse of (2) (don't worry $\hat{u}(\cdot, t) \in \mathcal{S}\left(\mathbb{R}^{d}\right)$)

Fundamental solution

Now, take the Fourier inverse of (2) (don't worry $\hat{u}(\cdot, t) \in \mathcal{S}\left(\mathbb{R}^{d}\right)$)

$$
\begin{align*}
u(x, t) & =\mathcal{F}^{-1}\left((2 \pi)^{-\frac{d}{2}} \mathrm{e}^{-\frac{1}{2} t|\cdot|^{2}}\right)(x) \\
& =(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} \xi \cdot x}(2 \pi)^{-\frac{d}{2}} \mathrm{e}^{-\frac{1}{2} t|\xi|^{2}} \mathrm{~d} \xi \tag{3}\\
& =\frac{1}{(2 \pi t)^{\frac{d}{2}}} \mathrm{e}^{-\frac{|x|^{2}}{2 t}} .
\end{align*}
$$

Fundamental solution

Now, take the Fourier inverse of (2) (don't worry $\hat{u}(\cdot, t) \in \mathcal{S}\left(\mathbb{R}^{d}\right)$)

$$
\begin{align*}
u(x, t) & =\mathcal{F}^{-1}\left((2 \pi)^{-\frac{d}{2}} \mathrm{e}^{-\frac{1}{2} t|\cdot|^{2}}\right)(x) \\
& =(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} \xi \cdot x}(2 \pi)^{-\frac{d}{2}} \mathrm{e}^{-\frac{1}{2} t|\xi|^{2}} \mathrm{~d} \xi \tag{3}\\
& =\frac{1}{(2 \pi t)^{\frac{d}{2}}} \mathrm{e}^{-\frac{|x|^{2}}{2 t}}
\end{align*}
$$

Hopefully this is a well-known function!

Fundamental solution

Now, take the Fourier inverse of (2) (don't worry $\hat{u}(\cdot, t) \in \mathcal{S}\left(\mathbb{R}^{d}\right)$)

$$
\begin{align*}
u(x, t) & =\mathcal{F}^{-1}\left((2 \pi)^{-\frac{d}{2}} \mathrm{e}^{-\frac{1}{2} t|\cdot|^{2}}\right)(x) \\
& =(2 \pi)^{-\frac{d}{2}} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} \xi \cdot x}(2 \pi)^{-\frac{d}{2}} \mathrm{e}^{-\frac{1}{2} t|\xi|^{2}} \mathrm{~d} \xi \tag{3}\\
& =\frac{1}{(2 \pi t)^{\frac{d}{2}}} \mathrm{e}^{-\frac{|x|^{2}}{2 t}} .
\end{align*}
$$

Hopefully this is a well-known function! It is e.g. the probability density function of the normal distribution (with $\mu=0$ and $\Sigma=t /$).

Normal distribution (or Gaussian distribution) with $\mu=0$ and $t=1$

Family of probability measures

Consider the family $\left\{Q_{t}, t \geq 0\right\}$ where " $Q_{t}(\mathrm{~d} x)=q_{t}(x) \mathrm{d} x$ ".

Family of probability measures

Consider the family $\left\{Q_{t}, t \geq 0\right\}$ where " $Q_{t}(\mathrm{~d} x)=q_{t}(x) \mathrm{d} x$ ". Then this family is a family of probability measures if $q_{t}(x):=u(x, t)$ satisfies
i) $q_{t}(x)$ is non-negative; and
ii) $\int_{\mathbb{R}^{d}} q_{t}(x) \mathrm{d} x=1$,

Family of probability measures

Consider the family $\left\{Q_{t}, t \geq 0\right\}$ where " $Q_{t}(\mathrm{~d} x)=q_{t}(x) \mathrm{d} x$ ". Then this family is a family of probability measures if $q_{t}(x):=u(x, t)$ satisfies
i) $q_{t}(x)$ is non-negative; and
ii) $\int_{\mathbb{R}^{d}} q_{t}(x) \mathrm{d} x=1$, and it does.

Family of probability measures

Consider the family $\left\{Q_{t}, t \geq 0\right\}$ where " $Q_{t}(\mathrm{~d} x)=q_{t}(x) \mathrm{d} x$ ". Then this family is a family of probability measures if $q_{t}(x):=u(x, t)$ satisfies
i) $q_{t}(x)$ is non-negative; and
ii) $\int_{\mathbb{R}^{d}} q_{t}(x) \mathrm{d} x=1$,
and it does. In addition, $q_{t}(x)$ satisfies
iii) $q_{t+s}(x)=\left(q_{t} * q_{s}\right)(x)$; and
iv) Q_{t} is weakly convergent to δ_{0}.

Family of probability measures

Consider the family $\left\{Q_{t}, t \geq 0\right\}$ where " $Q_{t}(\mathrm{~d} x)=q_{t}(x) \mathrm{d} x$ ". Then this family is a family of probability measures if $q_{t}(x):=u(x, t)$ satisfies
i) $q_{t}(x)$ is non-negative; and
ii) $\int_{\mathbb{R}^{d}} q_{t}(x) \mathrm{d} x=1$, and it does. In addition, $q_{t}(x)$ satisfies
iii) $q_{t+s}(x)=\left(q_{t} * q_{s}\right)(x)$; and
iv) Q_{t} is weakly convergent to δ_{0}.
(All of these properties can be proved using (3).)

Random variable

Definition

(Ω, \mathcal{F}, P) is called a probability space.

0

Random variable

Definition

(Ω, \mathcal{F}, P) is called a probability space.
If $\Omega=\mathbb{R}, \mathcal{F}=\mathcal{B}(\mathbb{R})$ and $P(A)=\int_{A} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} m$, then we have the normal distribution with $\mu=0$ and $\sigma^{2}=1$.

0

Random variable

Definition

(Ω, \mathcal{F}, P) is called a probability space. If $\Omega=\mathbb{R}, \mathcal{F}=\mathcal{B}(\mathbb{R})$ and $P(A)=\int_{A} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} m$, then we have the normal distribution with $\mu=0$ and $\sigma^{2}=1$.

Definition

$X: \Omega \rightarrow \mathbb{R}^{d}$ is a random variable if X is \mathcal{F} measurable (i.e., ($\mathcal{F}, \mathcal{B}\left(\mathbb{R}^{d}\right)$) measurable).

Random variable

Definition

(Ω, \mathcal{F}, P) is called a probability space.
If $\Omega=\mathbb{R}, \mathcal{F}=\mathcal{B}(\mathbb{R})$ and $P(A)=\int_{A} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} m$, then we have the normal distribution with $\mu=0$ and $\sigma^{2}=1$.

Definition

$X: \Omega \rightarrow \mathbb{R}^{d}$ is a random variable if X is \mathcal{F} measurable (i.e., ($\mathcal{F}, \mathcal{B}\left(\mathbb{R}^{d}\right)$) measurable).

Think of this as assigning a number to each outcome of an experiment.

Stochastic process

Definition

A stochastic process is parametrized collection of random variables

$$
\left\{X_{t}\right\}_{t \in T}
$$

defined on a probability space (Ω, \mathcal{F}, P) and assuming values in \mathbb{R}^{d}.

0

Stochastic process

Definition

A stochastic process is parametrized collection of random variables

$$
\left\{X_{t}\right\}_{t \in T}
$$

defined on a probability space (Ω, \mathcal{F}, P) and assuming values in \mathbb{R}^{d}.

Note that $X_{t}=X_{t}(\omega)$ where $\omega \in \Omega$.

0

Stochastic process

Definition

A stochastic process is parametrized collection of random variables

$$
\left\{X_{t}\right\}_{t \in T}
$$

defined on a probability space (Ω, \mathcal{F}, P) and assuming values in \mathbb{R}^{d}.

Note that $X_{t}=X_{t}(\omega)$ where $\omega \in \Omega$. Here it is useful to think of t as time, and ω as a particle (or an experiment). Then $t \mapsto X_{t}(\omega)$ would represent the position (or the result) as a function of time t of the particle (experiment) ω.

Transition probabilities

Definition

For each $0 \leq s \leq t<\infty, B \in \mathcal{B}\left(\mathbb{R}^{d}\right), x \in \mathbb{R}^{d}$, we define

$$
P_{s, t}(x, B)=P\left(X_{t} \in B \mid X_{s}=x\right)
$$

as the transition probability.

0

Transition probabilities

Definition

For each $0 \leq s \leq t<\infty, B \in \mathcal{B}\left(\mathbb{R}^{d}\right), x \in \mathbb{R}^{d}$, we define

$$
P_{s, t}(x, B)=P\left(X_{t} \in B \mid X_{s}=x\right)
$$

as the transition probability.
Note that $P_{s, t}$ gives the probability of going from the point x at time s to the set B at time t.

Chapman-Kolmogorov equations

If we let

$$
P_{s, t}(x, \mathrm{~d} y)=q_{t-s}(y-x) \mathrm{d} y=(2 \pi(t-s))^{-\frac{d}{2}} e^{-\frac{|y-x|^{2}}{2(t-s)}} \mathrm{d} y
$$

Chapman-Kolmogorov equations

If we let

$$
P_{s, t}(x, \mathrm{~d} y)=q_{t-s}(y-x) \mathrm{d} y=(2 \pi(t-s))^{-\frac{d}{2}} e^{-\frac{|y-x|^{2}}{2(t-s)}} \mathrm{d} y
$$

or equivalently

$$
P_{s, t}(x, B)=\int_{B} q_{t-s}(y-x) \mathrm{d} y
$$

Chapman-Kolmogorov equations

If we let

$$
P_{s, t}(x, \mathrm{~d} y)=q_{t-s}(y-x) \mathrm{d} y=(2 \pi(t-s))^{-\frac{d}{2}} e^{-\frac{|y-x|^{2}}{2(t-s)}} \mathrm{d} y
$$

or equivalently

$$
P_{s, t}(x, B)=\int_{B} q_{t-s}(y-x) \mathrm{d} y
$$

then the transition probabilities satisfies (remember that $\left.q_{t+s}=q_{t} * q_{s}\right)$

$$
\begin{equation*}
P_{r, t}(x, B)=\int_{\mathbb{R}^{d}} P_{s, t}(y, B) P_{r, s}(x, \mathrm{~d} y) \tag{4}
\end{equation*}
$$

for all $0 \leq r \leq s \leq t<\infty, x \in \mathbb{R}^{d}$, and $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$.

Chapman-Kolmogorov equations

If we let

$$
P_{s, t}(x, \mathrm{~d} y)=q_{t-s}(y-x) \mathrm{d} y=(2 \pi(t-s))^{-\frac{d}{2}} e^{-\frac{|y-x|^{2}}{2(t-s)}} \mathrm{d} y
$$

or equivalently

$$
P_{s, t}(x, B)=\int_{B} q_{t-s}(y-x) \mathrm{d} y
$$

then the transition probabilities satisfies (remember that
$\left.q_{t+s}=q_{t} * q_{s}\right)$

$$
\begin{equation*}
P_{r, t}(x, B)=\int_{\mathbb{R}^{d}} P_{s, t}(y, B) P_{r, s}(x, \mathrm{~d} y) \tag{4}
\end{equation*}
$$

for all $0 \leq r \leq s \leq t<\infty, x \in \mathbb{R}^{d}$, and $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$. Note that (4) says that the probability of going from x to $d y$ is independent of going from dy to B.

Finite-dimensional distribution

For $0 \leq t_{1} \leq \ldots \leq t_{n}$ we define a measure $\nu_{t_{1}, \ldots, t_{n}}$ by

Finite-dimensional distribution

For $0 \leq t_{1} \leq \ldots \leq t_{n}$ we define a measure $\nu_{t_{1}, \ldots, t_{n}}$ by

$$
\begin{align*}
& \nu_{t_{1}, \ldots, t_{n}}\left(B_{1} \times \cdots \times B_{n}\right) \\
& =\int_{B_{1} \times \ldots \times B_{n}} q_{t_{1}}\left(x_{1}\right) \cdots q_{t_{n}-t_{n-1}}\left(x_{n}-x_{n-1}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} \\
& =\int_{B_{1} \times \ldots \times B_{n}}\left(2 \pi\left(t_{1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{1}\right|^{2}}{2\left(t_{1}\right)}} \tag{5}\\
& \quad \cdots\left(2 \pi\left(t_{n}-t_{n-1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{n}-x_{n-1}\right|^{2}}{2\left(t_{n}-t_{n-1}\right)}} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
\end{align*}
$$

Finite-dimensional distribution

For $0 \leq t_{1} \leq \ldots \leq t_{n}$ we define a measure $\nu_{t_{1}, \ldots, t_{n}}$ by

$$
\begin{align*}
& \nu_{t_{1}, \ldots, t_{n}}\left(B_{1} \times \cdots \times B_{n}\right) \\
& =\int_{B_{1} \times \ldots \times B_{n}} q_{t_{1}}\left(x_{1}\right) \cdots q_{t_{n}-t_{n-1}}\left(x_{n}-x_{n-1}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} \\
& =\int_{B_{1} \times \ldots \times B_{n}}\left(2 \pi\left(t_{1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{1}\right|^{2}}{2\left(t_{1}\right)}} \tag{5}\\
& \quad \cdots\left(2 \pi\left(t_{n}-t_{n-1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{n}-x_{n-1}\right|^{2}}{2\left(t_{n}-t_{n-1}\right)}} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
\end{align*}
$$

Note that $\nu_{t_{1}, \ldots, t_{n}}$ answers the question "what is the probability of $X_{t_{1}} \in B_{1}$, and, \ldots, and $X_{t_{n}} \in B_{n}$?". Hence, it is closely related to transition probabilities.

Kolmogorov's existence theorem

Theorem

Given a family of probability measures $\left\{\nu_{t_{1}, \ldots, t_{n}}, t_{i} \in \mathbb{R}^{+}\right.$and $\left.n \in \mathbb{N}\right\}$ satisfying the Kolmogorov consistency criteria. Then there exists a probability space (Ω, \mathcal{F}, P) and a stochastic process $\left\{X_{t}\right\}_{t \geq 0}$ on Ω; $X_{t}: \Omega \rightarrow \mathbb{R}^{d}$ such that

$$
\nu_{t_{1}, \ldots, t_{n}}\left(B_{1} \times \cdots \times B_{n}\right)=P\left(X_{t_{1}} \in B_{1}, \ldots, X_{t_{n}} \in B_{n}\right),
$$

for all $t_{i} \in \mathbb{R}^{+}, k \in \mathbb{N}$ and all Borel sets B_{i}.

Existence of a stochastic process

We "know" that $\nu_{t_{1}, \ldots, t_{n}}$ defined by (5) satisfies Kolmogorov's consistency criteria. Hence, there exists a stochastic process $\left\{X_{t}\right\}_{t \geq 0}$ on Ω such that

Existence of a stochastic process

We "know" that $\nu_{t_{1}, \ldots, t_{n}}$ defined by (5) satisfies Kolmogorov's consistency criteria. Hence, there exists a stochastic process $\left\{X_{t}\right\}_{t \geq 0}$ on Ω such that

$$
\nu_{t_{1}, \ldots, t_{n}}\left(B_{1} \times \cdots \times B_{n}\right)=P\left(X_{t_{1}} \in B_{1}, \ldots, X_{t_{n}} \in B_{n}\right)
$$

Existence of a stochastic process

We "know" that $\nu_{t_{1}, \ldots, t_{n}}$ defined by (5) satisfies Kolmogorov's consistency criteria. Hence, there exists a stochastic process $\left\{X_{t}\right\}_{t \geq 0}$ on Ω such that

$$
\nu_{t_{1}, \ldots, t_{n}}\left(B_{1} \times \cdots \times B_{n}\right)=P\left(X_{t_{1}} \in B_{1}, \ldots, X_{t_{n}} \in B_{n}\right)
$$

that is, the stochastic process X_{t} has $\nu_{t_{1}, \ldots, t_{n}}$ as its finite dimensional distribution.

Brownian motion

Definition

A stochastic process $B_{t}: \Omega \times[0, \infty) \rightarrow \mathbb{R}^{d}$ is called Brownian motion if
i) $B_{0}=0$
ii) $B_{t_{n}}-B_{t_{n-1}}$ is $\mathcal{N}\left(0,\left(t_{n}-t_{n-1}\right) /\right)$
iii) $B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}$ is independent

0

Brownian motion

Definition

A stochastic process $B_{t}: \Omega \times[0, \infty) \rightarrow \mathbb{R}^{d}$ is called Brownian motion if
i) $B_{0}=0$
ii) $B_{t_{n}}-B_{t_{n-1}}$ is $\mathcal{N}\left(0,\left(t_{n}-t_{n-1}\right) I\right)$
iii) $B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}$ is independent

The process X_{t} with finite dimensional distribution given by (5) satisfies all of these axioms!

0

Brownian motion

Definition

A stochastic process $B_{t}: \Omega \times[0, \infty) \rightarrow \mathbb{R}^{d}$ is called Brownian motion if
i) $B_{0}=0$
ii) $B_{t_{n}}-B_{t_{n-1}}$ is $\mathcal{N}\left(0,\left(t_{n}-t_{n-1}\right) /\right)$
iii) $B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}$ is independent

The process X_{t} with finite dimensional distribution given by (5) satisfies all of these axioms! That is, we have constructed Brownian motion using the fundamental solution of (1).

Why??

Let us write down the finite dimensional distribution

$$
\begin{aligned}
\int_{B_{1} \times \ldots \times B_{n}} & \left(2 \pi\left(t_{1}\right)\right)^{-\frac{d}{2}} e^{-\frac{\left|x_{1}\right|^{2}}{2\left(t_{1}\right)}} \\
& \cdots\left(2 \pi\left(t_{n}-t_{n-1}\right)\right)^{-\frac{d}{2}} e^{-\frac{\left|x_{n}-x_{n-1}\right|^{2}}{2\left(t_{n}-t_{n-1}\right)}} \\
d & x_{1} \ldots \mathrm{~d} x_{n} .
\end{aligned}
$$

Why??

Let us write down the finite dimensional distribution

$$
\begin{aligned}
& \int_{B_{1} \times \ldots \times B_{n}}\left(2 \pi\left(t_{1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{1}\right|^{2}}{2\left(t_{1}\right)}} \\
& \cdots\left(2 \pi\left(t_{n}-t_{n-1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{n}-x_{n-1}\right|^{2}}{2\left(t_{n}-t_{n-1}\right)}} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
\end{aligned}
$$

Consider the first axiom; $B_{0}=0$.

Why??

Let us write down the finite dimensional distribution

$$
\begin{aligned}
& \int_{B_{1} \times \ldots \times B_{n}}\left(2 \pi\left(t_{1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{1}\right|^{2}}{2\left(t_{1}\right)}} \\
& \cdots\left(2 \pi\left(t_{n}-t_{n-1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{n}-x_{n-1}\right|^{2}}{2\left(t_{n}-t_{n-1}\right)}} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
\end{aligned}
$$

Why??

Let us write down the finite dimensional distribution

$$
\begin{aligned}
\int_{B_{1} \times \ldots \times B_{n}} & \left(2 \pi\left(t_{1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{1}\right|^{2}}{2\left(t_{1}\right)}} \\
& \cdots\left(2 \pi\left(t_{n}-t_{n-1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{n}-x_{n-1}\right|^{2}}{2\left(t_{n}-t_{n-1}\right)}} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
\end{aligned}
$$

Consider the second axiom; $B_{t_{n}}-B_{t_{n-1}}$ is $\mathcal{N}\left(0,\left(t_{n}-t_{n-1}\right) /\right)$.

Why??

Let us write down the finite dimensional distribution

$$
\begin{aligned}
& \int_{B_{1} \times \ldots \times B_{n}}\left(2 \pi\left(t_{1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{1}\right|^{2}}{2\left(t_{1}\right)}} \\
& \cdots\left(2 \pi\left(t_{n}-t_{n-1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{n}-x_{n-1}\right|^{2}}{2\left(t_{n}-t_{n-1}\right)}} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
\end{aligned}
$$

Why??

Let us write down the finite dimensional distribution

$$
\begin{aligned}
& \int_{B_{1} \times \ldots \times B_{n}}\left(2 \pi\left(t_{1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{1}\right|^{2}}{2\left(t_{1}\right)}} \\
& \cdots\left(2 \pi\left(t_{n}-t_{n-1}\right)\right)^{-\frac{d}{2}} \mathrm{e}^{-\frac{\left|x_{n}-x_{n-1}\right|^{2}}{2\left(t_{n}-t_{n-1}\right)}} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
\end{aligned}
$$

Consider the third axiom; $B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}$ is independent.

Figure of Brownian motion in \mathbb{R}^{1}

Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these properties

Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these properties
i) for all $0 \leq t_{1}, \ldots, \leq t_{n}$ the random variable $Z=\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ is multinormal distributed;

Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these properties
i) for all $0 \leq t_{1}, \ldots, \leq t_{n}$ the random variable $Z=\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ is multinormal distributed;
ii) the function $t \mapsto B_{t}(\omega)$ is continuous;

Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these properties
i) for all $0 \leq t_{1}, \ldots, \leq t_{n}$ the random variable $Z=\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ is multinormal distributed;
ii) the function $t \mapsto B_{t}(\omega)$ is continuous;
iii) the function $t \mapsto B_{t}(\omega)$ continuous is nowhere differentiable;

Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these properties
i) for all $0 \leq t_{1}, \ldots, \leq t_{n}$ the random variable $Z=\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ is multinormal distributed;
ii) the function $t \mapsto B_{t}(\omega)$ is continuous;
iii) the function $t \mapsto B_{t}(\omega)$ continuous is nowhere differentiable;
iv) the function $t \mapsto B_{t}(\omega)$ continuous has infinite variation on each interval (of t); and

Properties of Brownian motion

Brownian motion (or a version of Brownian motion) has these properties
i) for all $0 \leq t_{1}, \ldots, \leq t_{n}$ the random variable $Z=\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ is multinormal distributed;
ii) the function $t \mapsto B_{t}(\omega)$ is continuous;
iii) the function $t \mapsto B_{t}(\omega)$ continuous is nowhere differentiable;
iv) the function $t \mapsto B_{t}(\omega)$ continuous has infinite variation on each interval (of t); and
v) $\frac{1}{c} B_{c^{2} t}$ is also a Brownian motion; it is scalar invariant.

Pollen particles

In 1827, Robert Brown studied pollen grains suspended in water under a microscope.

Pollen particles

He noticed that the path created by a single pollen particle was very irregular.

Pollen particles

He noticed that the path created by a single pollen particle was very irregular. To exclude life-like motion, the experiment was repeated with non-organic material. The result was, indeed, the same.

Pollen particles

He noticed that the path created by a single pollen particle was very irregular. To exclude life-like motion, the experiment was repeated with non-organic material. The result was, indeed, the same.

In 1905, Albert Einstein considered the density of Brownian particles. He showed that the density satisfies (1) up to some constant.

Pollen particles

He noticed that the path created by a single pollen particle was very irregular. To exclude life-like motion, the experiment was repeated with non-organic material. The result was, indeed, the same.

In 1905, Albert Einstein considered the density of Brownian particles. He showed that the density satisfies (1) up to some constant.

We then know that the path of one of these particles ω will be given by $\left(B_{1}(t, \omega), B_{2}(t, \omega)\right)$; two dimensional Brownian motion.

NTNU
Norwegian University of
Science and Technology

Pollen particles

0
NTNU
Norwegian University of
Science and Technology

Kolmogorov's forward equation

(Also called the Fokker-Planck equation.)

Kolmogorov's forward equation

(Also called the Fokker-Planck equation.)
Assume that B_{t} has a nice, smooth transition probability density $p_{s, t}(x, y)$, that is,

$$
P\left(B_{t} \in B \mid B_{0}=0\right)=\int_{B} p_{s, t}(0, y) \mathrm{d} y \quad \forall B \in \mathcal{B}\left(\mathbb{R}^{d}\right) .
$$

Kolmogorov's forward equation

(Also called the Fokker-Planck equation.)

Assume that B_{t} has a nice, smooth transition probability density $p_{s, t}(x, y)$, that is,

$$
P\left(B_{t} \in B \mid B_{0}=0\right)=\int_{B} p_{s, t}(0, y) \mathrm{d} y \quad \forall B \in \mathcal{B}\left(\mathbb{R}^{d}\right)
$$

Then this density will satisfy

$$
\begin{cases}\partial_{t} p=\frac{1}{2} \Delta_{y} p & (y, t) \in \mathbb{R}^{d} \times(0, \infty) \\ p_{0}(0, y)=\delta_{0}(y) & (y, t) \in \mathbb{R}^{d} \times\{0\}\end{cases}
$$

Fractional Laplace

We turn our attention to the following Cauchy problem (heat or diffusion equation)

$$
\begin{cases}\partial_{t} u=-(-\Delta)^{\frac{\alpha}{2}} u & (x, t) \in \mathbb{R}^{d} \times(0, \infty) \tag{6}\\ u(x, 0)=\delta_{0}(x) & x \in \mathbb{R}^{d}\end{cases}
$$

Fractional Laplace

We turn our attention to the following Cauchy problem (heat or diffusion equation)

$$
\begin{cases}\partial_{t} u=-(-\Delta)^{\frac{\alpha}{2}} u & (x, t) \in \mathbb{R}^{d} \times(0, \infty) \tag{6}\\ u(x, 0)=\delta_{0}(x) & x \in \mathbb{R}^{d}\end{cases}
$$

where δ_{0} is the Dirac delta centered at the origin,

Fractional Laplace

We turn our attention to the following Cauchy problem (heat or diffusion equation)

$$
\begin{cases}\partial_{t} u=-(-\Delta)^{\frac{\alpha}{2}} u & (x, t) \in \mathbb{R}^{d} \times(0, \infty) \tag{6}\\ u(x, 0)=\delta_{0}(x) & x \in \mathbb{R}^{d}\end{cases}
$$

where δ_{0} is the Dirac delta centered at the origin, and $-(-\Delta)^{\frac{\alpha}{2}}$ is defined by the Fourier transform

$$
\begin{equation*}
\mathcal{F}\left(-(-\Delta)^{\frac{\alpha}{2}} \phi\right)(\xi)=-|\xi|^{\alpha} \mathcal{F}(\phi)(\xi) \tag{7}
\end{equation*}
$$

for all $\phi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.

Fractional Laplace

We turn our attention to the following Cauchy problem (heat or diffusion equation)

$$
\begin{cases}\partial_{t} u=-(-\Delta)^{\frac{\alpha}{2}} u & (x, t) \in \mathbb{R}^{d} \times(0, \infty) \tag{6}\\ u(x, 0)=\delta_{0}(x) & x \in \mathbb{R}^{d}\end{cases}
$$

where δ_{0} is the Dirac delta centered at the origin, and $-(-\Delta)^{\frac{\alpha}{2}}$ is defined by the Fourier transform

$$
\begin{equation*}
\mathcal{F}\left(-(-\Delta)^{\frac{\alpha}{2}} \phi\right)(\xi)=-|\xi|^{\alpha} \mathcal{F}(\phi)(\xi) \tag{7}
\end{equation*}
$$

for all $\phi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Note that the (7) is consistent with the Fourier transform of Δ.

Lévy processes

By more theoretically advanced theory, we can do similar computations as in the case of the Laplace operator.

Norwegian University of
Science and Technology

Lévy processes

By more theoretically advanced theory, we can do similar computations as in the case of the Laplace operator. These computations will show that we can obtain α-stable isotropic (rotationally invariant) Lévy processes from the fundamental solution of (6),

Lévy processes

By more theoretically advanced theory, we can do similar computations as in the case of the Laplace operator. These computations will show that we can obtain α-stable isotropic (rotationally invariant) Lévy processes from the fundamental solution of (6), where the fundamental solution is given by

$$
u(x, t)=\mathcal{F}^{-1}\left((2 \pi)^{-\frac{d}{2}} e^{-t|\xi|^{\alpha}}\right)(x) \quad \alpha \in(0,2) .
$$

Lévy processes

By more theoretically advanced theory, we can do similar computations as in the case of the Laplace operator. These computations will show that we can obtain α-stable isotropic (rotationally invariant) Lévy processes from the fundamental solution of (6), where the fundamental solution is given by

$$
u(x, t)=\mathcal{F}^{-1}\left((2 \pi)^{-\frac{d}{2}} e^{-t|\xi|^{\alpha}}\right)(x) \quad \alpha \in(0,2) .
$$

Observe that if we take $\alpha=2$ in the above equation, we get Brownian motion up to some constant (there is a one-half missing).

α-stable distributions with $\mu=0$

Figures of Lévy processes

Picture due to A. Meucci (2009).

Figures of Lévy processes

Picture due to A. Meucci (2009).

Figures of Lévy processes

Picture due to A. Meucci (2009).

Figures of Lévy processes

Picture due to A. Meucci (2009).

The Black-Scholes option pricing model

Let us look at an European call option. That is, the right to buy one stock for K NOK at a fixed time $T>t$. We call K the strike price (the agreed price) and S_{t} the spot price (the price of the stock at time t). If we are lucky we earn $S_{T}-K$ NOK, so the pay-off is $\max \left\{S_{T}-K, 0\right\}$.

The Black-Scholes option pricing model

Let us look at an European call option. That is, the right to buy one stock for K NOK at a fixed time $T>t$. We call K the strike price (the agreed price) and S_{t} the spot price (the price of the stock at time t). If we are lucky we earn $S_{T}-K$ NOK, so the pay-off is $\max \left\{S_{T}-K, 0\right\}$.

The problem is how much does this European call option cost? Or, how do we get a good estimate on S_{t} ?

The Black-Scholes option pricing model

NTNU
Norwegian University of
Science and Technology

The Black-Scholes option pricing model

In 1997, Fischer Black and Myron Scholes won the Nobel Prize in Economics for the equation

$$
\begin{cases}\frac{\partial V}{\partial t}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V=0 & t \in[0, T) \\ V(S, T)=\max \{S-K, 0\} & t=T\end{cases}
$$

where $V=V(S, t)$ is the price of the option, r is the risk-free interest rate, and σ is the volatility of the stock.

The Black-Scholes option pricing model

In 1997, Fischer Black and Myron Scholes won the Nobel Prize in Economics for the equation

$$
\begin{cases}\frac{\partial V}{\partial t}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V=0 & t \in[0, T) \\ V(S, T)=\max \{S-K, 0\} & t=T\end{cases}
$$

where $V=V(S, t)$ is the price of the option, r is the risk-free interest rate, and σ is the volatility of the stock.

The solution of this problem is given by the Feynman-Kac formula

$$
V(S, t)=E\left[\mathrm{e}^{-r(T-t)} \max \left\{S_{T}^{t, x}-K, 0\right\}\right]
$$

The Black-Scholes option pricing model

In the previous slide, S_{t} was actually modelled as geometric Brownian motion:

$$
\mathrm{d} S_{t}=r S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} B_{t}
$$

The Black-Scholes option pricing model

 In the previous slide, S_{t} was actually modelled as geometric Brownian motion:$$
\mathrm{d} S_{t}=r S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} B_{t}
$$

This model has a lot of weaknesses. One crucial example is that Browninan motion has a continuous version; so, this model cannot model sudden jumps in price

The Black-Scholes option pricing model

 In the previous slide, S_{t} was actually modelled as geometric Brownian motion:$$
\mathrm{d} S_{t}=r S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} B_{t}
$$

This model has a lot of weaknesses. One crucial example is that Browninan motion has a continuous version; so, this model cannot model sudden jumps in price (which we know occurs in real life). Furthermore, since the tail of a gaussian distribution is very thin, the probability of extreme events is very low.

This is where Lévy processes enter. We allow sudden discontinuous jumps in such processes, and this is a very useful tool when modelling stock prices.

The Black-Scholes option pricing model

As a consequence of this fact, it is common nowadays (at least in finance) to add

$$
\int_{|y|>0} u(x+y, t)-u(x, t)-\left(\mathrm{e}^{y}-1\right) \partial_{x} u(x, t) \nu(\mathrm{d} y)
$$

to the Black-Scholes equation.

The Black-Scholes option pricing model

As a consequence of this fact, it is common nowadays (at least in finance) to add

$$
\int_{|y|>0} u(x+y, t)-u(x, t)-\left(\mathrm{e}^{y}-1\right) \partial_{x} u(x, t) \nu(\mathrm{d} y)
$$

to the Black-Scholes equation. Note that ν is a positive Radon measure at least satisfying

$$
\int_{\mathbb{R} \backslash\{0\}} \min \left\{|y|^{2}, 1\right\} \nu(\mathrm{d} y)
$$

The Black-Scholes option pricing model

As a consequence of this fact, it is common nowadays (at least in finance) to add

$$
\int_{|y|>0} u(x+y, t)-u(x, t)-\left(\mathrm{e}^{y}-1\right) \partial_{x} u(x, t) \nu(\mathrm{d} y)
$$

to the Black-Scholes equation. Note that ν is a positive Radon measure at least satisfying

$$
\int_{\mathbb{R} \backslash\{0\}} \min \left\{|y|^{2}, 1\right\} \nu(\mathrm{d} y)
$$

The solution is still given by a formula similar to Feynman-Kac', but S_{t} is now a Lévy process.

