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How are HJB and CDE connected?

(HJ)

{
∂tψ + H(∂xψ) = 0 (x , t) ∈ R× (0,∞)

ψ(·, 0) = ψ0 x ∈ R

(SCL)

{
∂tu + ∂x(H(u)) = 0 (x , t) ∈ R× (0,∞)

u(·, 0) = u0 x ∈ R

If u is the entropy solution of (SCL), then ψ :=
´ x

u is the viscosity
solution of (HJ) with ψ0 :=

´ x
u0. (Can be made rigorous in 1D.)

So, there is a connection, and in particular, information about u
will give information about ψ.
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How are HJB and CDE connected?

We will study the following Cauchy problems in RN × (0,∞):

(HJB)

∂tψ = sup
ξ∈E

{
b(ξ) · Dψ + tr

(
a(ξ)D2ψ

)}
ψ(·, 0) = ψ0

(CDE)

{
∂tu + divF (u) = div (A(u)Du)

u(·, 0) = u0

Why? And how are they related?

Note that if div (A(u)Du) = ∆ϕ(u), then we replace tr
(
a(ξ)D2ψ

)
by a(ξ)∆ψ.
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How are HJB and CDE connected?

The Kato inequality for (CDE): For all 0 ≤ φ ∈ C∞c and all T ≥ 0,
ˆ
Rd

|u − v |(x ,T )φ(x ,T ) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x , 0) dx

+

¨
Rd×(0,T )

(
|u − v |∂tφ(x , t)

+ q(u, v) · Dφ(x , t) + tr
(
r(u, v)D2φ(x , t)

))
dx dt,

qi (u, v) := sign(u−v)

ˆ u

v
F ′i (ξ) dξ, rij(u, v) := sign(u−v)

ˆ u

v
Aij(ξ) dξ.
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How are HJB and CDE connected?

We thus have

ˆ
Rd

|u − v |(x ,T )φ(x ,T ) dx ≤
ˆ
Rd

|u0 − v0|(x)φ(x , 0) dx

+

¨
Rd×(0,T )

|u − v |×

×
(
∂tφ+ ess sup

m≤ξ≤M

{
F ′(ξ) · Dφ(x , t) + tr

(
A(ξ)D2φ(x , t)

)})
dx dt.

We recognize the backward version of the PDE in (HJB) with
E = [m,M], b = F ′, and a = A.

By approximation, we can take φ(x , t) = ψ(x ,T − t) in the above.

BUT if u0, v0 are only bounded, then ψ needs to be integrable.
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The Cauchy problems

We consider the following Cauchy problem in RN × (0,∞):

(HJB)

∂tψ = sup
ξ∈E

{
b(ξ) · Dψ + tr

(
a(ξ)D2ψ

)}
,

ψ(·, 0) = ψ0,

where ψ0 ∈ Cb(RN) ∩ “L1(RN)” and

(H1)


E is a nonempty set,
b : E → Rd bounded function,
a = σa (σa)T for some bounded σa : E → Rd×K ,

with K being a fixed integer.
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Background

The problem is often given as

∂tψ = H(Dψ,D2ψ) with H(p,X ) = sup
ξ∈E
{b(ξ) · p + tr (a(ξ)X )} .

It is a fully nonlinear equation in nondivergence form.
The vector b and the matrix a may degenerate.
Classical solutions may not exist, and a.e.-solutions may be
nonunique.

The works of Crandall, Lions, Evans, Ishii, Jensen,... suggest
that viscosity solutions are indeed the right solution concept:
existence, uniqueness and stability in Cb.
Viscosity solutions are pointwise solutions, and the test
function test the equation at local extremal points.
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The Cauchy problems

We also consider the following Cauchy problem in RN × (0,∞):

(CDE)

{
∂tu + divF (u) = div (A(u)Du) ,

u(·, 0) = u0,

where u0 ∈ L∞(RN) and

(H2)

{
F ∈W 1,∞

loc (R,Rd),

A = σA
(
σA
)T with σA ∈ L∞loc(R,R

d×K ).
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Background

The problem was given as

∂tu + divF (u) = div (A(u)Du) .

It is an equation in divergence form.
The vector F and the matrix A may degenerate, and we get a
mixture of hyperbolic and parabolic equations. Moreover, the
diffusion is anisotropic.
Classical solutions may not exist, and distributional solutions
may be nonunique.

The works of Kružkov, Carrillo, Chen, Perthame,... suggest
that entropy solutions are indeed the right solution concept:
existence, uniqueness and stability in L1.
Entropy solutions are “signed” distributional solutions.
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Previously known L∞-stability for (CDE)

When A(u) ≡ 0 in (CDE), we have the classical result

ˆ
RN

|u(x , t)− v(x , t)|1B(x0,R)(x) dx

≤
ˆ
RN

|u0(x)− v0(x)|1B(x0,R+LF t)(x) dx .

Note that 1B(x0,R+LF t) is a “supersolution” of{
∂tψ = LF |Dψ|,
ψ(·, 0) = 1B(x0,R).

S. N. Kružkov. First order quasilinear equations with several independent variables. Mat. Sb.
(N.S.), 81(123):228–255, 1970.

Finally, finite speed of propagation is encoded in the estimate.
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Previously known L∞-stability for (CDE)

When A(u) = ϕ′(u)I in (CDE), we have

ˆ
RN

|u(x , t)− v(x , t)|1B(x0,R) dx

≤
ˆ
RN

|u0(x)− v0(x)|Φ(·, Lϕt) ∗x 1B(x0,R+1+LF t)(x) dx .

Note that Φ(·, Lϕt) ∗x 1B(x0,R+1+LF t)(x) is a “supersolution” of{
∂tψ = LF |Dψ|+ Lϕ(∆ψ)+,

ψ(·, 0) = 1B(x0,R).

JE, E. R. Jakobsen. L1 contraction for bounded (nonintegrable) solutions of degenerate
parabolic equations. SIAM J. Math. Anal., 46(6):3957–3982, 2014.

Note the finite infinite speed of propagation.
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Previously known L∞-stability for (CDE)

When A(u) “general” in (CDE), we have

ˆ
RN

|u(x , t)− v(x , t)|e−|x | dx

≤ e(LF+LA)t

ˆ
RN

|u0(x)− v0(x)|e−|x | dx .

Note that e(LF+LA)te−|x | is a “supersolution” of{
∂tψ = LF |Dψ|+ LA(sup|h|=1D

2ψh · h)+,

ψ(·, 0) = e−|·|.

G.-Q. Chen, E. DiBenedetto. Stability of entropy solutions to the Cauchy problem for a class
of nonlinear hyperbolic-parabolic equations. SIAM J. Math. Anal., 33(4):751–762, 2001.

H. Frid. Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic
Equations. In Non-linear partial differential equations, mathematical physics, and stochastic
analysis, EMS Ser. Congr. Rep., pages 183–205. Eur. Math. Soc., Zürich, 2018.
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L1-results for (HJB)

A natural question appears:

Can we obtain

‖ψ(·, t)− ψ̂(·, t)‖L1 ≤ ‖ψ0 − ψ̂0‖L1

where ψ, ψ̂ solve (HJB) with initial data ψ0, ψ̂0?

Not really studied, and only some results for (HJ).

C.-T. Lin, E. Tadmor. L1-stability and error estimates for approximate Hamilton-Jacobi
solutions. Numer. Math., 87(4):701–735, 2001.
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What is possible? Initial guess

Consider the eikonal equation{
∂tψ = C (|∂x1ψ|+ |∂x2ψ|+ · · ·+ |∂xNψ|),
ψ(·, 0) = ψ0.

Control theory gives the following representation formula:

ψ(x , t) = sup
x+Ct[−1,1]N

ψ0 = sup
QCt(x)

ψ0.

Moreover,
ˆ
RN

sup
Qr (x)

ψ(·, t) dx =

ˆ
RN

sup
Qr+Ct(x)

ψ0(x) dx ≤ C̃ (t)

ˆ
RN

sup
Qr (x)

ψ0 dx .
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RN

sup
Qr (x)

ψ0 dx .
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The Banach space L∞int

We consider the normed space

L∞int(RN) := {ψ ∈ L1(RN) ∩ L∞(RN) : ‖ψ‖L∞int(RN) <∞}

where
‖ψ‖L∞int(RN) :=

ˆ
RN

ess sup
Q1(x)

|ψ| dx .

Theorem
L∞int is a Banach space.
The space L∞int is continuously embedded into L1 ∩ L∞.´
RN ess supQr+ε(x)

|ψ| dx ≤ Cr ,ε

´
RN ess supQr (x)

|ψ| dx .
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The same for second order equations?

Consider {
∂tψ = (∂2xxψ)+,

ψ(·, 0) = ψ0.

For nonnegative solutions, we are able to obtain

ψ(·, t) ∈ L1 ⇐⇒ ψ0 ∈ L∞int.

It seems that L∞int is a good space for (HJB).
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Largest subspace of L1 stable by the equation (HJB)

Consider a space E such that
E is a vector subspace of Cb ∩ L1,
E is a normed space,
E is continuously embedded into L1,

and the Cb-semigroup G (t) associated with (HJB) such that

G (t) maps E into itself and G (t) : E → E is continuous.

Theorem (Best possible E , [Alibaud & JE & Jakobsen, 2019])

The space Cb ∩ L∞int satisfies the above properties. Moreover, any
other E satisfying the above properties is continuously embedded
into Cb ∩ L∞int.
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L∞int-stability for (HJB)

Theorem (L∞int-stability, [Alibaud & JE & Jakobsen, 2019])

Assume (H1). Then

‖ψ − ψ̂‖L∞int ≤ (1 + t|H|conv)N(1 + ωN(t|H|diff))‖ψ0 − ψ̂0‖L∞int .

The modulus of continuity ωN(r) will typically be like
√
r .

The seminorms |H|conv, |H|diff measure nonlinearities in (HJB).∣∣∣∣∣∣ψ − ψ̂∣∣∣∣∣∣ ≤ etmax{|H|conv,|H|diff}
∣∣∣∣∣∣ψ0 − ψ̂0

∣∣∣∣∣∣.
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Important ingredient in the proofs, L1-supersolution

Jørgen Endal HJB and CDE



Important ingredient in the proofs, L1-supersolution

Jørgen Endal HJB and CDE



L∞-stability for (CDE)

Let E = [m,M], b = F ′, and a = A in (HJB).

Theorem (L∞-stability, [Alibaud & JE & Jakobsen, 2019])

Assume (H2), u0, v0 take values in [m,M], and 0 ≤ ψ0 ∈ BLSC .
Thenˆ

RN

|u(x , t)− v(x , t)|ψ0(x) dx ≤
ˆ
RN

|u0(x)− v0(x)|ψ(x , t) dx .

When we drop Cb, we might have nonunique solutions, and
therefore we consider minimal solutions (unique by definition).
Any other viscosity solution ψ̂ of (HJB) will satisfy ψ ≤ ψ̂.
Hence, it includes ALL previous results of this type.
To make the right-hand side finite, we could require
u0 − v0 ∈ L1 or ψ0 ∈ L∞int.
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A duality result

For the respective unique solutions u, ψ of (CDE),(HJB) define

S(t) : u0 ∈ L∞(Rd) 7→ u(·, t) ∈ L∞(Rd) ∀t ≥ 0,

Gm,M(t) : ψ0 ∈ Cb ∩ L∞int(Rd) 7→ ψ(·, t) ∈ Cb ∩ L∞int(Rd) ∀t ≥ 0.

Theorem (Semigroup duality [Alibaud & JE & Jakobsen, 2019])

Assume (H2), m < M, and consider the above semigroups. Then
{Gm,M(t)}t≥0 is the smallest strongly continuous semigroup on
Cb ∩ L∞int(Rd) satisfying, for all t ≥ 0,
ˆ
Rd

|S(t)u0 − S(t)v0|ψ0 dx ≤
ˆ
Rd

|u0 − v0|Gm,M(t)ψ0 dx ,

for every u0, v0 ∈ L∞(Rd , [m,M]), every 0 ≤ ψ0 ∈ Cb ∩ L∞int(Rd).

Given S(t), then the above inequality characterizes Gm,M(t).
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A duality result, open problem

Theorem (Semigroup duality [Alibaud & JE & Jakobsen, 2019])

Assume (H2), m < M, and consider the above semigroups. Then
{Gm,M(t)}t≥0 is the smallest strongly continuous semigroup on
Cb ∩ L∞int(Rd) satisfying, for all t ≥ 0,
ˆ
Rd

|S(t)u0 − S(t)v0|ψ0 dx ≤
ˆ
Rd

|u0 − v0|Gm,M(t)ψ0 dx ,

for every u0, v0 ∈ L∞(Rd , [m,M]), every 0 ≤ ψ0 ∈ Cb ∩ L∞int(Rd).

The dual question:

Given Gm,M(t). Then S(t) is a weak-? continuous semigroup on
L∞ satisfying the above inequality.

Is S(t) the ONLY such semigroup satisfying such an inequality? If
no, which ones do?
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Thank you for your attention!
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