Connections between L^1 -solutions of Hamilton-Jacobi-Bellman equations and L^∞ -solutions of convection-diffusion equations

Jørgen Endal URL: http://folk.ntnu.no/jorgeen

Department of mathematical sciences NTNU, Norway

27 February 2020 In collaboration with

N. Alibaud and E. R. Jakobsen

A talk given at

Ecuaciones en derivadas parciales no lineales y no locales as a part of

5.° Congreso de Jóvenes Investigadores de la RSME

 \bullet " $L^1\!$ -stability"/Contractions for HJB

- "L1-stability"/Contractions for HJB
- ullet " L^{∞} -stability"/Weighted L^1 -contraction for CDE

- "L1-stability"/Contractions for HJB
- " L^{∞} -stability"/Weighted L^{1} -contraction for CDE
- Duality between HJB and CDE

- "L1-stability"/Contractions for HJB
- " L^{∞} -stability"/Weighted L^{1} -contraction for CDE
- Duality between HJB and CDE

N. ALIBAUD, JE, E. R. JAKOBSEN. Optimal and dual stability results for L^1 viscosity and L^{∞} entropy solutions. arXiv, 2019.

(HJ)
$$\begin{cases} \partial_t \psi + H(\partial_x \psi) = 0 & (x,t) \in \mathbb{R} \times (0,\infty) \\ \psi(\cdot,0) = \psi_0 & x \in \mathbb{R} \end{cases}$$

(SCL)
$$\begin{cases} \partial_t u + \partial_x (H(u)) = 0 & (x, t) \in \mathbb{R} \times (0, \infty) \\ u(\cdot, 0) = u_0 & x \in \mathbb{R} \end{cases}$$

$$\begin{cases} \partial_t \psi + H(\partial_x \psi) = 0 & (x,t) \in \mathbb{R} \times (0,\infty) \\ \psi(\cdot,0) = \psi_0 & x \in \mathbb{R} \end{cases}$$

(SCL)
$$\begin{cases} \partial_t u + \partial_x (H(u)) = 0 & (x, t) \in \mathbb{R} \times (0, \infty) \\ u(\cdot, 0) = u_0 & x \in \mathbb{R} \end{cases}$$

If u is the entropy solution of (SCL), then $\psi := \int^x u$ is the viscosity solution of (HJ) with $\psi_0 := \int^x u_0$.

(SCL)
$$\begin{cases} \partial_t u + \partial_x (H(u)) = 0 & (x, t) \in \mathbb{R} \times (0, \infty) \\ u(\cdot, 0) = u_0 & x \in \mathbb{R} \end{cases}$$

If u is the entropy solution of (SCL), then $\psi := \int^x u$ is the viscosity solution of (HJ) with $\psi_0 := \int^x u_0$. (Can be made rigorous in 1D.)

$$\begin{cases} \partial_t \psi + H(\partial_x \psi) = 0 & (x,t) \in \mathbb{R} \times (0,\infty) \\ \psi(\cdot,0) = \psi_0 & x \in \mathbb{R} \end{cases}$$

(SCL)
$$\begin{cases} \partial_t u + \partial_x (H(u)) = 0 & (x, t) \in \mathbb{R} \times (0, \infty) \\ u(\cdot, 0) = u_0 & x \in \mathbb{R} \end{cases}$$

If u is the entropy solution of (SCL), then $\psi := \int^x u$ is the viscosity solution of (HJ) with $\psi_0 := \int^x u_0$. (Can be made rigorous in 1D.)

So, there is a connection, and in particular, information about u will give information about $\psi.$

We will study the following Cauchy problems in $\mathbb{R}^N \times (0,\infty)$:

$$\left\{ \begin{aligned} \partial_t \psi &= \sup_{\xi \in \mathcal{E}} \left\{ b(\xi) \cdot D\psi + \operatorname{tr} \left(a(\xi) D^2 \psi \right) \right\} \\ \psi(\cdot, 0) &= \psi_0 \end{aligned} \right.$$

(CDE)
$$\begin{cases} \partial_t u + \operatorname{div} F(u) = \operatorname{div} (A(u)Du) \\ u(\cdot, 0) = u_0 \end{cases}$$

We will study the following Cauchy problems in $\mathbb{R}^N \times (0,\infty)$:

$$\left\{ \begin{aligned} \partial_t \psi &= \sup_{\xi \in \mathcal{E}} \left\{ b(\xi) \cdot D \psi + \operatorname{tr} \left(a(\xi) D^2 \psi \right) \right\} \\ \psi(\cdot, 0) &= \psi_0 \end{aligned} \right.$$

(CDE)
$$\begin{cases} \partial_t u + \operatorname{div} F(u) = \operatorname{div} (A(u)Du) \\ u(\cdot, 0) = u_0 \end{cases}$$

Why? And how are they related?

We will study the following Cauchy problems in $\mathbb{R}^N \times (0,\infty)$:

$$\left\{ \begin{aligned} \partial_t \psi &= \sup_{\xi \in \mathcal{E}} \left\{ b(\xi) \cdot D\psi + \operatorname{tr} \left(a(\xi) D^2 \psi \right) \right\} \\ \psi(\cdot, 0) &= \psi_0 \end{aligned} \right.$$

(CDE)
$$\begin{cases} \partial_t u + \operatorname{div} F(u) = \operatorname{div} (A(u)Du) \\ u(\cdot, 0) = u_0 \end{cases}$$

Why? And how are they related?

Note that if $\operatorname{div}(A(u)Du) = \Delta\varphi(u)$, then we replace $\operatorname{tr}(a(\xi)D^2\psi)$ by $a(\xi)\Delta\psi$.

$$\int_{\mathbb{R}^d} |u - v|(x, T)\phi(x, T) dx \le \int_{\mathbb{R}^d} |u_0 - v_0|(x)\phi(x, 0) dx$$

$$+ \iint_{\mathbb{R}^d \times (0, T)} \left(|u - v|\partial_t \phi(x, t) + q(u, v) \cdot D\phi(x, t) + \operatorname{tr} \left(r(u, v) D^2 \phi(x, t) \right) \right) dx dt,$$

$$\begin{split} & \int_{\mathbb{R}^d} |u - v|(x, T)\phi(x, T) \, \mathrm{d}x \le \int_{\mathbb{R}^d} |u_0 - v_0|(x)\phi(x, 0) \, \mathrm{d}x \\ & + \iint_{\mathbb{R}^d \times (0, T)} \left(|u - v|\partial_t \phi(x, t) \right. \\ & + q(u, v) \cdot D\phi(x, t) + \mathrm{tr}\left(r(u, v) D^2 \phi(x, t) \right) \right) \mathrm{d}x \, \mathrm{d}t, \end{split}$$

$$q_i(u,v) := \operatorname{sign}(u-v) \int_v^u F_i'(\xi) \, \mathrm{d}\xi, \ r_{ij}(u,v) := \operatorname{sign}(u-v) \int_v^u A_{ij}(\xi) \, \mathrm{d}\xi.$$

$$\int_{\mathbb{R}^d} |u - v|(x, T)\phi(x, T) dx \leq \int_{\mathbb{R}^d} |u_0 - v_0|(x)\phi(x, 0) dx
+ \iint_{\mathbb{R}^d \times (0, T)} \left(|u - v|\partial_t \phi(x, t)
+ \operatorname{sign}(u - v) \int_{v(x, t)}^{u(x, t)} \left\{ F'(\xi) \cdot D\phi(x, t) + \operatorname{tr} \left(A(\xi)D^2 \phi(x, t) \right) \right\} d\xi \right) dx dt
q_i(u, v) := \operatorname{sign}(u - v) \int_{\mathbb{R}^d}^u F'_i(\xi) d\xi, \ r_{ij}(u, v) := \operatorname{sign}(u - v) \int_{\mathbb{R}^d}^u A_{ij}(\xi) d\xi.$$

$$\begin{split} &\int_{\mathbb{R}^d} |u-v|(x,T)\phi(x,T)\,\mathrm{d}x \leq \int_{\mathbb{R}^d} |u_0-v_0|(x)\phi(x,0)\,\mathrm{d}x \\ &+ \iint_{\mathbb{R}^d\times(0,T)} \left(|u-v|\partial_t\phi(x,t)\right. \\ &+ |u-v| \underset{m\leq \xi\leq M}{\mathrm{ess}} \sup\left\{F'(\xi)\cdot D\phi(x,t) + \mathrm{tr}\left(A(\xi)D^2\phi(x,t)\right)\right\} \left.\right) \mathrm{d}x\,\mathrm{d}t, \\ &q_i(u,v) := \mathrm{sign}(u-v) \int^u F_i'(\xi)\,\mathrm{d}\xi, \ r_{ij}(u,v) := \mathrm{sign}(u-v) \int^u A_{ij}(\xi)\,\mathrm{d}\xi. \end{split}$$

We thus have

$$\begin{split} & \int_{\mathbb{R}^d} |u - v|(x, T)\phi(x, T) \, \mathrm{d}x \leq \int_{\mathbb{R}^d} |u_0 - v_0|(x)\phi(x, 0) \, \mathrm{d}x \\ & + \iint_{\mathbb{R}^d \times (0, T)} |u - v| \times \\ & \quad \times \left(\partial_t \phi + \underset{m \leq \xi \leq M}{\text{ess sup}} \left\{ F'(\xi) \cdot D\phi(x, t) + \text{tr} \left(A(\xi) D^2 \phi(x, t) \right) \right\} \right) \, \mathrm{d}x \, \mathrm{d}t. \end{split}$$

We thus have

$$\begin{split} & \int_{\mathbb{R}^d} |u - v|(x, T)\phi(x, T) \, \mathrm{d}x \leq \int_{\mathbb{R}^d} |u_0 - v_0|(x)\phi(x, 0) \, \mathrm{d}x \\ & + \iint_{\mathbb{R}^d \times (0, T)} |u - v| \times \\ & \quad \times \left(\partial_t \phi + \underset{m \leq \xi \leq M}{\text{ess sup}} \left\{ F'(\xi) \cdot D\phi(x, t) + \text{tr} \left(A(\xi) D^2 \phi(x, t) \right) \right\} \right) \, \mathrm{d}x \, \mathrm{d}t. \end{split}$$

We recognize the backward version of the PDE in (HJB) with $\mathcal{E} = [m, M]$, b = F', and a = A.

We thus have

$$\begin{split} & \int_{\mathbb{R}^d} |u-v|(x,T)\phi(x,T)\,\mathrm{d}x \leq \int_{\mathbb{R}^d} |u_0-v_0|(x)\phi(x,0)\,\mathrm{d}x \\ & + \iint_{\mathbb{R}^d\times(0,T)} |u-v|\times \\ & \quad \times \left(\partial_t \phi + \underset{m\leq \xi\leq M}{\mathrm{ess\,sup}}\left\{F'(\xi)\cdot D\phi(x,t) + \mathrm{tr}\left(A(\xi)D^2\phi(x,t)\right)\right\}\right)\mathrm{d}x\,\mathrm{d}t. \end{split}$$

We recognize the backward version of the PDE in (HJB) with $\mathcal{E} = [m, M]$, b = F', and a = A.

By approximation, we can take $\phi(x,t) = \psi(x,T-t)$ in the above.

We thus have

$$\begin{split} & \int_{\mathbb{R}^d} |u-v|(x,T)\phi(x,T)\,\mathrm{d}x \leq \int_{\mathbb{R}^d} |u_0-v_0|(x)\phi(x,0)\,\mathrm{d}x \\ & + \iint_{\mathbb{R}^d\times(0,T)} |u-v|\times \\ & \quad \times \left(\partial_t \phi + \underset{m\leq \xi\leq M}{\mathrm{ess\,sup}}\left\{F'(\xi)\cdot D\phi(x,t) + \mathrm{tr}\left(A(\xi)D^2\phi(x,t)\right)\right\}\right)\mathrm{d}x\,\mathrm{d}t. \end{split}$$

We recognize the backward version of the PDE in (HJB) with $\mathcal{E} = [m, M]$, b = F', and a = A.

By approximation, we can take $\phi(x,t) = \psi(x,T-t)$ in the above.

BUT if u_0 , v_0 are only bounded, then ψ needs to be integrable.

The Cauchy problems

We consider the following Cauchy problem in $\mathbb{R}^N \times (0, \infty)$:

(HJB)
$$\begin{cases} \partial_t \psi = \sup_{\xi \in \mathcal{E}} \left\{ b(\xi) \cdot D\psi + \operatorname{tr} \left(a(\xi) D^2 \psi \right) \right\}, \\ \psi(\cdot, 0) = \psi_0, \end{cases}$$

The Cauchy problems

We consider the following Cauchy problem in $\mathbb{R}^N \times (0, \infty)$:

(HJB)
$$\begin{cases} \partial_t \psi = \sup_{\xi \in \mathcal{E}} \left\{ b(\xi) \cdot D\psi + \operatorname{tr} \left(a(\xi) D^2 \psi \right) \right\}, \\ \psi(\cdot, 0) = \psi_0, \end{cases}$$

where $\psi_0 \in C_b(\mathbb{R}^N) \cap ``L^1(\mathbb{R}^N)"$ and

$$\begin{cases} \mathcal{E} \text{ is a nonempty set,} \\ b: \mathcal{E} \to \mathbb{R}^d \text{ bounded function,} \\ a = \sigma^a \left(\sigma^a\right)^T \text{ for some bounded } \sigma^a: \mathcal{E} \to \mathbb{R}^{d \times K}, \end{cases}$$

with K being a fixed integer.

Background

The problem is often given as

$$\partial_t \psi = H(D\psi, D^2\psi) \quad \text{with} \quad H(p, X) = \sup_{\xi \in \mathcal{E}} \left\{ b(\xi) \cdot p + \operatorname{tr} \left(a(\xi) X \right) \right\}.$$

- It is a fully nonlinear equation in nondivergence form.
- The vector b and the matrix a may degenerate.
- Classical solutions may not exist, and a.e.-solutions may be nonunique.
- The works of Crandall, Lions, Evans, Ishii, Jensen,... suggest that viscosity solutions are indeed the right solution concept: existence, uniqueness and stability in C_b .
- Viscosity solutions are pointwise solutions, and the test function test the equation at local extremal points.

The Cauchy problems

We also consider the following Cauchy problem in $\mathbb{R}^N \times (0, \infty)$:

(CDE)
$$\begin{cases} \partial_t u + \operatorname{div} F(u) = \operatorname{div} (A(u)Du), \\ u(\cdot, 0) = u_0, \end{cases}$$

The Cauchy problems

We also consider the following Cauchy problem in $\mathbb{R}^N \times (0, \infty)$:

(CDE)
$$\begin{cases} \partial_t u + \operatorname{div} F(u) = \operatorname{div} (A(u)Du), \\ u(\cdot, 0) = u_0, \end{cases}$$

where $u_0 \in L^\infty(\mathbb{R}^N)$ and

(H2)
$$\begin{cases} F \in W^{1,\infty}_{\mathsf{loc}}(\mathbb{R},\mathbb{R}^d), \\ A = \sigma^A(\sigma^A)^T \text{ with } \sigma^A \in L^{\infty}_{\mathsf{loc}}(\mathbb{R},\mathbb{R}^{d \times K}). \end{cases}$$

Background

The problem was given as

$$\partial_t u + \operatorname{div} F(u) = \operatorname{div} (A(u)Du).$$

- It is an equation in divergence form.
- The vector *F* and the matrix *A* may degenerate, and we get a mixture of hyperbolic and parabolic equations. Moreover, the diffusion is anisotropic.
- Classical solutions may not exist, and distributional solutions may be nonunique.
- The works of Kružkov, Carrillo, Chen, Perthame,... suggest that entropy solutions are indeed the right solution concept: existence, uniqueness and stability in L^1 .
- Entropy solutions are "signed" distributional solutions.

When $A(u) \equiv 0$ in (CDE), we have the classical result

When $A(u) \equiv 0$ in (CDE), we have the classical result

$$\begin{split} & \int_{\mathbb{R}^N} |u(x,t) - v(x,t)| \mathbf{1}_{B(x_0,R)}(x) \, \mathrm{d}x \\ & \leq \int_{\mathbb{R}^N} |u_0(x) - v_0(x)| \mathbf{1}_{B(x_0,R+L_Ft)}(x) \, \mathrm{d}x. \end{split}$$

When $A(u) \equiv 0$ in (CDE), we have the classical result

$$\begin{split} & \int_{\mathbb{R}^N} |u(x,t) - v(x,t)| \mathbf{1}_{B(x_0,R)}(x) \, \mathrm{d}x \\ & \leq \int_{\mathbb{R}^N} |u_0(x) - v_0(x)| \mathbf{1}_{B(x_0,R+L_Ft)}(x) \, \mathrm{d}x. \end{split}$$

Note that $\mathbf{1}_{B(x_0,\,R+L_Ft)}$ is a "supersolution" of

$$\begin{cases} \partial_t \psi = L_F |D\psi|, \\ \psi(\cdot, 0) = \mathbf{1}_{B(x_0, R)}. \end{cases}$$

S. N. Kružkov. First order quasilinear equations with several independent variables. *Mat. Sb.* (N.S.), 81(123):228–255, 1970.

Finally, finite speed of propagation is encoded in the estimate.

When $A(u) = \varphi'(u)I$ in (CDE), we have

$$\int_{\mathbb{R}^N} |u(x,t) - v(x,t)| \mathbf{1}_{B(x_0,R)} dx$$

$$\leq \int_{\mathbb{R}^N} |u_0(x) - v_0(x)| \Phi(\cdot, L_{\varphi}t) *_{\chi} \mathbf{1}_{B(x_0,R+1+L_Ft)}(x) dx.$$

When $A(u) = \varphi'(u)I$ in (CDE), we have

$$\begin{split} &\int_{\mathbb{R}^N} |u(x,t)-v(x,t)| \mathbf{1}_{B(x_0,R)} \, \mathrm{d}x \\ &\leq \int_{\mathbb{R}^N} |u_0(x)-v_0(x)| \Phi(\cdot,L_{\varphi}t) *_{X} \mathbf{1}_{B(x_0,R+1+L_Ft)}(x) \, \mathrm{d}x. \end{split}$$

Note that $\Phi(\cdot, L_{\varphi}t) *_{x} \mathbf{1}_{B(x_{0}, R+1+L_{F}t)}(x)$ is a "supersolution" of

$$\begin{cases} \partial_t \psi = L_F |D\psi| + L_{\varphi}(\Delta \psi)^+, \\ \psi(\cdot, 0) = \mathbf{1}_{B(x_0, R)}. \end{cases}$$

JE, E. R. JAKOBSEN. L^1 contraction for bounded (nonintegrable) solutions of degenerate parabolic equations. SIAM J. Math. Anal., 46(6):3957–3982, 2014.

Note the finite infinite speed of propagation.

When A(u) "general" in (CDE), we have

$$\begin{split} &\int_{\mathbb{R}^N} |u(x,t) - v(x,t)| \mathrm{e}^{-|x|} \, \mathrm{d}x \\ &\leq \mathrm{e}^{(L_F + L_A)t} \int_{\mathbb{R}^N} |u_0(x) - v_0(x)| \mathrm{e}^{-|x|} \, \mathrm{d}x. \end{split}$$

When A(u) "general" in (CDE), we have

$$\begin{split} &\int_{\mathbb{R}^N} |u(x,t) - v(x,t)| \mathrm{e}^{-|x|} \, \mathrm{d}x \\ &\leq \mathrm{e}^{(L_F + L_A)t} \int_{\mathbb{R}^N} |u_0(x) - v_0(x)| \mathrm{e}^{-|x|} \, \mathrm{d}x. \end{split}$$

Note that $e^{(L_F + L_A)t}e^{-|x|}$ is a "supersolution" of

$$\begin{cases} \partial_t \psi = L_F |D\psi| + L_A (\sup_{|h|=1} D^2 \psi h \cdot h)^+, \\ \psi(\cdot, 0) = \mathrm{e}^{-|\cdot|}. \end{cases}$$

G.-Q. CHEN, E. DIBENEDETTO. Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations. *SIAM J. Math. Anal.*, 33(4):751–762, 2001.

H. Frid. Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations. In *Non-linear partial differential equations, mathematical physics, and stochastic analysis,* EMS Ser. Congr. Rep., pages 183–205. Eur. Math. Soc., Zürich, 2018.

L^1 -results for (HJB)

A natural question appears:

L^1 -results for (HJB)

A natural question appears:

Can we obtain

$$\|\psi(\cdot,t)-\hat{\psi}(\cdot,t)\|_{L^{1}}\leq \|\psi_{0}-\hat{\psi}_{0}\|_{L^{1}}$$

where $\psi, \hat{\psi}$ solve (HJB) with initial data $\psi_0, \hat{\psi}_0$?

L^1 -results for (HJB)

A natural question appears:

Can we obtain

$$\|\psi(\cdot,t)-\hat{\psi}(\cdot,t)\|_{L^{1}}\leq \|\psi_{0}-\hat{\psi}_{0}\|_{L^{1}}$$

where $\psi, \hat{\psi}$ solve (HJB) with initial data $\psi_0, \hat{\psi}_0$?

Not really studied, and only some results for (HJ).

C.-T. LIN, E. TADMOR. $\it L^1$ -stability and error estimates for approximate Hamilton-Jacobi solutions. *Numer. Math.*, 87(4):701–735, 2001.

What is possible? Initial guess

Consider the eikonal equation

$$\begin{cases} \partial_t \psi = \mathcal{C}(|\partial_{x_1} \psi| + |\partial_{x_2} \psi| + \dots + |\partial_{x_N} \psi|), \\ \psi(\cdot, 0) = \psi_0. \end{cases}$$

What is possible? Initial guess

Consider the eikonal equation

$$\begin{cases} \partial_t \psi = C(|\partial_{x_1} \psi| + |\partial_{x_2} \psi| + \dots + |\partial_{x_N} \psi|), \\ \psi(\cdot, 0) = \psi_0. \end{cases}$$

Control theory gives the following representation formula:

$$\psi(x,t) = \sup_{x+Ct[-1,1]^N} \psi_0 = \sup_{\overline{Q}_{Ct}(x)} \psi_0.$$

What is possible? Initial guess

Consider the eikonal equation

$$\begin{cases} \partial_t \psi = C(|\partial_{x_1} \psi| + |\partial_{x_2} \psi| + \dots + |\partial_{x_N} \psi|), \\ \psi(\cdot, 0) = \psi_0. \end{cases}$$

Control theory gives the following representation formula:

$$\psi(x,t) = \sup_{x+Ct[-1,1]^N} \psi_0 = \sup_{\overline{Q}_{Ct}(x)} \psi_0.$$

Moreover,

$$\int_{\mathbb{R}^N} \sup_{\overline{Q}_r(x)} \psi(\cdot, t) \, \mathrm{d}x = \int_{\mathbb{R}^N} \sup_{\overline{Q}_{r+Ct}(x)} \psi_0(x) \, \mathrm{d}x \leq \tilde{C}(t) \int_{\mathbb{R}^N} \sup_{\overline{Q}_r(x)} \psi_0 \, \mathrm{d}x.$$

The Banach space L_{int}^{∞}

We consider the normed space

$$L^{\infty}_{\mathrm{int}}(\mathbb{R}^{N}) := \{ \psi \in L^{1}(\mathbb{R}^{N}) \cap L^{\infty}(\mathbb{R}^{N}) : \|\psi\|_{L^{\infty}_{\mathrm{int}}(\mathbb{R}^{N})} < \infty \}$$

where

$$\|\psi\|_{L^\infty_{\rm int}(\mathbb{R}^N)}:=\int_{\mathbb{R}^N} \operatorname{ess\,sup}|\psi|\,\mathrm{d} x.$$

The Banach space $L_{\rm int}^{\infty}$

We consider the normed space

$$L^{\infty}_{\mathrm{int}}(\mathbb{R}^{N}) := \{ \psi \in L^{1}(\mathbb{R}^{N}) \cap L^{\infty}(\mathbb{R}^{N}) : \|\psi\|_{L^{\infty}_{\mathrm{int}}(\mathbb{R}^{N})} < \infty \}$$

where

$$\|\psi\|_{L^\infty_{\rm int}(\mathbb{R}^N)}:=\int_{\mathbb{R}^N} \mathop{\rm ess\,sup}_{\overline{Q}_1(x)} |\psi|\,\mathrm{d} x.$$

Theorem

- L_{int}^{∞} is a Banach space.
- The space L^{∞}_{int} is continuously embedded into $L^1 \cap L^{\infty}$.
- $\bullet \ \int_{\mathbb{R}^N} \operatorname{ess\,sup}_{\overline{Q}_{r+\varepsilon}(x)} |\psi| \, \mathrm{d} x \leq C_{r,\varepsilon} \int_{\mathbb{R}^N} \operatorname{ess\,sup}_{\overline{Q}_r(x)} |\psi| \, \mathrm{d} x.$

The same for second order equations?

Consider

$$\begin{cases} \partial_t \psi = (\partial_{xx}^2 \psi)^+, \\ \psi(\cdot, 0) = \psi_0. \end{cases}$$

The same for second order equations?

Consider

$$\begin{cases} \partial_t \psi = (\partial_{xx}^2 \psi)^+, \\ \psi(\cdot, 0) = \psi_0. \end{cases}$$

For nonnegative solutions, we are able to obtain

$$\psi(\cdot,t) \in L^1 \iff \psi_0 \in L^{\infty}_{\text{int}}.$$

The same for second order equations?

Consider

$$\begin{cases} \partial_t \psi = (\partial_{xx}^2 \psi)^+, \\ \psi(\cdot, 0) = \psi_0. \end{cases}$$

For nonnegative solutions, we are able to obtain

$$\psi(\cdot,t) \in L^1 \iff \psi_0 \in L^{\infty}_{\text{int}}.$$

It seems that $L_{\rm int}^{\infty}$ is a good space for (HJB).

Largest subspace of L^1 stable by the equation (HJB)

Consider a space E such that

```
\begin{cases} E \text{ is a vector subspace of } C_b \cap L^1, \\ E \text{ is a normed space,} \\ E \text{ is continuously embedded into } L^1, \end{cases}
```

Largest subspace of L^1 stable by the equation (HJB)

Consider a space E such that

```
\begin{cases} E \text{ is a vector subspace of } C_b \cap L^1, \\ E \text{ is a normed space,} \\ E \text{ is continuously embedded into } L^1, \end{cases}
```

and the C_b -semigroup G(t) associated with (HJB) such that

G(t) maps E into itself and $G(t): E \to E$ is continuous.

Largest subspace of L^1 stable by the equation (HJB)

Consider a space E such that

```
\begin{cases} E \text{ is a vector subspace of } C_b \cap L^1, \\ E \text{ is a normed space,} \\ E \text{ is continuously embedded into } L^1, \end{cases}
```

and the C_b -semigroup G(t) associated with (HJB) such that

G(t) maps E into itself and $G(t): E \to E$ is continuous.

Theorem (Best possible E, [Alibaud & JE & Jakobsen, 2019])

The space $C_b \cap L^{\infty}_{int}$ satisfies the above properties. Moreover, any other E satisfying the above properties is continuously embedded into $C_b \cap L^{\infty}_{int}$.

Theorem $(L_{\text{int}}^{\infty}$ -stability, [Alibaud & JE & Jakobsen, 2019])

Assume (H1). Then

$$\|\psi-\hat{\psi}\|_{L^\infty_{\rm int}} \leq (1+t|H|_{\rm conv})^N (1+\omega_N(t|H|_{\rm diff})) \|\psi_0-\hat{\psi}_0\|_{L^\infty_{\rm int}}.$$

Theorem $(L_{\text{int}}^{\infty}$ -stability, [Alibaud & JE & Jakobsen, 2019])

Assume (H1). Then

$$\|\psi-\hat{\psi}\|_{L^\infty_{\rm int}} \leq (1+t|H|_{\rm conv})^{N}(1+\omega_{N}(t|H|_{\rm diff}))\|\psi_0-\hat{\psi}_0\|_{L^\infty_{\rm int}}.$$

• The modulus of continuity $\omega_N(r)$ will typically be like \sqrt{r} .

Theorem $(L_{ ext{int}}^{\infty}$ -stability, [Alibaud & JE & Jakobsen, 2019])

Assume (H1). Then

$$\|\psi-\hat{\psi}\|_{L^\infty_{\rm int}} \leq (1+t|H|_{\rm conv})^{N}(1+\omega_N(t|H|_{\rm diff}))\|\psi_0-\hat{\psi}_0\|_{L^\infty_{\rm int}}.$$

- The modulus of continuity $\omega_N(r)$ will typically be like \sqrt{r} .
- The seminorms $|H|_{conv}$, $|H|_{diff}$ measure nonlinearities in (HJB).

Theorem $(L^{\infty}_{ ext{int}}$ -stability, [Alibaud & JE & Jakobsen, 2019])

Assume (H1). Then

$$\|\psi-\hat{\psi}\|_{L^\infty_{\rm int}} \leq (1+t|H|_{\rm conv})^{N}(1+\omega_N(t|H|_{\rm diff}))\|\psi_0-\hat{\psi}_0\|_{L^\infty_{\rm int}}.$$

- The modulus of continuity $\omega_N(r)$ will typically be like \sqrt{r} .
- The seminorms $|H|_{conv}$, $|H|_{diff}$ measure nonlinearities in (HJB).
- $\bullet \ \left|\left|\left|\psi \hat{\psi}\right|\right|\right| \leq \mathrm{e}^{t \max\{|H|_{\mathrm{conv}}, |H|_{\mathrm{diff}}\}} \left|\left|\left|\psi_0 \hat{\psi}_0\right|\right|\right|.$

Important ingredient in the proofs, L^1 -supersolution

Important ingredient in the proofs, L^1 -supersolution

Let $\mathcal{E} = [m, M]$, b = F', and a = A in (HJB).

Let $\mathcal{E} = [m, M]$, b = F', and a = A in (HJB).

Theorem (L^∞ -stability, [Alibaud & JE & Jakobsen, 2019])

$$\int_{\mathbb{R}^N} |u(x,t) - v(x,t)| \psi_0(x) \, \mathrm{d}x \le \int_{\mathbb{R}^N} |u_0(x) - v_0(x)| \psi(x,t) \, \mathrm{d}x.$$

Let $\mathcal{E} = [m, M]$, b = F', and a = A in (HJB).

Theorem (L^∞ -stability, [Alibaud & JE & Jakobsen, 2019])

Assume (H2), u_0, v_0 take values in [m, M], and $0 \le \psi_0 \in BLSC$. Then

$$\int_{\mathbb{R}^N} |u(x,t) - v(x,t)| \psi_0(x) \, \mathrm{d}x \le \int_{\mathbb{R}^N} |u_0(x) - v_0(x)| \psi(x,t) \, \mathrm{d}x.$$

• When we drop C_b , we might have nonunique solutions, and therefore we consider minimal solutions

Let $\mathcal{E} = [m, M]$, b = F', and a = A in (HJB).

Theorem (L^∞ -stability, [Alibaud & JE & Jakobsen, 2019])

Assume (H2), u_0, v_0 take values in [m, M], and $0 \le \psi_0 \in BLSC$. Then

$$\int_{\mathbb{R}^N} |u(x,t) - v(x,t)| \psi_0(x) \, \mathrm{d}x \le \int_{\mathbb{R}^N} |u_0(x) - v_0(x)| \psi(x,t) \, \mathrm{d}x.$$

• When we drop C_b , we might have nonunique solutions, and therefore we consider minimal solutions (unique by definition).

Let $\mathcal{E} = [m, M]$, b = F', and a = A in (HJB).

Theorem (L^∞ -stability, [Alibaud & JE & Jakobsen, 2019])

$$\int_{\mathbb{R}^N} |u(x,t) - v(x,t)| \psi_0(x) \, \mathrm{d}x \le \int_{\mathbb{R}^N} |u_0(x) - v_0(x)| \psi(x,t) \, \mathrm{d}x.$$

- When we drop C_b , we might have nonunique solutions, and therefore we consider minimal solutions (unique by definition).
- Any other viscosity solution $\hat{\psi}$ of (HJB) will satisfy $\psi \leq \hat{\psi}$.

Let $\mathcal{E} = [m, M]$, b = F', and a = A in (HJB).

Theorem (L^∞ -stability, [Alibaud & JE & Jakobsen, 2019])

$$\int_{\mathbb{R}^N} |u(x,t) - v(x,t)| \psi_0(x) \, \mathrm{d}x \le \int_{\mathbb{R}^N} |u_0(x) - v_0(x)| \psi(x,t) \, \mathrm{d}x.$$

- When we drop C_b , we might have nonunique solutions, and therefore we consider minimal solutions (unique by definition).
- Any other viscosity solution $\hat{\psi}$ of (HJB) will satisfy $\psi \leq \hat{\psi}$. Hence, it includes ALL previous results of this type.

Let $\mathcal{E} = [m, M]$, b = F', and a = A in (HJB).

Theorem (L^∞ -stability, [Alibaud & JE & Jakobsen, 2019])

$$\int_{\mathbb{R}^N} |u(x,t) - v(x,t)| \psi_0(x) \, \mathrm{d}x \le \int_{\mathbb{R}^N} |u_0(x) - v_0(x)| \psi(x,t) \, \mathrm{d}x.$$

- When we drop C_b , we might have nonunique solutions, and therefore we consider minimal solutions (unique by definition).
- Any other viscosity solution $\hat{\psi}$ of (HJB) will satisfy $\psi \leq \hat{\psi}$. Hence, it includes ALL previous results of this type.
- To make the right-hand side finite, we could require $u_0 v_0 \in L^1$ or $\psi_0 \in L^{\infty}_{\text{int}}$.

A duality result

For the respective unique solutions u, ψ of (CDE),(HJB) define

$$S(t): u_0 \in L^{\infty}(\mathbb{R}^d) \mapsto u(\cdot, t) \in L^{\infty}(\mathbb{R}^d) \quad \forall t \geq 0,$$

$$G_{m,M}(t): \psi_0 \in C_b \cap L^{\infty}_{int}(\mathbb{R}^d) \mapsto \psi(\cdot,t) \in C_b \cap L^{\infty}_{int}(\mathbb{R}^d) \quad \forall t \geq 0.$$

A duality result

For the respective unique solutions u, ψ of (CDE),(HJB) define

$$S(t): u_0 \in L^{\infty}(\mathbb{R}^d) \mapsto u(\cdot, t) \in L^{\infty}(\mathbb{R}^d) \quad \forall t \geq 0,$$

$$G_{m,M}(t): \psi_0 \in C_b \cap L^{\infty}_{\mathrm{int}}(\mathbb{R}^d) \mapsto \psi(\cdot,t) \in C_b \cap L^{\infty}_{\mathrm{int}}(\mathbb{R}^d) \quad \forall t \geq 0.$$

Theorem (Semigroup duality [Alibaud & JE & Jakobsen, 2019])

Assume (H2), m < M, and consider the above semigroups. Then $\{G_{m,M}(t)\}_{t\geq 0}$ is the smallest strongly continuous semigroup on $C_b \cap L^\infty_{\mathrm{int}}(\mathbb{R}^d)$ satisfying, for all $t\geq 0$,

$$\int_{\mathbb{R}^d} |S(t)u_0 - S(t)v_0|\psi_0 \, \mathrm{d}x \leq \int_{\mathbb{R}^d} |u_0 - v_0| G_{m,M}(t)\psi_0 \, \mathrm{d}x,$$

for every $u_0, v_0 \in L^{\infty}(\mathbb{R}^d, [m, M])$, every $0 \leq \psi_0 \in C_b \cap L^{\infty}_{int}(\mathbb{R}^d)$.

A duality result

For the respective unique solutions u, ψ of (CDE),(HJB) define

$$S(t): u_0 \in L^{\infty}(\mathbb{R}^d) \mapsto u(\cdot, t) \in L^{\infty}(\mathbb{R}^d) \quad \forall t \geq 0,$$

$$G_{m,M}(t): \psi_0 \in C_b \cap L^{\infty}_{\mathrm{int}}(\mathbb{R}^d) \mapsto \psi(\cdot,t) \in C_b \cap L^{\infty}_{\mathrm{int}}(\mathbb{R}^d) \quad \forall t \geq 0.$$

Theorem (Semigroup duality [Alibaud & JE & Jakobsen, 2019])

Assume (H2), m < M, and consider the above semigroups. Then $\{G_{m,M}(t)\}_{t\geq 0}$ is the smallest strongly continuous semigroup on $C_b \cap L^\infty_{\mathrm{int}}(\mathbb{R}^d)$ satisfying, for all $t\geq 0$,

$$\int_{\mathbb{R}^d} |S(t)u_0 - S(t)v_0|\psi_0 \, \mathrm{d}x \le \int_{\mathbb{R}^d} |u_0 - v_0| G_{m,M}(t)\psi_0 \, \mathrm{d}x,$$

for every $u_0, v_0 \in L^{\infty}(\mathbb{R}^d, [m, M])$, every $0 \leq \psi_0 \in C_b \cap L^{\infty}_{int}(\mathbb{R}^d)$.

Given S(t), then the above inequality characterizes $G_{m,M}(t)$.

A duality result, open problem

Theorem (Semigroup duality [Alibaud & JE & Jakobsen, 2019])

Assume (H2), m < M, and consider the above semigroups. Then $\{G_{m,M}(t)\}_{t\geq 0}$ is the smallest strongly continuous semigroup on $C_b \cap L^\infty_{\mathrm{int}}(\mathbb{R}^d)$ satisfying, for all $t\geq 0$,

$$\int_{\mathbb{R}^d} |S(t)u_0 - S(t)v_0|\psi_0 \, \mathrm{d}x \le \int_{\mathbb{R}^d} |u_0 - v_0| G_{m,M}(t)\psi_0 \, \mathrm{d}x,$$

for every $u_0, v_0 \in L^{\infty}(\mathbb{R}^d, [m, M])$, every $0 \leq \psi_0 \in C_b \cap L^{\infty}_{int}(\mathbb{R}^d)$.

The dual question:

A duality result, open problem

Theorem (Semigroup duality [Alibaud & JE & Jakobsen, 2019])

Assume (H2), m < M, and consider the above semigroups. Then $\{G_{m,M}(t)\}_{t\geq 0}$ is the smallest strongly continuous semigroup on $C_b \cap L^\infty_{\mathrm{int}}(\mathbb{R}^d)$ satisfying, for all $t\geq 0$,

$$\int_{\mathbb{R}^d} |S(t)u_0 - S(t)v_0|\psi_0 \, \mathrm{d}x \le \int_{\mathbb{R}^d} |u_0 - v_0| G_{m,M}(t)\psi_0 \, \mathrm{d}x,$$

for every $u_0, v_0 \in L^{\infty}(\mathbb{R}^d, [m, M])$, every $0 \leq \psi_0 \in C_b \cap L^{\infty}_{int}(\mathbb{R}^d)$.

The dual question:

Given $G_{m,M}(t)$. Then S(t) is a weak-* continuous semigroup on L^{∞} satisfying the above inequality.

A duality result, open problem

Theorem (Semigroup duality [Alibaud & JE & Jakobsen, 2019])

Assume (H2), m < M, and consider the above semigroups. Then $\{G_{m,M}(t)\}_{t\geq 0}$ is the smallest strongly continuous semigroup on $C_b \cap L^\infty_{\mathrm{int}}(\mathbb{R}^d)$ satisfying, for all $t\geq 0$,

$$\int_{\mathbb{R}^d} |S(t)u_0 - S(t)v_0|\psi_0 \, \mathrm{d}x \le \int_{\mathbb{R}^d} |u_0 - v_0| G_{m,M}(t)\psi_0 \, \mathrm{d}x,$$

for every $u_0, v_0 \in L^{\infty}(\mathbb{R}^d, [m, M])$, every $0 \le \psi_0 \in C_b \cap L^{\infty}_{int}(\mathbb{R}^d)$.

The dual question:

Given $G_{m,M}(t)$. Then S(t) is a weak-* continuous semigroup on L^{∞} satisfying the above inequality.

Is S(t) the ONLY such semigroup satisfying such an inequality? If no, which ones do?

Thank you for your attention!