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Degenerate parabolic equations

In this talk, we consider the following Cauchy problem:

(1)

∂tu + div f (u)− Lϕ(u) = g(x , t) in QT ,

u(x , 0) = u0(x) on Rd ,

where u = u(x , t) is the solution. The operator L will either be the
x-Laplacian ∆, or a nonlocal operator Lµ defined on C∞c (Rd) as

Lµ[φ](x) :=

ˆ
Rd\{0}

φ(x + z)− φ(x)− z · Dφ(x)1|z|≤1 dµ(z),

where µ is a nonnegative Radon measure. Note that (Lµ)∗ = Lµ∗ .
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Assumptions

f = (f1, f2, . . . , fd) ∈W 1,∞
loc (R,Rd);(Af )

ϕ ∈W 1,∞
loc (R) and ϕ is non-decreasing (ϕ′ ≥ 0);(Aϕ)

g is measurable and
ˆ T

0
‖g(·, t)‖L∞(Rd ) dt <∞;(Ag )

u0 ∈ L∞(Rd);(Au0)

µ ≥ 0 is a Radon measure on Rd \ {0}, and ∃ M ≥ 0(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

eM|z| dµ(z) <∞;

Assumption (Aµ) holds with M > 0.(A+
µ )

We will drop the source term g in (most of) what follows.
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Definition (Entropy solution)

Let L = Lµ. A function u ∈ L∞(QT ) ∩ C ([0,T ]; L1
loc(Rd)) is an

entropy subsolution of (1) if
(i) for all nonnegative φ ∈ C∞c (QT ) and all k ∈ R

¨
QT

(u − k)+∂tφ+ sign(u − k)+[f (u)− f (k)] · Dφ dx dt

+

¨
QT

(ϕ(u)− ϕ(k))+
(
Lµ∗r [φ] + bµ

∗,r · Dφ
)

+ sign(u − k)+Lµ,r [ϕ(u)]φ dx dt

+

¨
QT

sign(u − k)+g φ dx dt ≥ 0;

(ii) u(·, 0) ≤ u0(·) for a.e. x ∈ Rd .

A similar definition holds for L = ∆.
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History

For the equation {
∂tu + divf (u) = 0 in QT

u(x , 0) = u0(x) on Rd
,

we have the classical resultˆ
B(x0,M)

(u(x , t)− v(x , t))+ dx ≤
ˆ
B(x0,M+Lf t)

(u0(x)− v0(x))+ dx .

Endal, Jakobsen L1 Contraction for Degenerate Parabolic Equations



History

For the equation{
∂tu + divf (u) + (−∆)

α
2 u = 0 in QT

u(x , 0) = u0(x) on Rd
,

Alibaud (2007) obtained the inequality
ˆ
B(x0,M)

(u(x , t)−v(x , t))+ dx ≤
ˆ
B(x0,M+Lf t)

[
K̃ (·, t)∗(u0−v0)+

]
(x) dx ,

where K̃ is a fundamental solution satifying∂tK̃ − L∗K̃ = 0 in Rd × (0,∞)

K̃ (x , 0) = δ0 on Rd
,

that is, K̃ (x , t) = F−1(e−t|2πξ|
α

)(x) for α ∈ (0, 2].
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Main results

Now, our main result which is an L1 contraction estimate of the
form ˆ

B(x0,M)
(u(x , t)− v(x , t))+ dx

≤
ˆ
B(x0,M+1+Lf t)

[
Φ(−·, Lϕt) ∗ (u0 − v0)+

]
(x) dx ,

(2)

where Φ is the (non-smooth viscosity) solution of

(3)

∂tΦ− (L∗Φ)+ = 0 in Rd × (0, T̃ )

Φ(x , 0) = Φ0(x) on Rd
,

for some 0 ≤ Φ0 ∈ C∞c (Rd).
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Theorem
Assume (Af ), (Aϕ) hold, and Φ is a integrable viscosity solution of
(3). Let t ∈ (0,T ), M > 0, x0 ∈ Rd , and u and v be entropy sub-
and supersolutions of (1) with initial data u0, v0 ∈ L∞(Rd) and
measurable source terms g , h satisfying´ T
0 ‖g(·, t)‖L∞(Rd ) + ‖h(·, t)‖L∞(Rd ) dt <∞.

(a) If L = Lµ and (A+
µ ) holds, then the L1 contraction estimate

(2) holds.
(b) If L = ∆, then the L1 contraction estimate (2) holds.
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There and back again

Step 1: Following in Kružkov’s footsteps, we will use a doubling of
variables technique to obtain a “Kato inequality” or “dual equation”
for (1).

Step 2: By choosing a certain form for our test function and by a
density argument, we will start to see the contours of an L1

contraction.

Step 3: Step 2 forces us to solve a special equation.

Step 4: The solution of this special equation, and several limit
arguments, will prove our result.
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Step 1

Kružkov’s doubling of variables technique gives for nonnegative
ψ ∈ C∞c (QT )

¨
QT

η(u(x , t), v(x , t))∂tψ(x , t) + q(u(x , t), v(x , t)) · Dψ(x , t) dx dt

+

¨
QT

η(ϕ(u(x , t)), ϕ(v(x , t)))L∗ψ(x , t) dx dt

+

¨
QT

η(g(x , t), h(x , t))ψ(x , t) dx dt ≥ 0,

where η(u, v) = (u− v)+ and q(u, v) = sign(u− v)+[f (u)− f (v)].
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Step 2

Let ψ(x , t) = Γ(x , t)Θ(t).

If 0 < t < T , 0 ≤ Γ ∈ C∞c (QT ), and 0 ≤ Θ ∈ C∞c ((0,T )), then

0 ≤
¨

QT

(u − v)+(x , t)Γ(x , t)Θ′(t) dx dt

+

¨
QT

Θ(t)(u − v)+(x , t)
[
∂tΓ + Lf |DΓ|+ Lϕ

(
L∗Γ(x , t)

)+] dx dt.
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Step 2

If

0 ≤ Γ ∈ C ([0,T ]; L1(Rd))∩L1((0,T );W 2,1(Rd))∩C∞(QT )∩L∞(QT )

satisfies

∂tΓ + Lf |DΓ|+ Lϕ
(
L∗Γ(x , t)

)+ ≤ 0 in QT ,

thenˆ
Rd

(u − v)+(x ,T )Γ(x ,T ) dx ≤
ˆ
Rd

(u0 − v0)+(x)Γ(x , 0) dx .
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Step 3

We note that if φ solves

∂tφ(x , t) + Lf |Dφ(x , t)| ≤ 0 in QT ,

and ψ solves

∂tψ(x , t) + Lϕ(L∗ψ(x , t))+ ≤ 0 in QT ,

then Γ(x , t) = [ψ(·, t) ∗ φ(·, t)](x) solves

∂tΓ + Lf |DΓ|+ Lϕ
(
L∗Γ(x , t)

)+ ≤ 0 in QT .
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Step 4

Classically we have (see e.g. Kružkov (1970)) that

φδ,ε(x , t) :=
[
1(−∞,R] ∗ ωε

](√
δ2 + |x − x0|2 + Lf t

)
solves

∂tφδ,ε(x , t) + Lf |Dφδ,ε(x , t)| ≤ 0 in QT .

So, the main difficulty is to solve the other equation.
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Step 4

We have already considered the viscosity solution of∂tΦ− (L∗Φ)+ = 0 in Rd × (0, T̃ )

Φ(x , 0) = Φ0(x) on Rd
,

and we see the resemblance to

∂tψ(x , t) + Lϕ(L∗ψ(x , t))+ ≤ 0 in QT .

But we need a smooth, integrable classical solution, and a viscosity
solution is neither smooth (it is Cb though) nor integrable (in the
general case)!
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Step 4

Theorem
Let 0 ≤ Φ0 ∈ C∞c (QT ) (and let all of the assumptions hold). Then
there exists a unique viscosity solution Φ(x , t) of∂tΦ− (L∗Φ)+ = 0 in Rd × (0, T̃ )

Φ(x , 0) = Φ0(x) on Rd
,

such that
0 ≤ Φ ∈ Cb(QT̃ ) ∩ C ([0, T̃ ]; L1(Rd)).
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PROOF:

The existence, uniqueness, and comparison principle are shown in
previous papers (see e.g. Jakobsen & Karlsen (2005)), and since
the initial data is C∞c , we have that Φ ∈ Cb by previous results.
Moreover, Φ ≥ 0 by the comparison principle (the initial data is
chosen to be nonnegative).

The tricky, and maybe interesting result, is to show that
Φ ∈ C ([0, T̃ ]; L1(Rd)).
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We claim that there are C > 0, k > 0, K > 0, such that for all
|ξ| = 1,

Φ(x , t) ≤ w(x , t) := CeKtekξ·x in QT̃ .

If this is the case, then Φ(x , t) ≤ CeKte−k|x | (take ξ = − x
|x | for

x 6= 0) and Φ ∈ L∞(0, T̃ ; L1(Rd)).

Moreover, Φ ∈ C ([0, T̃ ]; L1(Rd)) since by Lebesgue’s dominated
convergence theorem (the integrand is dominated by 2CeKT̃ e−k|x |),

lim
h→0

ˆ
Rd

|Φ(x , t + h)− Φ(x , t)| dx = 0 for all t ∈ [0, T̃ ].

To complete the proof, it only remains to prove the claim.

Endal, Jakobsen L1 Contraction for Degenerate Parabolic Equations



Let L∗ = Lµ∗ and assume that (A+
µ ) holds. Note that ∂tw = Kw

and

Lµ∗ [w(·, t)](x)

=

ˆ
|z|>0

w(x + z , t)− w(x , t)− z · Dw(x , t)1|z|≤1 dµ∗(z)

= w(x , t)

[ ˆ
0<|z|≤1

ekξ·z − 1− kξ · z dµ∗(z)

+

ˆ
|z|>1

ekξ·z − 1 dµ∗(z)

]
≤ Ckw(x , t),

where we take k ≤ M (with M defined in (A+
µ )) and Ck > 0.

It then follows that

∂tw − (Lµ∗ [w ])+ = Kw + min{−Lµ∗ [w ], 0} ≥ w(K − Ck).
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When L∗ = ∆, the argument is similar. We take any k > 0, and
then we observe that

∂tw − (∆w)+ = w(K − k2).

Now, choose C such that w(·, 0) ≥ Φ0 in both cases, and choose
K such that w is a supersolution in both cases. Then we have that
w is a classical supersolution, and thus, a viscosity supersolution.
By comparison the claim is proved.
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Step 4

Let us continue by noting that Φδ := Φ ∗ ρδ (mollified in both
space and time) is a smooth classical solution of

∂tΦδ(x , t)− (L∗Φδ(x , t))+ ≥ 0.

Moreover, Φδ satisfies

0 ≤ Φδ ∈ C ([0, T̃ ]; L1(Rd)) ∩ C∞(QT̃ ) ∩ L∞(QT̃ ),

and
‖Φδ(·, 0)− Φ0‖L∞(Rd ) ≤ Cδ,

where C is some constant independent of δ > 0.
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Step 4

Theorem

Let T̃ = max{T , LϕT}, 0 < τ < T̃ and 0 ≤ t ≤ τ , and let

Kδ(x , t) := Φδ(x , Lϕ(τ − t)),

where Lϕ is the Lipschitz constant of ϕ. Then

0 ≤ Kδ ∈ C ([0, T̃ ]; L1(Rd)) ∩ C∞(QT̃ ) ∩ L∞(QT̃ )

solves
∂tKδ + Lϕ(L∗Kδ)

+ ≤ 0 in QT̃ ,

and satisfies
‖Kδ(·, τ)− Φ0‖L∞(Rd ) ≤ Cδ,

where C is a constant independent of δ > 0.
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Step 4

Note that

Γ(x , t) :=
[
Kδ(·, t) ∗ φδ̃,ε(·, t)

]
(x) for 0 ≤ t ≤ τ,

gives

0 ≤ Γ ∈ C ([0, τ ]; L1(Rd))∩L1(0, τ ;W 2,1(Rd))∩C∞(Qτ )∩L∞(Qτ ),

and by Step 2
ˆ
Rd

(u − v)+(x , τ) Γ(x , τ) dx ≤
ˆ
Rd

(u0 − v0)+(x) Γ(x , 0) dx

or ˆ
Rd

(u − v)+(x , τ)
[
Kδ(·, τ) ∗ φδ̃,ε(·, τ)

]
(x) dx

≤
ˆ
Rd

(u0 − v0)+(x)
[
Kδ(·, 0) ∗ φδ̃,ε(·, 0)

]
(x) dx
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Step 4

Sending δ, δ̃, ε→ 0+ gives (after numerous Fatou’s lemmas and
Lebegue’s dominated convergence theorems)

ˆ
B(x0,M)

(u(x , t)− v(x , t))+ dx

≤
ˆ
B(x0,M+1+Lf t)

[
Φ(−·, Lϕτ) ∗ (u0 − v0)+

]
(x) dx

But why do we have +1 in the radius of the ball?
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Step 4

After sending δ̃, δ → 0+, we have
ˆ
Rd

(u − v)+(x , τ)
[
Φ0 ∗ φε(·, τ)

]
(x) dx

≤ lim inf
δ→0+

ˆ
Rd

φε(x , 0)
[
Kδ(−·, 0) ∗ (u0 − v0)+

]
(x) dx .

Now, let C∞c (Rd) 3 Φ0(·) := ω̂ε̃(· − x0), which is a mollifier in Rd

centered about x0. Note that [Φ0 ∗ φε(·, τ)] ≥ 0 and that
[Φ0 ∗ φε(·, τ)] (x) = 1 when |x − x0| < R − Lf τ − ε− ε̃. Hence, if
ε+ ε̃ < 1, then

[Φ0 ∗ φε(·, τ)] (x) ≥ 1|x−x0|≤R−Lf τ−1.
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Step 4

So, we get
ˆ
Rd

1|x−x0|≤R−Lf τ−1(u − v)+(x , τ) dx

≤
ˆ
Rd

(u − v)+(x , τ)
[
Φ0 ∗ γ(·, τ)

]
(x) dx .

Observe that we cannot send ε̃→ 0+ here because this will violate
the inequality w(x , 0) ≥ Φ0 in the proof that we did earlier, and we
would lose the L1 bound on Kδ. Thus, we need to pay the price of
+1 in the radius of the ball.
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Consequences

Assume (Af ) and (Aϕ) hold, (A+
µ ) holds when L = Lµ, and

u0, v0 ∈ L∞(Rd). Let M > 0, x0 ∈ Rd and Lf and Lϕ be the
Lipschitz constants of f and ϕ respectively.
(a) (L1 contraction). Let u and v be entropy solutions of (1) with

initial data u0, v0 respectively. Then for all t ∈ (0,T ),

‖u(·, t)− v(·, t)‖L1(B(x0,M))

≤ ‖Φ(−·, Lϕt) ∗ |u0 − v0|‖L1(B(x0,M+1+Lf t))

(b) (L1 bound). Let u be an entropy solution of (1). Then for all
t ∈ (0,T ),

‖u(·, t)‖L1(B(x0,M)) ≤ ‖Φ(−·, Lϕt) ∗ |u0|‖L1(B(x0,M+1+Lf t))
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Consequences continued

(c) (Comparison principle). Let u and v be entropy sub- and
supersolutions of (1) with initial data u0, v0 respectively. If
u0 ≤ v0 a.e. on Rd , then

u(x , t) ≤ v(x , t) a.e. in QT .

(d) (L∞ bound). Let u be an entropy solution of (1), and let
ψ := supx∈Rd ψ and ψ := infx∈Rd ψ. Then

u0(x) +

ˆ t

0
g(x , s) ds ≤ u(x , t) ≤ u0(x) +

ˆ t

0
g(x , s) ds

a.e. in QT .
(e) (BV bound). Let u be an entropy solution of (1) and assume

u0 ∈ BV (Rd). Then for all t ∈ (0,T ), x0 ∈ Rd , and M > 0,

|u(·, t)|BV (B(x0,M))

≤ sup
h 6=0

‖Φ(−·, Lϕt) ∗ |u0(·+ h)− u0|‖L1(B(x0,M+1+Lf t))

|h|
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Thank you for your attention!
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