
On nonlocal equations of porous medium type
Survey of 4 papers

Jørgen Endal

Department of mathematical sciences
NTNU

03 May 2017

In collaboration with F. del Teso and E. R. Jakobsen.

DNA seminar, NTNU

Jørgen Endal On nonlocal equations of porous medium type



Local and nonlocal diffusion

Diffusion is the act of “spreading out” – the movement from areas
of high concentration to areas of low concentration.
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Local and nonlocal diffusion

Let u(x , t) be the probability for a particle to be at discrete
x ∈ hZ, t ∈ τN ∩ [0,T ].

Assume that we are only allowed to jump one point either to the
left or to the right, each with probability 1

2 .

The probability of being at point x at time t + τ is then

u(x , t + τ) =
1
2
u(x + h, t) +

1
2
u(x − h, t).
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Local and nonlocal diffusion

Let u(x , t) be the probability for a particle to be at discrete
x ∈ hZ, t ∈ τN ∩ [0,T ].

Assume that we are only allowed to jump one point either to the
left or to the right, each with probability 1

2 .

Rearrange to get

u(x , t + τ)− u(x , t) =
1
2
(
u(x + h, t) + u(x − h, t)− 2u(x , t)

)
.
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Local and nonlocal diffusion

Let u(x , t) be the probability for a particle to be at discrete
x ∈ hZ, t ∈ τN ∩ [0,T ].

Assume that we are only allowed to jump one point either to the
left or to the right, each with probability 1

2 .

Choose τ = 1
2h

2 and divide by it to obtain

u(x , t + τ)− u(x , t)

τ
=

u(x + h, t) + u(x − h, t)− 2u(x , t)

h2 .
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Local and nonlocal diffusion

Let u(x , t) be the probability for a particle to be at discrete
x ∈ hZ, t ∈ τN ∩ [0,T ].

Assume that we are only allowed to jump one point either to the
left or to the right, each with probability 1

2 .

As τ, h→ 0+, we will later see that that u satisfies

∂tu = ∆u in D′(R× (0,T )),

that is, u is a distributional solution of the heat equation.

A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung
von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik (in German), 322(8):
549–560, 1905.
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Local and nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

Consider K : R→ [0,∞) satisfying
(i) K (y) = K (−y)

(ii)
∑

k∈Z K (k) = 1.

As before, the probability of being at point x at time t + τ is

u(x , t + τ) =
∑
k∈Z

K (k)u(x + hk, t).
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Local and nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

Consider K : R→ [0,∞) satisfying
(i) K (y) = K (−y)

(ii)
∑

k∈Z K (k) = 1.

We use property (ii) to obtain

u(x , t + τ)− u(x , t) =
∑
k∈Z

K (k)
(
u(x + hk, t)− u(x , t)

)
.
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Local and nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

To continue, we choose K up to normalization factors as

K (y) =

{
1

|y |1+α y 6= 0

0 y = 0

for α ∈ (0, 2).

Divide by τ it to obtain

u(x , t + τ)− u(x , t)

τ
=
∑
k∈Z

K (k)

τ

(
u(x + hk, t)− u(x , t)

)
.
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Local and nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

Choose τ = hα, and note that

K (k)

τ
=

1
hα|k|1+α

=
h

h1+α|k |1+α
= hK (hk).

Then

u(x , t + τ)− u(x , t)

τ
=

∑
k∈Z\{0}

(
u(x + hk, t)− u(x , t)

)
K (hk)h.
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Local and nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

Choose τ = hα, and note that

K (k)

τ
=

1
hα|k|1+α

=
h

h1+α|k |1+α
= hK (hk).

Or

u(x , t + τ)− u(x , t)

τ
=

ˆ
|z|>0

(
u(x + z , t)− u(x , t)

)
dνh

with the measure νh(z) :=
∑

k∈Z\{0} hK (hk)δhk(z).
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Local and nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

As τ, h→ 0+, we will later see that that u satisfies

∂tu =

ˆ
|z|>0

(
u(x + z , t)− u(x , t)− z∂xu(x , t)1|z|≤1

) c1,α
|z |1+α

dz

= −(−∆)
α
2 u in D′(R× (0,T ))

where c1,α > 0 and −(−∆)
α
2 with α ∈ (0, 2) is the fractional

Laplacian. We thus observe that u is a distributional solution of the
fractional heat equation.

E. Valdinoci. From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat.
Apl. SeMA, (49):33–44, 2009.
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Generalized porous medium equations

We consider the following Cauchy problem:

(GPME)

∂tu − L
µ[ϕ(u)] = 0 in QT := RN × (0,T ),

u(x , 0) = u0(x) on RN ,

where
ϕ : R→ R is continuous and nondecreasing, and
Lµ is a symmetric pure-jump Lévy operator
(anomalous/nonlocal diffusion operator).

Main results:
Uniqueness in L∞.
Existence in L1 ∩ L∞.
Convergent numerical schemes in L1 ∩ L∞.
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Selective summary of previous results

Local case: ∂tu = ∆u, ∂tu = ∆um, ∂tu = ∆ϕ(u).

J. L. Vázquez. The porous medium equation. Mathematical theory. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.
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Selective summary of previous results

Nonlocal case: ∂tu = Lµ[ϕ(u)].

• Well-posedness when Lµ ≡ −(−∆)
α
2 :

Many people: Vázquez, de Pablo, Quirós, Rodríguez, Brändle,
Bonforte, Stan, del Teso, Muratori, Grillo, Punzo, . . .

• Well-posedness for other Lµ:

Bounded operators
F. Andreu-Vaillo, J. Mazón, J. D. Rossi, and J. J. Toledo-Melero. Nonlocal diffusion
problems, volume 165 of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010.

Fractional Laplace like operators (with some x-dependence)
A. de Pablo, F. Quirós, and A. Rodríguez. Nonlocal filtration equations with rough kernels.
Nonlinear Anal., 137:402–425, 2016.
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Selective summary of previous results

Previous results (mostly) rely on:
The porous medium nonlinearity ϕ(u) = um with m > 1.
A very restrictive class of Lévy operators.
The use of L1-energy solutions.

In our case:
Uniqueness is hard to prove because of a very weak solution
concept (however, existence is then easier).
The result we obtain is kind of different since we work in L∞.
We can handle very weak assumptions on ϕ and Lµ.
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Lévy operator

Lµ is a symmetric pure-jump Lévy operator (anomalous/nonlocal
diffusion operator) defined, for smooth enough functions ψ, as e.g.
the singular integral

Lµ[ψ](x) :=

ˆ
RN\{0}

(
ψ(x + z)− ψ(x)− z · Dψ(x)1|z|≤1

)
dµ(z).

Note that it includes the previously mentioned fractional Laplacian
by choosing dµ(z) =

cN,α
|z|N+α dz for some cN,α > 0.

Jørgen Endal On nonlocal equations of porous medium type



Assumptions

Unless otherwise stated we always assume that

ϕ : R→ R is continuous and nondecreasing,(Aϕ)

and

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfying(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.
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Assumptions

The assumption

ϕ : R→ R is continuous and nondecreasing,

includes nonlinearities of the following kind
the porous medium,
fast diffusion, and
Stefan problem.
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Assumptions

The assumption

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfyingˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.

ensures that our Lµ

is the most general (symmetric, linear) nonlocal operator
preserving the maximum principle;
is a pure jump symmetric Lévy operator;
contains spatial discretizations of tr(σσTD2·) + Lµ[·];
is a Fourier multiplier F(Lµ[ψ]) = −σLµF(ψ); and
is relevant for applications (in finance, physics, biology, etc.).
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Distributional solution

Definition

Under the assumptions (Aϕ), (Aµ), and u0 ∈ L∞(RN),
u ∈ L∞(QT ) is a distributional solution of (GPME) if

0 =

ˆ T

0

ˆ
RN

(
u(x , t)∂tψ(x , t) + ϕ(u(x , t))Lµ[ψ(·, t)](x)

)
dx dt

+

ˆ
RN

u0(x)ψ(x , 0) dx

for all ψ ∈ C∞c (RN × [0,T )).
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Uniqueness

Theorem (Preuniqueness, [del Teso, JE, Jakobsen, 2017])

Assume (Aϕ) and (Aµ). Let u(x , t) and û(x , t) satisfy

u, û ∈ L∞(QT ),

u − û ∈ L1(QT ),

∂tu − Lµ[ϕ(u)] = ∂t û − Lµ[ϕ(û)] in D′(QT )

ess lim
t→0+

ˆ
RN

(u(x , t)−û(x , t))ψ(x , t) dx = 0 ∀ψ ∈ C∞c (RN×[0,T )).

Then u = û a.e. in QT .
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Uniqueness

Corollary (Uniqueness, [del Teso, JE, Jakobsen, 2017])

Assume (Aϕ), (Aµ), and u0 ∈ L∞(RN). Then there is at most one
distributional solution u of (GPME) such that u ∈ L∞(QT ) and
u − u0 ∈ L1(QT ).

Proof: Assume there are two solutions u and û with the same
initial data u0. Then all assumptions of Theorem Preuniqueness
obviously hold (‖u − û‖L1 ≤ ‖u − u0‖L1 + ‖û − u0‖L1 <∞), and
u = û a.e.

Uniqueness holds for u0 6∈ L1, for example u0(x) = c + φ(x) for
c ∈ R and φ ∈ L∞(RN) ∩ L1(RN). However, periodic u0 are not
included because of the assumption u − u0 ∈ L1.
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Existence

Theorem (Existence, [del Teso, JE, Jakobsen, 2017])

Assume (Aϕ), (Aµ), and u0 ∈ L1(RN) ∩ L∞(RN). Then there
exists a unique distributional solution u of (GPME) satisfying

u ∈ L1(QT ) ∩ L∞(QT ) ∩ C ([0,T ]; L1
loc(RN)).

Proof: By convergence of numerical solution (as we will see
later).
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The proof of Theorem Preuniqueness

Based on a proof by Brézis and Crandall.

H. Brézis and M. G. Crandall. Uniqueness of solutions of the initial-value problem for
ut − ∆ϕ(u) = 0. J. Math. Pures Appl. (9), 58(2):153–163, 1979.

1. Define U := u − û and Φ := ϕ(u)− ϕ(û), then U solves{
∂tU − Lµ[Φ] = 0 in QT

U(x , 0) = 0 on RN .

Note that U ∈ L1 ∩ L∞ and Φ ∈ L∞.
2. Consider

εvε − Lµ[vε] = g in RN ,

and define Bµε [g ] := vε, that is, B
µ
ε = (εI − Lµ)−1 is the

resolvent of Lµ.
Note that this is a linear elliptic equation.
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The proof of Theorem Preuniqueness

3. Define

hε(t) :=

ˆ
RN

UBµε [U] dx =

ˆ
RN

(εI − Lµ)Bµε [U]Bµε [U] dx

= ε‖Bµε [U]‖2L2 + ‖(−Lµ)
1
2 [Bµε [U]]‖2L2 .

4. Show that hε → 0 as ε→ 0+.
5. U = (εI − Lµ)Bµε [U]→ 0 as ε→ 0+ by Steps 3 and 4.
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The proof of Theorem Preuniqueness

The hardest part is to show that hε → 0 as ε→ 0+. Some
important steps:
1. εBµε [U]→ 0 implies hε → 0 as ε→ 0+.
2. Enough to prove that εBµε [γ]→ 0 for all γ ∈ C∞c (RN). Note

that Γε := εBµε [γ] solves

εΓε − Lµ[Γε] = εγ in D′(RN).

3. A priori results and compactness give Γε → Γ as ε→ 0+.
4. (Liouville) If suppµ 6= 0, Γ ∈ C0, and Lµ[Γ] = 0 in D′, then

Γ ≡ 0.

Note that a general Liouville result do not hold for Lµ: Take
µ(z) = δ2π(z) + δ−2π(z), then Lµ[cos](x) = 0, but this function is
not constant.
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Further uniqueness results

By similar methods, we obtain uniqueness in L∞ for∂tu −
(
tr(σσTD2ϕ(u)) + Lµ[ϕ(u)]

)
= 0 in QT ,

u(x , 0) = u0(x) on RN ,

and

u −
(
tr(σσTD2ϕ(u)) + Lµ[ϕ(u)]

)
= g in RN .
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Important observations

∆hψ(x) :=
ψ(x + hei ) + ψ(x − hei )− 2ψ(x)

h2

=

ˆ
RN

(
ψ(x + z)− ψ(x)

)
dµh(z) =: Lµh [ψ](x)

where

µh(z) :=
1
h2

N∑
i=1

δhei (z) + δ−hei (z)

satisfies (Aµ).
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Important observations

By now, there exist several spatial discretizations of Lµ (e.g.
quadrature and spectral methods).

Y. Huang and A. Oberman. Finite difference methods for fractional Laplacians. Preprint,
arXiv:1611.00164v1 [math.NA], 2016.

Our contribution is to note and exploit that (some of) the
discretizations of Lµ is again a Lévy operator.
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Numerical schemes for (GPME)

Recall that our Cauchy problem was given as

(GPME)

∂tu − L
µ[ϕ(u)] = 0 in QT := RN × (0,T ),

u(x , 0) = u0(x) on RN .

Our numerical scheme can then take the following form

(NumGPME)

{
U j−U j−1

∆t = G∆x(U j ,U j−1) in ∆xZN ,

U0 = u0 in ∆xZN .
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Numerical schemes for (GPME)

In our most general case, we have that

G∆x(U j ,U j−1) := Lν1,∆x [ϕ1(U j)] + Lν2,∆x [ϕ2(U j−1)]

where ν1,∆x , ν2,∆x satisfy (Aµ).

Thus our framework includes
a mixture of implicit and explicit schemes (θ-methods);
the possibility of discretizing the singluar and nonsingular parts
of Lµ in different ways; and
combinations of the above.

Note that by our previous observations, we are also able to
approximate local operators of the form

tr(σσTD2·).
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Convergence of the numerical schemes

The scheme defined by (NumGPME) is
monotone,
(conservative if the ϕ’s involved are Lipschitz)
Lp-stable, and
consistent.

Theorem (Convergence, [del Teso, JE, Jakobsen, 2017])

Assume ν1,∆x , ν2,∆x satisfy (Aµ), ϕ1, ϕ2 satisfy (Aϕ), and
U0 = u0 ∈ L1(RN) ∩ L∞(RN). Then, for the interpolant U, we
have

U → u in C ([0,T ]; L1
loc(RN)) as ∆x ,∆t → 0+

where u ∈ L1(QT ) ∩ L∞(QT ) ∩ C ([0,T ]; L1
loc(RN)) is a

distributional solution of (GPME).
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Extensions and related results

We consider the following Cauchy problem:

(x-GPME)

∂tu − Aλ[ϕ(u)] = 0 in QT ,

u(x , 0) = u0(x) on RN ,

where
ϕ : R→ R is continuous and nondecreasing, and
Aλ is a x-dependent generalization of Lµ.

Main results:
Uniqueness in L1 ∩ L∞.
Energy solutions ⇐⇒ distributional solutions with finite
energy.
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Uniqueness

Theorem (Uniqueness, [del Teso, JE, Jakobsen, 2017])

Assume (Aϕ), u0 ∈ L1(RN) ∩ L∞(RN), and “λ satisfies the
x-dependent version of (Aµ)”. Then there is at most one energy
solution u of (x-GPME) in

{u ∈ L1(QT ) ∩ L∞(QT ) : ϕ(u) ∈ X}.

• Under some regularity assumptions on λ, we have

X ∩ L2(QT ) = L2(QT ) ∩ L∞(QT ) ∩ {“finite energy”}.

• When λ is bounded above and below by the x-independent
measure corresponding to −(−∆)

α
2 , then

X = L∞(QT ) ∩ {“finite energy”}
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{“finite energy”}

{“finite energy”}

:=

{
F :

1
2

ˆ T

0

ˆ
RN

ˆ
|z|>0

∣∣F (x + z)− F (x)
∣∣2λ(x , dz) dx dt <∞

}
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Special case λ(x , dz) = µ( dz)

Let us specialize to the case λ(x , dz) = µ( dz), that is, Aλ = Lµ.

Theorem (Existence, [del Teso, JE, Jakobsen, 2017])

Assume (Aϕ), (Aµ), and u0 ∈ L1(RN) ∩ L∞(RN). Then there
exists a distributional solution of (GPME) satisfying
(i) u ∈ L1(QT ) ∩ L∞(QT ) ∩ C ([0,T ]; L1

loc(RN)); and
(ii) ϕ(u) ∈ {“finite energy”}.

Why?

1
2

ˆ T

0

ˆ
RN

ˆ
|z|>0

∣∣ϕ(u(x + z))− ϕ(u(x))
∣∣2µ( dz) dx dt

≤ ‖ϕ(u0)‖L∞(RN)‖u0‖L1(RN)
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Final remarks

Under certain conditions (e.g., u, u0 ∈ L∞), energy solutions
⇐⇒ distributional solutions with finite energy.
Energy solutions are distributional solutions with finite energy,
and hence, by our first uniqueness result, they are unique
without any further requirements on ϕ.
Remember that in the second result we needed ϕ(u) ∈ X .
Thus, the first result is more robust in the x-independent case,
and the second more general in the x-dependent case.
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Thank you for your attention!
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