Connections between L^{1}-solutions of
 Hamilton-Jacobi-Bellman equations and L^{∞}-solutions of convection-diffusion equations

Jørgen Endal
URL: http://folk.ntnu.no/jorgeen

Department of mathematical sciences//Departamento de Matemáticas NTNU, Norway//UAM, Spain

$$
24 \text { May } 2019
$$

In collaboration with
N. Alibaud and E. R. Jakobsen

A talk given at
Nonlinear Diffusion Seminar, UAM

Main results

- "L -stability"/Quasicontraction for HJB
- " L^{∞}-stability"/Weighted L^{1}-contraction for CDE
- Duality between HJB and CDE
N. Alibaud, JE, E. R. Jakobsen. Optimal and dual stability results for $L^{\mathbf{1}}$ viscosity and L^{∞} entropy solutions. arXiv, 2018.
(HJ)

$$
\begin{aligned}
& (\mathrm{HJ}) \quad \begin{cases}\partial_{t} U+H\left(\partial_{x} U\right)=0 & (x, t) \in \mathbb{R} \times(0, \infty) \\
U(\cdot, 0)=U_{0} & x \in \mathbb{R}\end{cases} \\
& (\mathrm{SCL}) \quad \begin{cases}\partial_{t} u+\partial_{x}(H(u))=0 & (x, t) \in \mathbb{R} \times(0, \infty) \\
u(\cdot, 0)=u_{0} & x \in \mathbb{R}\end{cases}
\end{aligned}
$$

If u is the entropy solution of (SCL), then $U:=\int^{x} u$ is the viscosity solution of (HJ) with $U_{0}:=\int^{x} u_{0}$. (Can be made rigorous in 1D.)

So, there is a connection, and in particular, information about u will give information about U.

We will study the following Cauchy problems in $\mathbb{R}^{N} \times(0, \infty)$:
(HJB) $\quad\left\{\begin{array}{l}\partial_{t} \psi=\sup _{\xi \in \mathcal{E}}\left\{b(\xi) \cdot D \psi+\operatorname{tr}\left(a(\xi) D^{2} \psi\right)\right\} \\ \psi(\cdot, 0)=\psi_{0}\end{array}\right.$
(CDE)

$$
\left\{\begin{array}{l}
\partial_{t} u+\operatorname{div} F(u)=\operatorname{div}(A(u) D u) \\
u(\cdot, 0)=u_{0}
\end{array}\right.
$$

Why? And how are they related?
Note that if $\operatorname{div}(A(u) D u)=\Delta \varphi(u)$, then we replace $\operatorname{tr}\left(a(\xi) D^{2} \psi\right)$ by a(()$\Delta \psi$.

The Kato inequality for (CDE): For all $0 \leq \phi \in C_{c}^{\infty}$ and all $T \geq 0$,

$$
\begin{gathered}
\int_{\mathbb{R}^{d}}|u-v|(x, T) \phi(x, T) \mathrm{d} x \leq \int_{\mathbb{R}^{d}}\left|u_{0}-v_{0}\right|(x) \phi(x, 0) \mathrm{d} x \\
(\mathrm{KI}) \quad+\iint_{\mathbb{R}^{d} \times(0, T)}\left(|u-v| \partial_{t} \phi+\sum_{i=1}^{d} q_{i}(u, v) \partial_{x_{i}} \phi\right. \\
\left.\quad+\sum_{i, j=1}^{d} r_{i j}(u, v) \partial_{x_{i} x_{j}}^{2} \phi\right) \mathrm{d} x \mathrm{~d} t \\
q_{i}(u, v):=\operatorname{sign}(u-v) \int_{v}^{u} F_{i}^{\prime}(\xi) \mathrm{d} \xi, r_{i j}(u, v):=\operatorname{sign}(u-v) \int_{v}^{u} A_{i j}(\xi) \mathrm{d} \xi
\end{gathered}
$$

For a.e. $x \in \mathbb{R}^{N}$ and $t \geq 0$:

$$
\begin{aligned}
I:= & \sum_{i=1}^{d} q_{i}(u, v) \partial_{x_{i}} \phi+\sum_{i, j=1}^{d} r_{i j}(u, v) \partial_{x_{i} x_{j}}^{2} \phi=q(u, v) \cdot D \phi+\operatorname{tr}\left(r(u, v) D^{2} \phi\right) \\
I= & \operatorname{sign}(u(x, t)-v(x, t)) \times \\
& \quad \times \int_{v(x, t)}^{u(x, t)}\left\{F^{\prime}(\xi) \cdot D \phi(x, t)+\operatorname{tr}\left(A(\xi) D^{2} \phi(x, t)\right)\right\} \mathrm{d} \xi \\
\leq & |u(x, t)-v(x, t)| \operatorname{ess}_{m \leq \xi \leq M}^{\sin }\left\{F^{\prime}(\xi) \cdot D \phi(x, t)+\operatorname{tr}\left(A(\xi) D^{2} \phi(x, t)\right)\right\}
\end{aligned}
$$

For a.e. $x \in \mathbb{R}^{N}$ and $t \geq 0$:
$I:=\sum_{i=1}^{d} q_{i}(u, v) \partial_{x_{i}} \phi+\sum_{i, j=1}^{d} r_{i j}(u, v) \partial_{x_{i} x_{j}}^{2} \phi=q(u, v) \cdot D \phi+\operatorname{tr}\left(r(u, v) D^{2} \phi\right)$
$I=\operatorname{sign}(u(x, t)-v(x, t)) \times$

$$
\begin{gathered}
\times \int_{v(x, t)}^{u(x, t)}\left\{F^{\prime}(\xi) \cdot D \phi(x, t)+\operatorname{tr}\left(A(\xi) D^{2} \phi(x, t)\right)\right\} \mathrm{d} \xi \\
\leq|u(x, t)-v(x, t)| \operatorname{esssup}_{m \leq \xi<M}^{\operatorname{enc}}\left\{F^{\prime}(\xi) \cdot D \phi(x, t)+\operatorname{tr}\left(A(\xi) D^{2} \phi(x, t)\right)\right\} .
\end{gathered}
$$

Going back to (KI), we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}|u-v|(x, T) \phi(x, T) \mathrm{d} x \leq \int_{\mathbb{R}^{d}}\left|u_{0}-v_{0}\right|(x) \phi(x, 0) \mathrm{d} x \\
& +\iint_{\mathbb{R}^{d} \times(0, T)}|u-v| \times \\
& \quad \times\left(\partial_{t} \phi+\underset{m \leq \xi \leq M}{\left.\operatorname{ess} \sup _{m}\left\{F^{\prime}(\xi) \cdot D \phi(x, t)+\operatorname{tr}\left(A(\xi) D^{2} \phi(x, t)\right)\right\}\right) \mathrm{d} x \mathrm{~d} t}\right.
\end{aligned}
$$

We recognize the backward version of the PDE in (HJB) with $\mathcal{E}=[m, M], b=F^{\prime}$, and $a=A$.
By approximation, we can take $\phi(x, t)=\psi(x, T-t)$ in the above.
BUT if u_{0}, v_{0} are only bounded, then ψ needs to be integrable.

The Cauchy problems

We consider the following Cauchy problem in $\mathbb{R}^{N} \times(0, \infty)$:
(HJB) $\left\{\begin{array}{l}\partial_{t} \psi=\sup _{\xi \in \mathcal{E}}\left\{b(\xi) \cdot D \psi+\operatorname{tr}\left(a(\xi) D^{2} \psi\right)\right\}, \\ \psi(\cdot, 0)=\psi_{0},\end{array}\right.$
where $\psi_{0} \in C_{b}\left(\mathbb{R}^{N}\right) \cap$ " $L^{1}\left(\mathbb{R}^{N}\right)$ " and
(H1) $\left\{\begin{array}{l}\mathcal{E} \text { is a nonempty set, } \\ b: \mathcal{E} \rightarrow \mathbb{R}^{d} \text { bounded function, } \\ a=\sigma^{a}\left(\sigma^{a}\right)^{T} \text { for some bounded } \sigma^{a}: \mathcal{E} \rightarrow \mathbb{R}^{d \times K},\end{array}\right.$
with K being a fixed integer.

Background

The problem is often given as
$\partial_{t} \psi=H\left(D \psi, D^{2} \psi\right) \quad$ with $\quad H(p, X)=\sup _{\xi \in \mathcal{E}}\{b(\xi) \cdot p+\operatorname{tr}(a(\xi) X)\}$.

- It is a fully nonlinear equation in nondivergence form.
- The vector b and the matrix a may degenerate.
- Classical solutions may not exist, and a.e.-solutions may be nonunique.
- The works of Crandall, Lions, Evans, Ishii, Jensen,... suggest that viscosity solutions are indeed the right solution concept: existence, uniqueness and stability in C_{b}.
- Viscosity solutions are pointwise solutions, and the test function test the equation at local extremal points.

The Cauchy problems

We also consider the following Cauchy problem in $\mathbb{R}^{N} \times(0, \infty)$:
$(\mathrm{CDE}) \quad\left\{\begin{array}{l}\partial_{t} u+\operatorname{div} F(u)=\operatorname{div}(A(u) D u), \\ u(\cdot, 0)=u_{0},\end{array}\right.$
where $u_{0} \in L^{\infty}\left(\mathbb{R}^{N}\right)$ and
(H2) $\quad\left\{\begin{array}{l}F \in W_{\mathrm{loc}}^{1, \infty}\left(\mathbb{R}, \mathbb{R}^{d}\right), \\ A=\sigma^{A}\left(\sigma^{A}\right)^{T} \text { with } \sigma^{A} \in L_{\text {loc }}^{\infty}\left(\mathbb{R}, \mathbb{R}^{d \times K}\right) .\end{array}\right.$

Background

The problem was given as

$$
\partial_{t} u+\operatorname{div} F(u)=\operatorname{div}(A(u) D u)
$$

- It is an equation in divergence form.
- The vector F and the matrix A may degenerate, and we get a mixture of hyperbolic and parabolic equations. Moreover, the diffusion is anisotropic.
- Classical solutions may not exist, and distributional solutions may be nonunique.
- The works of Kružkov, Carrillo, Chen, Perthame,... suggest that entropy solutions are indeed the right solution concept: existence, uniqueness and stability in L^{1}.
- Entropy solutions are "signed" distributional solutions.

Selective summary of previous results

Well-known that (HJB) is stable in C_{b}.

M. G. Crandall, H. Ishir, P.-L. Lions. User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1-67, 1992.
M. Bardi, I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of

Hamilton-Jacobi-Bellman equations. Systems \& Control: Foundations \& Applications. Birkhäuser Boston, Inc., Boston, MA, 1997.

Well-known that (CDE) is stable in L^{1}.

J. Carrillo. Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal., 147(4):269-361, 1999.G.-Q. Chen, B. Perthame. Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(4):645-668, 2003.M. Bendahmane, K. H. Karlsen. Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations. SIAM J. Math. Anal., 36(2):405-422, 2004.

Note that L^{1}-like stability (even well-posedness) for (HJB) is unusual, and that stability of $\|\cdot\|_{L \infty}$ is note true for (CDE).

When $A(u) \equiv 0$ in (CDE), we have the classical result

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|u(x, t)-v(x, t)| 1_{B\left(x_{0}, R\right)}(x) \mathrm{d} x \\
& \leq \int_{\mathbb{R}^{N}}\left|u_{0}(x)-v_{0}(x)\right| 1_{B\left(x_{0}, R+L_{F} t\right)}(x) \mathrm{d} x .
\end{aligned}
$$

Note that $\mathbf{1}_{B\left(x_{0}, R+L_{F} t\right)}$ is a "supersolution" of

$$
\left\{\begin{array}{l}
\partial_{t} \psi=L_{F}|D \psi|, \\
\psi(\cdot, 0)=1_{B\left(x_{0}, R\right)}
\end{array}\right.
$$

\square S. N. Kružkov. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81(123):228-255, 1970.

Finally, finite speed of propagation is encoded in the estimate.

When $A(u) \equiv 1$ in (CDE) and K is the heat kernel, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|u(x, t)-v(x, t)| \mathbf{1}_{B\left(x_{0}, R\right)} \mathrm{d} x \\
& \leq \int_{\mathbb{R}^{N}}\left|u_{0}(x)-v_{0}(x)\right| K(\cdot, t) *_{x} \mathbf{1}_{B\left(x_{0}, R+L_{F} t\right)}(x) \mathrm{d} x .
\end{aligned}
$$

Note that $K(\cdot, t) *_{x} \mathbf{1}_{B\left(x_{0}, R+L_{F} t\right)}(x)$ is a "supersolution" of

$$
\left\{\begin{array}{l}
\partial_{t} \psi=L_{F}|D \psi|+\Delta \psi \\
\psi(\cdot, 0)=\mathbf{1}_{B\left(x_{0}, R\right)}
\end{array}\right.
$$

N. Alibaud. Entropy formulation for fractal conservation laws. J. Evol. Equ., 7(1):145-175, 2007.

Finally, note that we have finite infinite speed of propagation.

When $A(u)=\varphi^{\prime}(u)$ I in (CDE), we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|u(x, t)-v(x, t)| \mathbf{1}_{B\left(x_{0}, R\right)} \mathrm{d} x \\
& \leq \int_{\mathbb{R}^{N}}\left|u_{0}(x)-v_{0}(x)\right| \Phi\left(\cdot, L_{\varphi} t\right) *_{x} \mathbf{1}_{B\left(x_{0}, R+1+L_{F} t\right)}(x) \mathrm{d} x .
\end{aligned}
$$

Note that $\Phi\left(\cdot, L_{\varphi} t\right) *_{x} \mathbf{1}_{B\left(x_{0}, R+1+L_{F} t\right)}(x)$ is a "supersolution" of

$$
\left\{\begin{array}{l}
\partial_{t} \psi=L_{F}|D \psi|+L_{\varphi}(\Delta \psi)^{+} \\
\psi(x, 0)=\mathbf{1}_{B\left(x_{0}, R\right)}
\end{array}\right.
$$

居
JE, E. R. Jakobsen. L^{1} contraction for bounded (nonintegrable) solutions of degenerate parabolic equations. SIAM J. Math. Anal., 46(6):3957-3982, 2014.

Again, we note the finite infinite speed of propagation.

Previously known L^{∞}-stability for (CDE)

When $A(u)$ "general" in (CDE), we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|u(x, t)-v(x, t)| \mathrm{e}^{-|x|} \mathrm{d} x \\
& \leq \mathrm{e}^{\left(L_{F}+L_{A}\right) t} \int_{\mathbb{R}^{N}}\left|u_{0}(x)-v_{0}(x)\right| \mathrm{e}^{-|x|} \mathrm{d} x .
\end{aligned}
$$

Note that $\mathrm{e}^{\left(L_{F}+L_{A}\right) t} \mathrm{e}^{-|x|}$ is a "supersolution" of

$$
\left\{\begin{array}{l}
\partial_{t} \psi=L_{F}|D \psi|+L_{A}\left(\sup _{|h|=1} D^{2} \psi h \cdot h\right)^{+}, \\
\psi(x, 0)=\mathrm{e}^{-|x|} .
\end{array}\right.
$$

\square G.-Q. Chen, E. DiBenedetto. Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations. SIAM J. Math. Anal., 33(4):751-762, 2001.

美
H. Frid. Decay of Almost Periodic Solutions of Anisotropic Degenerate Parabolic-Hyperbolic Equations. In Non-linear partial differential equations, mathematical physics, and stochastic analysis, EMS Ser. Congr. Rep., pages 183-205. Eur. Math. Soc., Zürich, 2018.

L^{1}-results for (HJB)

A natural question appears:
Can we obtain

$$
\|\psi(\cdot, t)-\hat{\psi}(\cdot, t)\|_{L^{1}} \leq\left\|\psi_{0}-\hat{\psi}_{0}\right\|_{L^{1}}
$$

where $\psi, \hat{\psi}$ solve (HJB) with initial data $\psi_{0}, \hat{\psi}_{0}$?
Not really studied, and only some results for (HJ).
园
C.-T. Lin, E. Tadmor. $L^{\mathbf{1}}$-stability and error estimates for approximate Hamilton-Jacobi solutions. Numer. Math., 87(4):701-735, 2001.

What is possible? Initial guess

Consider the eikonal equation

$$
\left\{\begin{array}{l}
\partial_{t} \psi=C\left(\left|\partial_{x_{1}} \psi\right|+\left|\partial_{x_{2}} \psi\right|+\cdots+\left|\partial_{x_{N}} \psi\right|\right) \\
\psi(\cdot, 0)=\psi_{0}
\end{array}\right.
$$

Control theory gives the following representation formula:

$$
\psi(x, t)=\sup _{x+C t[-1,1]^{N}} \psi_{0}=\sup _{Q_{C t}(x)} \psi_{0} .
$$

Moreover,
$\int_{\mathbb{R}^{N}} \sup _{Q_{r}(x)} \psi(\cdot, t) \mathrm{d} x=\int_{\mathbb{R}^{N}} \sup _{\bar{Q}_{r+c t}(x)} \psi_{0}(x) \mathrm{d} x \leq \tilde{C}(t) \int_{\mathbb{R}^{N}} \sup _{\bar{Q}_{r}(x)} \psi_{0} \mathrm{~d} x$.

We consider the normed space

$$
L_{\mathrm{int}}^{\infty}\left(\mathbb{R}^{N}\right):=\left\{\psi \in L^{1}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right):\|\psi\|_{L_{\mathrm{int}}^{\infty}\left(\mathbb{R}^{N}\right)}<\infty\right\}
$$

where

$$
\|\psi\|_{L_{\mathrm{int}}^{\infty}\left(\mathbb{R}^{N}\right)}:=\int_{\mathbb{R}^{N}} \frac{\operatorname{ess} \sup }{\bar{Q}_{1}(x)}|\psi| \mathrm{d} x
$$

Theorem

- $L_{\text {int }}^{\infty}$ is a Banach space.
- The space $L_{i n t}^{\infty}$ is continuously embedded into $L^{1} \cap L^{\infty}$.
- $\int_{\mathbb{R}^{N}} \operatorname{ess} \sup _{\bar{Q}_{r+\varepsilon}(x)}|\psi| \mathrm{d} x \leq C_{r, \varepsilon} \int_{\mathbb{R}^{N}} \operatorname{ess} \sup _{\bar{Q}_{r}(x)}|\psi| \mathrm{d} x$.

The same for second order equations?

Consider

$$
\left\{\begin{array}{l}
\partial_{t} \psi=\left(\partial_{x x}^{2} \psi\right)^{+} \\
\psi(\cdot, 0)=\psi_{0}
\end{array}\right.
$$

For nonnegative solutions, we are able to obtain

$$
\psi(\cdot, t) \in L^{1} \quad \Longleftrightarrow \quad \psi_{0} \in L_{\mathrm{int}}^{\infty}
$$

It seems that $L_{\text {int }}^{\infty}$ is a good space for (HJB).

Largest subspace of L^{1} stable by the equation (HJB)

Consider a space E such that

$$
\left\{\begin{array}{l}
E \text { is a vector subspace of } C_{b} \cap L^{1}, \\
E \text { is a normed space, } \\
E \text { is continuously embedded into } L^{1},
\end{array}\right.
$$

and the C_{b}-semigroup $G(t)$ associated with (HJB) such that
$G(t)$ maps E into itself and $G(t): E \rightarrow E$ is continuous.

Theorem (Best possible E, [Alibaud \& JE \& Jakobsen, 2018])

The space $C_{b} \cap L_{i n t}^{\infty}$ satisfies the above properties. Moreover, any other E satisfying the above properties is continuously embedded into $C_{b} \cap L_{\text {int }}^{\infty}$.

$L_{\mathrm{int}}^{\infty}$-stability for (HJB)

Theorem ($L_{\text {int }}^{\infty}$-stability, [Alibaud \& JE \& Jakobsen, 2018])

Assume (H 1). There exists a modulus of continuity ω_{N} such that, for viscosity solutions $\psi, \hat{\psi}$ of (HJB) with respective initial data $\psi_{0}, \hat{\psi_{0}} \in C_{b} \cap L_{\text {int }}^{\infty}$, we have

$$
\|\psi-\hat{\psi}\|_{L_{\mathrm{int}}^{\infty}} \leq\left(1+t|H|_{\text {conv }}\right)^{N}\left(1+\omega_{N}\left(t|H|_{\text {diff }}\right)\right)\left\|\psi_{0}-\hat{\psi}_{0}\right\|_{L_{\mathrm{int}}^{\infty}} .
$$

- The modulus of continuity $\omega_{N}(r)$ will typically be like \sqrt{r}.
- The seminorms $|H|_{\text {conv }},|H|_{\text {diff }}$ measure nonlinearities in (HJB).

$L_{\text {int }}^{\infty}$-quasicontraction for (HJB)

As we saw, we only had a quasicontraction when the diffusion was linear and a contraction when the whole equation was linear.

Theorem ($L_{\text {int }}^{\infty}$-quasicontraction, [Alibaud \& JE \& Jakobsen, 2018])

Assume (H 1). For viscosity solutions $\psi, \hat{\psi}$ of (HJB) with respective initial data $\psi_{0}, \hat{\psi}_{0} \in C_{b} \cap L_{\mathrm{int}}^{\infty}$, we have

$$
\left|\left\|\psi-\hat{\psi}\left|\left\|\leq \mathrm{e}^{t \max \left\{|H|_{\text {conv, }},|H|_{\text {diff }}\right\}}\left|\left\|\psi_{0}-\hat{\psi}_{0} \mid\right\| .\right.\right.\right.\right.\right.
$$

- ||| $\cdot \|| |$ is equivalent to $\|\cdot\|_{L_{i n t}^{\infty}}$.
- Remarkably, ||| • ||| does not depend on the semigroup $\psi_{0} \stackrel{t}{\mapsto} \psi$, but rather a fixed semigroup of some model equation.

L^{∞}-stability for (CDE)

$$
\text { Let } \mathcal{E}=[m, M], b=F^{\prime}, \text { and } a=A \text { in }(\mathrm{HJB}) .
$$

Theorem (L^{∞}-stability, [Alibaud \& JE \& Jakobsen, 2018])

Assume (H2), u_{0}, v_{0} take values in $[m, M]$, and $0 \leq \psi_{0} \in B L S C$. Then the associated entropy solutions u, v of (CDE) and viscosity (minimal) solution ψ of (HJB) satisfy, for all $t \geq 0$,

$$
\int_{\mathbb{R}^{N}}|u(x, t)-v(x, t)| \psi_{0}(x) \mathrm{d} x \leq \int_{\mathbb{R}^{N}}\left|u_{0}(x)-v_{0}(x)\right| \psi(x, t) \mathrm{d} x .
$$

- Any other viscosity solution $\hat{\psi}$ of (HJB) will satisfy $\psi \leq \hat{\psi}$. Hence, it includes ALL previous results of this type.
- To make the right-hand side finite, we could require $u_{0}-v_{0} \in L^{1}$ or $\psi_{0} \in L_{\mathrm{int}}^{\infty}$.
- When we drop C_{b}, we might have nonunique solutions, and therefore we consider minimal solutions (unique by definition).

Recall that we already proved this using the Kato inequality (KI):

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}|u-v|(x, T) \phi(x, T) \mathrm{d} x \leq \int_{\mathbb{R}^{d}}\left|u_{0}-v_{0}\right|(x) \phi(x, 0) \mathrm{d} x \\
& +\iint_{\mathbb{R}^{d} \times(0, T)}|u-v| \times \\
& \quad \times\left(\partial_{t} \phi+\underset{m \leq \xi \leq M}{\operatorname{ess} \sup _{n}}\left\{F^{\prime}(\xi) \cdot D \phi(x, t)+\operatorname{tr}\left(A(\xi) D^{2} \phi(x, t)\right)\right\}\right) \mathrm{d} x \mathrm{~d} t .
\end{aligned}
$$

By approximation, we can take $\phi(x, t)=\psi(x, T-t)$ in the above.

A duality result

For the respective unique solutions u, ψ of (CDE),(HJB) define

$$
\begin{gathered}
S(t): u_{0} \in L^{\infty}\left(\mathbb{R}^{d}\right) \mapsto u(\cdot, t) \in L^{\infty}\left(\mathbb{R}^{d}\right) \quad \forall t \geq 0 \\
G_{m, M}(t): \psi_{0} \in C_{b} \cap L_{\mathrm{int}}^{\infty}\left(\mathbb{R}^{d}\right) \mapsto \psi(\cdot, t) \in C_{b} \cap L_{\mathrm{int}}^{\infty}\left(\mathbb{R}^{d}\right) \quad \forall t \geq 0
\end{gathered}
$$

Theorem (Semigroup duality [Alibaud \& JE \& Jakobsen, 2018])

Assume (H 2), $m<M$, and consider the above semigroups. Then $\left\{G_{m, M}(t)\right\}_{t \geq 0}$ is the smallest strongly continuous semigroup on $C_{b} \cap L_{i n t}^{\infty}\left(\mathbb{R}^{\bar{d}}\right)$ satisfying, for all $t \geq 0$,

$$
\int_{\mathbb{R}^{d}}\left|S(t) u_{0}-S(t) v_{0}\right| \psi_{0} \mathrm{~d} x \leq \int_{\mathbb{R}^{d}}\left|u_{0}-v_{0}\right| G_{m, M}(t) \psi_{0} \mathrm{~d} x
$$

for every $u_{0}, v_{0} \in L^{\infty}\left(\mathbb{R}^{d},[m, M]\right)$, every $0 \leq \psi_{0} \in C_{b} \cap L_{i n t}^{\infty}\left(\mathbb{R}^{d}\right)$.
Given $S(t)$, then the above inequality characterizes $G_{m, M}(t)$.

A duality result, open problem

Theorem (Semigroup duality [Alibaud \& JE \& Jakobsen, 2018])

Assume (H 2), $m<M$, and consider the above semigroups. Then $\left\{G_{m, M}(t)\right\}_{t \geq 0}$ is the smallest strongly continuous semigroup on $C_{b} \cap L_{\text {int }}^{\infty}\left(\mathbb{R}^{d}\right)$ satisfying, for all $t \geq 0$,

$$
\int_{\mathbb{R}^{d}}\left|S(t) u_{0}-S(t) v_{0}\right| \psi_{0} \mathrm{~d} x \leq \int_{\mathbb{R}^{d}}\left|u_{0}-v_{0}\right| G_{m, M}(t) \psi_{0} \mathrm{~d} x
$$

for every $u_{0}, v_{0} \in L^{\infty}\left(\mathbb{R}^{d},[m, M]\right)$, every $0 \leq \psi_{0} \in C_{b} \cap L_{\text {int }}^{\infty}\left(\mathbb{R}^{d}\right)$.
The dual question:
Given $G_{m, M}(t)$. Then $S(t)$ is a weak- continuous semigroup on L^{∞} satisfying the above inequality.
Is $S(t)$ the ONLY such semigroup satisfying such an inequality? If no, which ones do?

Important ingredient in the proofs, L^{1}-supersolution

Note that

$$
\sup _{\mathcal{E}}\left\{b \cdot D \psi+\operatorname{tr}\left(a D^{2} \psi\right)\right\} \leq C_{b}|D \psi|+C_{a}\left(\sup _{|h|=1} D^{2} \psi h \cdot h\right)^{+}
$$

or
$\partial_{t} \psi-\sup _{\mathcal{E}}\left\{b \cdot D \psi+\operatorname{tr}\left(a D^{2} \psi\right)\right\} \geq \partial_{t} \psi-C_{b}|D \psi|-C_{a}\left(\sup _{|h|=1} D^{2} \psi h \cdot h\right)^{+}$
Let us therefore find an integrable supersolution of

$$
\partial_{t} \psi=C_{b}|D \psi|+C_{a}\left(\sup _{|h|=1} D^{2} \psi h \cdot h\right)^{+}
$$

Important ingredient in the proofs, L^{1}-supersolution

Note that

$$
\sup _{\mathcal{E}}\left\{b \cdot D \psi+\operatorname{tr}\left(a D^{2} \psi\right)\right\} \leq C_{b}|D \psi|+C_{a}\left(\sup _{|h|=1} D^{2} \psi h \cdot h\right)^{+}
$$

or
$\partial_{t} \psi-\sup _{\mathcal{E}}\left\{b \cdot D \psi+\operatorname{tr}\left(a D^{2} \psi\right)\right\} \geq \partial_{t} \psi-C_{b}|D \psi|-C_{a}\left(\sup _{|h|=1} D^{2} \psi h \cdot h\right)^{+}$
Let us therefore find an integrable supersolution of

$$
\partial_{t} \psi=C_{a}\left(\sup _{|h|=1} D^{2} \psi h \cdot h\right)^{+}
$$

Recall that for $\operatorname{tr}\left(a D^{2} \psi\right)=a \Delta \psi, \sup _{|h|=1} D^{2} \psi h \cdot h=\Delta \psi$.

Important ingredient in the proofs, L^{1}-supersolution

Lemma (Fundamental solution? [Alibaud \& JE \& Jakobsen, 2018])
Consider solutions ψ_{n} of

$$
\left\{\begin{array}{l}
\partial_{t} \psi_{n}=\left(\partial_{x x}^{2} \psi_{n}\right)^{+}, \\
\psi_{n}(\cdot, 0)=n \omega(n \cdot) \approx \delta_{0} .
\end{array}\right.
$$

Then, for all $(x, t) \in \mathbb{R} \times(0, \infty)$,

$$
\lim _{n \rightarrow \infty} \psi_{n}(x, t)=\infty .
$$

Important ingredient in the proofs, L^{1}-supersolution

$$
\partial_{t} \psi=(\Delta \psi)^{+}= \begin{cases}\Delta \psi, & \Delta \psi>0 \\ 0, & \Delta \psi \leq 0\end{cases}
$$

So, we want to keep the "convex" regions of the heat equation.

We thus search for a profile of the heat equation with second derivative positive.

Important ingredient in the proofs, L^{1}-supersolution

Define

$$
U(r):=c_{0} \int_{r}^{\infty} e^{-\frac{s^{2}}{4}} \mathrm{~d} s .
$$

Note that U satisfies

$$
U(0)=1, \quad \frac{r}{2} U^{\prime}+U^{\prime \prime}=0, \quad U^{\prime}<0, \quad \text { and } \quad U^{\prime \prime}>0
$$

Moreover, when $N=1,(x, t) \mapsto U(|x| / \sqrt{t})$ solves

$$
\partial_{t} U=\partial_{x x}^{2} U=\left(\partial_{x x}^{2} U\right)^{+} \quad \text { on } \quad \mathbb{R} \backslash\{0\} \times(0, \infty)
$$

Important ingredient in the proofs, L^{1}-supersolution

Let us now check that

$$
(x, t) \mapsto U\left((|x|-1)^{+} / \sqrt{t}\right)
$$

is a viscosity supersolution of

$$
\partial_{t} \psi=\left(\sup _{|h|=1} D^{2} \psi h \cdot h\right)^{+}
$$

We note that we have 3 different regions to check:

1. $\{|x|<1\}$
2. $\{|x|>1\}$
3. $\{|x|=1\}$

Important ingredient in the proofs, L^{1}-supersolution

-The region $\{|x|<1\}$. Here $U\left((|x|-1)^{+} / \sqrt{t}\right)=U(0)=1$ for all $t>0$. And it thus satisfies the equation.
-The region $\{|x|>1\}$. Here
$U\left((|x|-1)^{+} / \sqrt{t}\right)=U((|x|-1) / \sqrt{t})$. Let us check that it satisfies the equation pointwise:

$$
\partial_{t} U((|x|-1) / \sqrt{t})=-\frac{1}{t} \frac{r}{2} U^{\prime}(r)
$$

and

$$
\begin{aligned}
& \sum_{i, j} \partial_{x_{i} x_{j}}^{2} U((|x|-1) / \sqrt{t}) h_{i} h_{j} \\
& =\left(N|x|^{2}|h|^{2}-(x \cdot h)^{2}\right) \frac{U^{\prime}}{|x|^{3} \sqrt{t}}+(x \cdot h)^{2} \frac{U^{\prime \prime}}{|x|^{2} t}
\end{aligned}
$$

-The region $\{|x|<1\}$. Here $U\left((|x|-1)^{+} / \sqrt{t}\right)=U(0)=1$ for all $t>0$. And it thus satisfies the equation.
-The region $\{|x|>1\}$. Here
$U\left((|x|-1)^{+} / \sqrt{t}\right)=U((|x|-1) / \sqrt{t})$. Let us check that it satisfies the equation pointwise:

$$
\partial_{t} U((|x|-1) / \sqrt{t})=-\frac{1}{t} \frac{r}{2} U^{\prime}(r)
$$

and

$$
\begin{aligned}
& \sup _{|h|=1} \sum_{i, j} \partial_{x_{i} x_{j}}^{2} U((|x|-1) / \sqrt{t}) h_{i} h_{j} \\
& =\left(N|x|^{2}-|x|^{2}\right) \frac{U^{\prime}}{|x|^{3} \sqrt{t}}+|x|^{2} \frac{U^{\prime \prime}}{|x|^{2} t} \\
& \leq \frac{U^{\prime \prime}}{t}
\end{aligned}
$$

Important ingredient in the proofs, L^{1}-supersolution

-The region $\{|x|<1\}$. Here $U\left((|x|-1)^{+} / \sqrt{t}\right)=U(0)=1$ for all $t>0$. And it thus satisfies the equation.
-The region $\{|x|>1\}$. Here
$U\left((|x|-1)^{+} / \sqrt{t}\right)=U((|x|-1) / \sqrt{t})$. Let us check that it satisfies the equation pointwise:

$$
\partial_{t} U(r)-\left(\sup _{|h|=1} D^{2} U(r) h \cdot h\right)^{+} \geq-\frac{1}{t}\left(\frac{r}{2} U^{\prime}(r)+U^{\prime \prime}(r)\right)=0 .
$$

-The region $\{|x|=1\}$. We need to check the subjet. But it is empty.

Important ingredient in the proofs, L^{1}-supersolution

Let us now check that

$$
(x, t) \mapsto U\left((|x|-1)^{+} / \sqrt{t}\right) \quad \text { with } \quad U(r)=c_{0} \int_{r}^{\infty} \mathrm{e}^{-\frac{s^{2}}{4}} \mathrm{~d} s .
$$

is integrable:

$$
\begin{aligned}
& \int U\left((|x|-1)^{+} / \sqrt{t}\right) \mathrm{d} x \\
& =\int_{|x| \leq 1} U(0) \mathrm{d} x+\int_{|x|>1} U((|x|-1) / \sqrt{t}) \mathrm{d} x \\
& \sim 1+\int_{0}^{\infty} r^{d-1} \int_{r}^{\infty} \mathrm{e}^{-\frac{s^{2}}{4}} \mathrm{~d} s \mathrm{~d} r \\
& \sim 1+\int_{0}^{\infty} s^{d} \mathrm{e}^{-\frac{s^{2}}{4}} \mathrm{~d} s<\infty
\end{aligned}
$$

Thank you for your attention!

