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Goal: Numerical simulations

The goal of this presentation is to study monotone finite-difference
approximations of diffusion equations in RN × (0,T ).
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Introduction: Mathematical modelling

Diffusion is the act of “spreading out” – the movement from areas
of high concentration to areas of low concentration.

How do we model this phenomena?
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Introduction: Mathematical modelling

Let u be some heat density inside a region Ω. The rate of change
of the total quantity within Ω equals the negative of the net flux
through ∂Ω:

d
dt

ˆ
Ω
u dx = −

ˆ
∂Ω

F · n dS = −
ˆ

Ω
divF dV ,

or
∂tu = −divF,

where F = F(u) := −a(u)Du.
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Introduction: Special case when m = 6

• a(u) = um−1.

It is possible to use∂tu = ∆[u6] in RN × (0,T ),

u(x , 0) = Mδ0 on RN ,

to describe the propagation of heat immediately after a nuclear
explosion.

G. I. Barenblatt. Scaling, self-similarity, and intermediate asymptotics. Cambridge Texts in
Applied Mathematics. Cambridge University Press, Cambridge, 1996.
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Nonlocal (local) nonlinear diffusion

Let QT := RN × (0,T ). We consider the following Cauchy problem:

(GPME)

∂tu = L[ϕ(u)] in QT ,

u(x , 0) = u0(x) on RN ,

where

L[ψ] = Lσ[ψ] + Lµ[ψ]

= local + nonlocal (self-adjoint)

ϕ : R→ R is continuous and nondecreasing, and
u0 some rough initial data.

Main results:
Uniqueness for u0 ∈ L1 ∩ L∞.
Convergent numerical schemes in C ([0,T ]; L1

loc(RN)) for
u0 ∈ L1 ∩ L∞.
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Assumptions

The assumption

ϕ : R→ R is continuous and nondecreasing,(Aϕ)

includes nonlinearities of the following kind
linear,
the porous medium ϕ(u) = um with m > 1,
fast diffusion ϕ(u) = um with 0 < m < 1, and
(one-phase) Stefan problem ϕ(u) = max{0, u − c} with c > 0.
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Assumptions

The assumption

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfying(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.

ensures that our Lµ includes important examples:
the fractional Laplacian −(−∆)

α
2 with α ∈ (0, 2);

the anisotropic fractional Laplacian −
∑N

i=1(−∂2
xixi

)
αi
2 with

αi ∈ (0, 2);
relativistic Schrödinger type operators mαI − (m2I −∆)

α
2

with α ∈ (0, 2) and m > 0;
for the measure ν with ν(RN) <∞,
Lν [ψ](x) =

´
RN

(
ψ(x + z)− ψ(x)

)
dν(z);

for the function J with
´
Rd J(z) dz = 1, LJ dz [ψ] = J ∗ ψ − ψ;

Fourier multipliers F(Lµ[ψ]) = −sLµF(ψ).
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Characterization of operators

Theorem
A linear, self-adjoint operator which is translation invariant and
satisfies the global comparison principle is of the form
L = Lσ + Lµ where

Lσ[ψ(x)] := tr(σσTD2ψ(x))

Lµ[ψ(x)] := P.V.
ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dµ(z)

Here, σ ∈ RN×p and µ ≥ 0 is a symmetric Radon measure
satisfying ˆ

min{|z |2, 1} dµ(z) <∞.

P. Courrège. Sur la forme intégro-différentielle des opérateurs de C∞
k dans C satisfaisant au

principe du maximum. Séminaire Brelot-Choquet-Deny. Théorie du Potentiel, 10(1):1–38,
1965–1966.
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Selective summary of previous results

Local case: ∂tu = ∆u, ∂tu = ∆um, ∂tu = ∆ϕ(u).

• Well-posedness:
J. L. Vázquez. The porous medium equation. Mathematical theory. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.

• Numerical results:
Risebro, Karlsen, Bürger, DiBendedetto, Droniou, Eymard,
Gallouet, Ebmeyer,. . .
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Selective summary of previous results

Nonlocal case: ∂tu = Lµ[ϕ(u)].

• Well-posedness when Lµ ∼ −(−∆)
α
2 :

Many people: Vázquez, de Pablo, Quirós, Rodríguez, Brändle,
Bonforte, Stan, del Teso, Muratori, Grillo, Punzo, . . .

• Numerical results:
Finite-difference discretizations of the singular integral:

E. R. Jakobsen, K. H. Karlsen, and C. La Chioma. Error estimates for approximate
solutions to Bellman equations associated with controlled jump-diffusions. Numer. Math.,
110(2):221–255, 2008.

J. Droniou. A numerical method for fractal conservation laws. Math. Comp., 79(269):95–124,
2010.

S. Cifani and E. R. Jakobsen. Entropy solution theory for fractional degenerate
convection-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 28(3):413–441, 2011.

Y. Huang and A. Oberman. Numerical methods for the fractional Laplacian: a finite
difference–quadrature approach. SIAM J. Numer. Anal., 52(6):3056–3084, 2014.

Powers of the discrete Laplacian:
O. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea, and J. L. Varona. Nonlocal
discrete diffusion equations and the fractional discrete Laplacian, regularity and applications. Adv.
Math., 330:688–738, 2018.
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Uniqueness

Theorem (Uniqueness, [del Teso & JE & Jakobsen, 2017])

Assume (Aϕ), (Aµ), and u0 ∈ L1 ∩ L∞(RN). Then there is at most
one distributional/very weak solution u ∈ L1 ∩ L∞(QT )
of (GPME).
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Numerical schemes for (GPME)

Recall that our Cauchy problem was given as

(GPME)

∂tu = L[ϕ(u)] in QT = RN × (0,T ),

u(x , 0) = u0(x) on RN .

Corresponding numerical scheme (NM):U j
β−U

j−1
β

∆t = Lνh,1 [ϕ(U j
β)] + Lνh,2 [ϕh(U j−1

β )] in hZN ×∆tN,
“U0

β = u0” in hZN ,

where
Lνh,1 + Lνh,2 ≈ L = Lσ + Lµ

ϕh ≈ ϕ
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Numerical schemes for (GPME)

Note that
in the nonlinear case, we can no longer expect smooth
solutions!

Our framework includes
a mixture of implicit and explicit schemes (θ-methods);
the possibility of discretizing the singluar and nonsingular parts
of Lµ in different ways; and
combinations of the above.

Also:
Explicit methods only works for Lipschitz ϕ because of CFL. But,
instead of doing implicit methods for “demanding” ϕ, we can do
less costly explicit methods with approximating ϕ.
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Convergence of the numerical schemes

Theorem (Convergence, [del Teso & JE & Jakobsen, 2018/2019])

For the interpolant Uh, we have

Uh → u in C ([0,T ]; L1
loc(RN)) as h→ 0+

where u ∈ L1(QT ) ∩ L∞(QT ) ∩ C ([0,T ]; L1
loc(RN)) is a

distributional solution of (GPME).

Note that we only assume u0 ∈ L1 ∩ L∞.

Jørgen Endal Nonlocal (and local) nonlinear diffusion equations



Finite-difference discretizations: nonlocal

Let us for simplicity study

(FHE)

∂tu = Lµ[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Let us try to deduce that

Lh[ψ](x) :=
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h

≈ P.V.
ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dµ(z) = Lµ[ψ]

where ωβ = ω−β ≥ 0.

In a similar way,

∆h[ψ](x) :=
(
ψ(x−h)−ψ(x)

) 1
h2 +

(
ψ(x+h)−ψ(x)

) 1
h2 ≈ ∆[ψ](x).
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Finite-difference discretizations: nonlocal

Let us for simplicity study

(FHE)

∂tu = Lµ[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Let us try to deduce that

Lh[ψ](x) :=
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h

≈ P.V.
ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dµ(z) = Lµ[ψ]

where ωβ = ω−β ≥ 0. Recall what we did with the long-jump
random walk.

In a similar way,

Lh[ψ](x) ⊃ ∆h[ψ](x) :=
∑

{−1,1}3β 6=0

(
ψ(x+hβ)−ψ(x)

) 1
h2 ≈ ∆[ψ](x).
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Advantage using general nonlocal framework

Keep in mind the following formula:

Lh[ψ](x) =
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h.

Now, note that∑
Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h =

ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dνh(z)

where dνh(z) =
∑

Z3β 6=0 ωβ,h dδhβ(z).

This includes the local discretization by simply choosing

ωβ,h =

{
1
h2

when β = {−1, 1},
0 otherwise.
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Proof of convergence

1. Since the operator and the nonlinearity are x-independent, the
numerical scheme can be written, for x ∈ RN , as

U j(x)−∆tLνh,1 [ϕ(U j)](x) = U j−1(x) + ∆tLνh,2 [ϕh(U j−1)](x).

2. At every time step, we have a combination of explicit and
implicit steps:

(EP) w −∆tLνh,1 [ϕ(w)] = f on RN ,

where U j = w = Timp[f ] and

f (x) = Texp[U j−1](x) = U j−1(x) + ∆tLνh,2 [ϕh(U j−1)](x).

3. Well-posedness of (NM) ⇐⇒ Well-posedness of (EP) and
properties of Texp.

4. To study Texp, the CFL-condition comes naturally

∆tLϕhνh,2(RN) ≤ 1 “time derivative ∼ spatial derivatives”

Jørgen Endal Nonlocal (and local) nonlinear diffusion equations



Proof of convergence

5. Both operators Timp and Texp are “well-posed” in L1 ∩ L∞ and
enjoy

comparison principle;
L1-contraction; and
L1/L∞-bounds.

6. All properties then carries over to the numerical scheme (NM).
7. In particular, we have for the interpolant Uh

sup
h
‖Uh(·+ ξ, t)− Uh(·, t)‖L1(RN) ≤ λ(|ξ|)

sup
h
‖Uh(·, t)− Uh(·, s)‖L1(K) ≤ λ(|t − s|).

8. An application of the Arzelà-Ascoli and Kolmogorov-Riesz
compactness theorems then gives the desired compactness and
convergence in C ([0,T ]; L1

loc(RN)). Check that the limit of the
numerical solution is indeed a distributional solution.

9. And then all the properties carries over to distributional
solutions of (GPME).
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Error plot for the fractional heat equation with α = 1
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Powers of the discrete Laplacian & Mildpoint Rule

Comments: • We do the simulations with “classical” solutions, so
we basically test the consistency error of the operator.
• The MpR behaves better in practise O(h2) than in theory O(h).
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The fractional (one-phase) Stefan problem with α = 1: plot

Comments: • ϕ(u) = max{0, u − 0.5}.
• ϕ(u) is only Lipschitz even if u is smooth!
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The fractional (one-phase) Stefan problem: error with MpR
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Comments: • Recall that “Error”∼ h + h2−α.
• Since pointwise values did not make sense, the error is more
stable in L1.
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Numerical simulations: 2D (one-phase) Stefan problem

• 2D (one-phase) Stefan problem with ϕ(u) = max{0, u − 1}.
Explicit method. L = ((1

2 ,
47
100) · D)2 + (−∂2

xx)
1
4 .
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Thank you for your attention!
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