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Goal: Numerical simulations

The goal of this presentation is to study monotone finite-difference
approximations of diffusion equations in RV x (0, T).

Jgrgen Endal Nonlocal (and local) nonlinear diffusion equations



Goal: Numerical simulations

The goal of this presentation is to study monotone finite-difference
approximations of diffusion equations in RV x (0, T).

Jgrgen Endal Nonlocal (and local) nonlinear diffusion equations



Introduction: Mathematical modelling

Diffusion is the act of “spreading out” — the movement from areas
of high concentration to areas of low concentration.

How do we model this phenomena?
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Introduction: Mathematical modelling

Let u be some heat density inside a region €. The rate of change
of the total quantity within Q equals the negative of the net flux

through 0€2:

d/udx——/ F~nd5——/diVFdV,
dt Jq o0 Q

Oru = —divF,
where F = F(u) := —a(u)Du.
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Introduction: Special case when m = 6

It is possible to use
Oru=A[u®] in RNVx(0,T),
u(x,0) = Méy on RN

to describe the propagation of heat immediately after a nuclear

explosion.
n AV

@ G. I. BARENBLATT. Scaling, self-similarity, and intermediate asymptotics. Cambridge Texts in
Applied Mathematics. Cambridge University Press, Cambridge, 1996.
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Nonlocal (local) nonlinear diffusion

Let Q7 := RN x (0, T). We consider the following Cauchy problem:

Oru = Lp(u)] in Qr,

(GPME)
u(x,0) = up(x) on RN,

where

L[Y] = L[] + LY

= local + nonlocal (self-adjoint)

@ ¢ : R — R is continuous and nondecreasing, and
@ ugp some rough initial data.
Main results:
e Uniqueness for up € L1 N L.
o Convergent numerical schemes in C([0, T]; LL _(RN)) for
up € LN L.
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The assumption
(Ap) ¢ : R — R is continuous and nondecreasing,

includes nonlinearities of the following kind
o linear,
@ the porous medium ¢(u) = u™ with m > 1,
e fast diffusion ¢(u) = u™ with 0 < m < 1, and
o (one-phase) Stefan problem ¢(u) = max{0, v — ¢} with ¢ > 0.
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The assumption

(A,) 1> 0is a symmetric Radon measure on RV \ {0} satisfying

/ |z|2 du(z2) +/ 1dp(z) < oo.
|zI<1 |z|>1

ensures that our £# includes important examples:
o the fractional Laplacian —(—A)2z with o € (0,2);
e the anisotropic fractional Laplacian —Z,N:l(—(?)%ixl,)% with
€ (0,2);
o relativistic Schrédinger type operators m®/ — (m?l — A)?2
with a € (0,2) and m > 0;
e for the measure v with V(RN) < 00,

LY[P)(x) = [an ($(x + 2) = ¢(x)) dv(2);
o for the functlon Jwith [og J(z)dz =1, L[] = Jxap —

e Fourier multipliers F(L*[¢)]) = —spuF(¢).



Characterization of operators

Theorem

A linear, self-adjoint operator which is translation invariant and
satisfies the global comparison principle is of the form
L = L7+ LV where

£7[p(x)] = tr(oo T D?p(x))
CP(x)] = PV. /| (b +2) =000 au@)

Here, o € RN*P and 1 > 0 is a symmetric Radon measure
satisfying

/min{]z\z, 1} du(z) < oo.

@ P. CouURREGE. Sur la forme intégro-différentielle des opérateurs de C2° dans C satisfaisant au

principe du maximum. Séminaire Brelot-Choquet-Deny. Théorie du Potentiel, 10(1):1-38,
1965-1966.
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Selective summary of previous results

Local case: 0:u = Au, 0ru = Au™, Oru = Ap(u).

e Well-posedness:

@ J. L. VAzQuEz. The porous medium equation. Mathematical theory. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.

e Numerical results:

Risebro, Karlsen, Biirger, DiBendedetto, Droniou, Eymard,
Gallouet, Ebmeyer,. ..
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Selective summary of previous results

Nonlocal case: d:u = LH[p(u)].

o7

e Well-posedness when LH ~ —(—A)z:

Many people: Vazquez, de Pablo, Quirés, Rodriguez, Brandle,
Bonforte, Stan, del Teso, Muratori, Grillo, Punzo, ...

e Numerical results:
Finite-difference discretizations of the singular integral:

@ E. R. Jakossen, K. H. KARLSEN, AND C. LA CHIOMA. Error estimates for approximate
solutions to Bellman equations associated with controlled jump-diffusions. Numer. Math.,
110(2):221-255, 2008.

@ J. Droniou. A numerical method for fractal conservation laws. Math. Comp., 79(269):95-124,
2010.

@ S. Cirant AND E. R. JAkoOBSEN. Entropy solution theory for fractional degenerate

convection-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 28(3):413-441, 2011.

@ Y. Huanc aND A. OBERMAN. Numerical methods for the fractional Laplacian: a finite
difference—quadrature approach. SIAM J. Numer. Anal., 52(6):3056—-3084, 2014.

Powers of the discrete Laplacian:

@ O. Ciaurrl, L. RoncaL, P. R. StiNnca, J. L. TorrEA, AND J. L. Varona. Nonlocal

discrete diffusion equations and the fractional discrete Laplacian, regularity and applications. Adv.
Math., 330:688-738, 2018.
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Uniqueness

Theorem (Uniqueness, [del Teso & JE & Jakobsen, 2017])

Assume (A,), (Au), and ug € L2 N L°(RN). Then there is at most
one distributional/very weak solution u € L N L>®(QT)
of (GPME).
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Numerical schemes for (GPME)

Recall that our Cauchy problem was given as
Oru = Llp(u)] in Qr =RV x (0, T),

(GPME)
u(x,0) = up(x) on RN

Corresponding numerical scheme (NM):

-1 . .
Us A‘Zﬁ _ Euh,l[(p(ulﬁ)] +£Vh,z[gph(ugl)] in  hZN x AtN,
“Ug = up” in  hZN,

where

LY L7092 ~ L= L7 4+ LF

e
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Numerical schemes for (GPME)

Note that

@ in the nonlinear case, we can no longer expect smooth
solutions!

Our framework includes
@ a mixture of implicit and explicit schemes (A-methods);

@ the possibility of discretizing the singluar and nonsingular parts
of L in different ways; and

@ combinations of the above.

Also:

Explicit methods only works for Lipschitz ¢ because of CFL. But,
instead of doing implicit methods for “demanding” ¢, we can do
less costly explicit methods with approximating .
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Convergence of the numerical schemes

Theorem (Convergence, [del Teso & JE & Jakobsen, 2018/2019])

For the interpolant Uy, we have
Up — u in c([o, T]; LL . (RY)) as h—o0t

where u € LY(Q7) N L>=(Q7) N C([0, T]; LL (RN)) is a
distributional solution of (GPME).

Note that we only assume up € L1 N L.
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Finite-difference discretizations: nonlocal

Let us for simplicity study
{atu =Myl in Rx(0,T),

(FHE)
u(x,0) = up(x) on R.

Let us try to deduce that

LAI(x) = Y (B(x+ hB) — ¥(x))wg,
Z3B#0

~PV. / (1(x + 2) = ¥ (x)) d(2) = L[]
|z|>0

where wg = w_g > 0.

In a similar way,

1

Ap[Y](x) == (w(x—h)—w(x))%—I—(zﬁ(x—i—h)—w(x))ﬁ ~ AY](x).
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Finite-difference discretizations: nonlocal

Let us for simplicity study

Oru = LH[u] in Rx(0,7),
(FHE)
{u(x, 0) = up(x) on R.

Let us try to deduce that

LPY)(x) = Z (v(x + hB) — P(x))ws,n

7550

~ P.V./ (V(x + 2) = 9(x)) du(z) = LX[Y]
J|z|>0

where wg = w_g > 0.

In a similar way,

A1) = (x )= 0(0) 75+ (B0 h) —6(x)) 2 ~ Al](x).
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Finite-difference discretizations: nonlocal

Let us for simplicity study

Oru = LH[u] in Rx(0,7),

(FHE)
u(x,0) = up(x) on R.

Let us try to deduce that

LOP1(x) = D ($(x + hB) — b(x))ws.h

73870
~PV. / (¥(x + 2) = $(x)) du(2) = L[]
|z|>0

where wg = w_g > 0. Recall what we did with the long-jump
random walk.

In a similar way,
L) D Bull) = YD (0l —(x) 1y ~ AR,
{-1,1}>8#0
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Advantage using general nonlocal framework

Keep in mind the following formula:

LPI) = D (Y(x+ hB) = (x))ws.h-
Z>B#0

Now, note that

S ($lx+ hB) — p(x))wa = / ((x + 2) - $(x)) dun(2)

25520 |z|>0
where duvp(z) = 22957&0 wg,h dopp(2).

This includes the local discretization by simply choosing

L wh =1{-1.1
wﬁ,h:{hz when = {~1,1},

0 otherwise.
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Proof of convergence

1. Since the operator and the nonlinearity are x-independent, the
numerical scheme can be written, for x € RV, as

U(x) = AL p(U)](x) = 7 (x) + AtL2[p" (U] ().

2. At every time step, we have a combination of explicit and
implicit steps:

(EP) w — AtL p(w)] = F on RV,
where U/ = w = Timp[f] and
F(x) = Te[ ! M(x) = U1 (x) + AtL™2 [ (U H)](x).

3. Well-posedness of (NM) <= Well-posedness of (EP) and
properties of Teyp.
4. To study Teyp, the CFL-condition comes naturally

AtLSOth’Z(RN) <1 “time derivative ~ spatial derivatives”
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Proof of convergence

5. Both operators Timp and Teyp are “well-posed” in YN L* and
enjoy
e comparison principle;
o Ll-contraction: and
o L1/L>-bounds.

6. All properties then carries over to the numerical scheme (NM).
7. In particular, we have for the interpolant Uy

sup [|Un(- + & £) = Un(s B)ll ey = A(IED)

sup [|Un(> £) = Un(:, )iy = AllE = s).

8. An application of the Arzela-Ascoli and Kolmogorov-Riesz
compactness theorems then gives the desired compactness and
convergence in C([0, T]; LL (RV)). Check that the limit of the
numerical solution is indeed a distributional solution.

9. And then all the properties carries over to distributional

solutions of (GPME).



Error plot for the fractional heat equation with o = 1

Comments: e We do the simulations with “classical” solutions, so
we basically test the consistency error of the operator.
e The MpR behaves better in practise O(h?) than in theory O(h).
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The fractional (one-phase) Stefan problem with o = 1: plot

Comments: e p(u) = max{0,u — 0.5}.
e (u) is only Lipschitz even if u is smooth!
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The fractional (one-phase) Stefan problem: error with MpR

Comments: e Recall that “Error’'~ h + h?~2.
e Since pointwise values did not make sense, the error is more
stable in L.
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Numerical simulations: 2D (one-phase) Stefan problem

e 2D (one-phase) Stefan problem with ¢(u) = max{0, v — 1}.
Explicit method. £ = ((3, 455) - D)? + (—82,)%.

Bl
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Thank you for your attention!
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