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Goal: Numerical simulations

The goal of this presentation is to obtain mathematically rigorous
numerical simulations for diffusion equations.

In the context of finite-difference approximations for equations in
RN × (0,T ).
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Introduction: Mathematical modelling

Diffusion is the act of “spreading out” – the movement from areas
of high concentration to areas of low concentration.

How do we model this phenomena?
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Introduction: Mathematical modelling

Let u be some heat density inside a region Ω. The rate of change
of the total quantity within Ω equals the negative of the net flux
through ∂Ω:

d
dt

ˆ
Ω
u dx = −

ˆ
∂Ω

F · n dS = −
ˆ

Ω
divF dV ,

or
∂tu = −divF.

Jørgen Endal Nonlocal (and local) nonlinear diffusion equations



Introduction: Mathematical modelling

In many situations, F ∼ Du, but in the opposite direction (the flow
is from high to low consetration):

F = −a(u)Du,

and we get
∂tu = div(a(u)Du).

• Case 1: a(u) = 1. We obtain the heat equation

∂tu = ∆[u]

• Case 2: a(u) = um−1. We obtain the porous medium equation

∂tu = ∆[um]

J. L. Vázquez. The porous medium equation. Mathematical theory. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.
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Introduction: Special case when m = 6

It is possible to use∂tu = ∆[u6] in RN × (0,T ),

u(x , 0) = Mδ0 on RN ,

to describe the propagation of heat immediately after a nuclear
explosion.

The solution (Barenblatt-solution) will actually be given as

t−γ1 max
{
0,C − k|x |2t−2γ2

} 1
5
.

See video:
https://www.youtube.com/watch?v=Q3ezhvCzWCM

G. I. Barenblatt. Scaling, self-similarity, and intermediate asymptotics. Cambridge Texts in
Applied Mathematics. Cambridge University Press, Cambridge, 1996.
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Introduction: Special case when m = 6
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Local linear diffusion

Let us consider

(HE)

∂tu = ∆[u] in RN × (0,T ),

u(x , 0) = u0(x) on RN .

In fact, the solution is given by (use the Fourier transform)

u(x , t) = [K (·, t) ∗ u0](x) =

ˆ
RN

K (x − y , t)u0(y) dy

where

K (z , t) =
1

(4πt)
d
2
e−
|z|2
4t > 0 with

ˆ
K (z , t) dz = 1.

If u0 > 0 (on a set) then u > 0 (everywhere), that is, some heat is
distributed to the whole space immediately.
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Local linear diffusion

Let us consider

(HE)

∂tu = ∆[u] in RN × (0,T ),

u(x , 0) = u0(x) on RN .

Immediate consequences are:
(Mass conservation)

´
u =
´
u0.

Why:
ˆ
RN

u(x , t) dx =

ˆ
RN

ˆ
RN

K (x − y , t)u0(y) dy dx

=

ˆ
RN

K (x , t) dx
ˆ
RN

u0(y) dy .
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Local linear diffusion

Let us consider

(HE)

∂tu = ∆[u] in RN × (0,T ),

u(x , 0) = u0(x) on RN .

Immediate consequences are:
(Mass conservation)

´
u =
´
u0.

(L1-bound) ‖u(·, t)‖L1 ≤ ‖u0‖L1 .
Why:

ˆ
RN

|u(x , t)| dx =

ˆ
RN

∣∣∣∣ˆ
RN

K (x − y , t)u0(y) dy
∣∣∣∣ dx

≤
ˆ
RN

K (x , t) dx
ˆ
RN

|u0(y)| dy .
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Local linear diffusion

Let us consider

(HE)

∂tu = ∆[u] in RN × (0,T ),

u(x , 0) = u0(x) on RN .

Immediate consequences are:
(Mass conservation)

´
u =
´
u0.

(L1-bound) ‖u(·, t)‖L1 ≤ ‖u0‖L1 .
(L∞-bound) ‖u(·, t)‖L∞ ≤ ‖u0‖L∞ .

Why:

|u(x , t)| =

∣∣∣∣ˆ
RN

K (x − y , t)u0(y) dy
∣∣∣∣

≤ ‖u0‖L∞
ˆ
RN

K (x , t) dx .
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Local linear diffusion

Let us consider

(HE)

∂tu = ∆[u] in RN × (0,T ),

u(x , 0) = u0(x) on RN .

Immediate consequences are:
(Mass conservation)

´
u =
´
u0.

(L1-bound) ‖u(·, t)‖L1 ≤ ‖u0‖L1 .
(L∞-bound) ‖u(·, t)‖L∞ ≤ ‖u0‖L∞ .
(L1–L∞-smoothing) ‖u(·, t)‖L∞ ≤ Ct−

N
2 ‖u0‖L1 .

Why:

|u(x , t)| =

∣∣∣∣ˆ
RN

K (x − y , t)u0(y) dy
∣∣∣∣

≤ 1

(4πt)
N
2

ˆ
RN

|u0(y)| dy .
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Local linear diffusion

Let us consider

(HE)

∂tu = ∆[u] in RN × (0,T ),

u(x , 0) = u0(x) on RN .

Immediate consequences are:
(Mass/heat conservation)

´
u =
´
u0.

(L1-bound) ‖u(·, t)‖L1 ≤ ‖u0‖L1 .
(L∞-bound) ‖u(·, t)‖L∞ ≤ ‖u0‖L∞ .
(L1–L∞-smoothing) ‖u(·, t)‖L∞ ≤ Ct−

N
2 ‖u0‖L1 .

(L1-contraction) For two solutions u, v ,
‖u(·, t)− v(·, t)‖L1 ≤ ‖u0 − v0‖L1 .
(Comparison) For two solutions u, v , u0 ≤ v0 =⇒ u ≤ v .

Theorem

Assume u0 ∈ L1 ∩ L∞. Then there exists a unique solution
u ∈ L1 ∩ L∞ of (HE).
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Local linear diffusion

Let us consider

(HE)

∂tu = ∆[u] in RN × (0,T ),
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Local nonlinear diffusion

Choose m > 1, and consider

(PME)

∂tu = ∆[um] in RN × (0,T ),

u(x , 0) = u0(x) on RN .

Why do we make life harder than it needs to be?
We lose the linear structure.

u − v , u + v , ∂tu, ∂xiu, etc are no longer immediate solutions.
There is no convolution formula for the solution anymore.

We gain a more accurate behaviour.
Solutions will have finite speed of propagation: Heat will spend
some time spreading.
As we saw, some applications require nonlinear.

But:
We are able to prove that (PME) enjoys similar properties as
(HE): L1-contraction, comparison, L1- and L∞-bounds,
L1–L∞-smoothing, and conservation of mass.
We thus obtain similar existence and uniqueness results.
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Thoughts

Which other equations will behave in a similar way?

How general can we make the nonlinearity u 7→ um and the
operator ∆?

Why are the mentioned properties so important?
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Properties of the operator

Definition

Given a linear operator L : C 2
b (Rd)→ Cb(Rd), we say that

L satisfies the global comparison principle if given a global
maximum (resp. minimum) x0 of ψ, we have that
L[ψ](x0) ≤ 0 (resp. ≥ 0).
L is translation invariant if

L[ψ(·+ y)](x) = L[ψ](x + y) for all x , y ∈ RN .

Note that the Laplacian satisfies both conditions: It is linear, has a
”sign“ at extremal points, and is x-independent.

Which other operators have these properties?
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Characterization of operators

Theorem
A linear operator which is translation invariant and satisfies the
global comparison principle is of the form L = Lσ,b + Lµ where

Lσ,b[ψ(x)] := tr(σσTD2ψ(x)) + b · Dψ(x)

Lµ[ψ(x)] :=

ˆ
|z|>0

(
ψ(x + z)− ψ(x)− z · Dψ(x)1|z|≤1

)
dµ(z)

Here, σ ∈ RN×p, b ∈ RN and µ ≥ 0 is a Radon measure satisfying
ˆ

min{|z |2, 1} dµ(z) <∞.

P. Courrège. Sur la forme intégro-différentielle des opérateurs de C∞k dans C satisfaisant au
principe du maximum. Séminaire Brelot-Choquet-Deny. Théorie du Potentiel, 10(1):1–38,
1965–1966.
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Characterization of operators

We slightly reduce the class of possible operators by remembering
that ∆ is self-adjoint:

ˆ
∆[f ]g =

ˆ
f ∆[g ].

Why: Integrate by parts twice.
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Characterization of operators

Theorem
A linear operator which is translation invariant and satisfies the
global comparison principle is of the form L = Lσ,b + Lµ where
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Characterization of operators

We end up with

L[ψ](x) = tr(σσTD2ψ(x)) + P.V.
ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dµ(z),

where L : W 2,p → Lp with p ∈ [1,∞].

Note that
L[ψ] = ∆[ψ]

when µ ≡ 0 and σσT = I .

Jørgen Endal Nonlocal (and local) nonlinear diffusion equations



Characterization of operators

We end up with

L[ψ](x) = tr(σσTD2ψ(x)) + P.V.
ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dµ(z),

where L : W 2,p → Lp with p ∈ [1,∞].

Note that
L[ψ] = ∆[ψ]

when µ ≡ 0 and σσT = I .

Jørgen Endal Nonlocal (and local) nonlinear diffusion equations



Local vs. nonlocal diffusion

Let u(x , t) be the probability for a particle to be at discrete
x ∈ hZ, t ∈ ∆tN ∩ [0,T ].

Assume that we are only allowed to jump one point either to the
left or to the right, each with probability 1

2 .

The probability of being at point x at time t + ∆t is then

u(x , t + ∆t) =
1
2
u(x + h, t) +

1
2
u(x − h, t).
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Local vs. nonlocal diffusion

Let u(x , t) be the probability for a particle to be at discrete
x ∈ hZ, t ∈ ∆tN ∩ [0,T ].

Assume that we are only allowed to jump one point either to the
left or to the right, each with probability 1

2 .

Choose (the scaling) ∆t = 1
2h

2 and divide by it to obtain

u(x , t + ∆t)− u(x , t)

∆t
=

u(x + h, t) + u(x − h, t)− 2u(x , t)

h2 .
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Local vs. nonlocal diffusion

Let u(x , t) be the probability for a particle to be at discrete
x ∈ hZ, t ∈ ∆tN ∩ [0,T ].

Assume that we are only allowed to jump one point either to the
left or to the right, each with probability 1

2 .

As ∆t, h→ 0+,

∂tu = ∆u in R× (0,T ),

that is, u is a solution of the heat equation.

A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung
von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik (in German), 322(8):
549–560, 1905.
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Local vs. nonlocal diffusion

Probability: u is the density of Brownian particles.
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Local vs. nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

We choose a density K : R→ [0,∞) up to normalization factors as

K (y) =

{
1

|y |1+α y 6= 0

0 y = 0

for α ∈ (0, 2). It satisfies
(i) K (y) = K (−y)

(ii)
∑

k∈Z K (k) = 1.

As before, the probability of being at point x at time t + ∆t is

u(x , t + ∆t) =
∑
k∈Z

K (k)u(x + hk, t).
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Local vs. nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

We choose a density K : R→ [0,∞) up to normalization factors as

K (y) =

{
1

|y |1+α y 6= 0
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for α ∈ (0, 2). It satisfies
(i) K (y) = K (−y)
(ii)
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k∈Z K (k) = 1.

Jørgen Endal Nonlocal (and local) nonlinear diffusion equations



Local vs. nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

We choose a density K : R→ [0,∞) up to normalization factors as

K (y) =

{
1

|y |1+α y 6= 0

0 y = 0

for α ∈ (0, 2). It satisfies
(i) K (y) = K (−y)

(ii)
∑

k∈Z K (k) = 1.

Then, for the choice (of scaling) ∆t = hα,

u(x , t + ∆t)− u(x , t)

∆t
=
∑

Z3β 6=0

(
u(x + hβ, t)− u(x , t)

)
K (hβ)h.
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Local vs. nonlocal diffusion

Now, we change the rules: A particle can jump to any point with a
certain probability, but the probability of jumping to the left or to
the right is exactly the same.

As ∆t, h→ 0+,

∂tu = P.V.
ˆ
|z|>0

(
u(x + z , t)− u(x , t)

) c1,α
|z |1+α

dz

= −(−∆)
α
2 u in R× (0,T )

where c1,α > 0 and −(−∆)
α
2 with α ∈ (0, 2) is the fractional

Laplacian. We thus observe that u is a solution of the fractional
heat equation.

E. Valdinoci. From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat.
Apl. SeMA, (49):33–44, 2009.
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Local vs. nonlocal diffusion

Probability: u is the density of Lévy particles.

Picture due to A. Meucci (2009).

Jørgen Endal Nonlocal (and local) nonlinear diffusion equations



Thoughts

Which other equations will behave in a similar way?

How general can we make the nonlinearity u 7→ um and the
operator ∆?

Why are the mentioned properties so important?
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Nonlocal nonlinear diffusion

Let QT := RN × (0,T ). We consider the following Cauchy problem:

(GPME)

∂tu = L[ϕ(u)] in QT ,

u(x , 0) = u0(x) on RN ,

where

L[ψ] = Lσ[ψ] + Lµ[ψ]

= local + nonlocal (self-adjoint)

ϕ : R→ R is continuous and nondecreasing, and
u0 some rough initial data.

Main results:
Uniqueness for u0 ∈ L∞ with u − u0 ∈ L1.
Convergent numerical schemes in C ([0,T ]; L1

loc(RN)) for
u0 ∈ L1 ∩ L∞.
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Assumptions

The assumption

ϕ : R→ R is continuous and nondecreasing,(Aϕ)

includes nonlinearities of the following kind
the porous medium ϕ(u) = um with m > 1,
fast diffusion ϕ(u) = um with 0 < m < 1, and
(one-phase) Stefan problem ϕ(u) = max{0, u − c} with c > 0.
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Assumptions

The assumption

µ ≥ 0 is a symmetric Radon measure on RN \ {0} satisfying(Aµ) ˆ
|z|≤1

|z |2 dµ(z) +

ˆ
|z|>1

1 dµ(z) <∞.

ensures that our Lµ includes important examples:
the fractional Laplacian −(−∆)

α
2 with α ∈ (0, 2);

relativistic Schrödinger type operators mαI − (m2I −∆)
α
2

with α ∈ (0, 2) and m > 0;
for the measure ν with ν(RN) <∞,
Lν [ψ](x) =

´
RN

(
ψ(x + z)− ψ(x)

)
dν(z);

for the function J with
´
Rd J(z) dz = 1, LJ dz [ψ] = J ∗ ψ − ψ;

Fourier multipliers F(Lµ[ψ]) = −sLµF(ψ).
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Selective summary of previous results

Local case: ∂tu = ∆u, ∂tu = ∆um, ∂tu = ∆ϕ(u).

• Well-posedness:
J. L. Vázquez. The porous medium equation. Mathematical theory. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.

• Numerical results:
Risebro, Karlsen, Bürger, DiBendedetto, Droniou, Eymard,
Gallouet, Ebmeyer,. . .
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Selective summary of previous results

Nonlocal case: ∂tu = Lµ[ϕ(u)].

• Well-posedness when Lµ = −(−∆)
α
2 :

Many people: Vázquez, de Pablo, Quirós, Rodríguez, Brändle,
Bonforte, Stan, del Teso, Muratori, Grillo, Punzo, . . .

• Well-posedness for other Lµ:

Nonsingular operators
F. Andreu-Vaillo, J. Mazón, J. D. Rossi, and J. J. Toledo-Melero. Nonlocal diffusion
problems, volume 165 of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010.

Fractional Laplace like operators (with some x-dependence)
A. de Pablo, F. Quirós, and A. Rodríguez. Nonlocal filtration equations with rough kernels.
Nonlinear Anal., 137:402–425, 2016.

• Well-posedness for related Lµ:
G. Karch, M. Kassmann, and M. Krupski. A framework for non-local, non-linear initial
value problems. arXiv, 2018.
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Selective summary of previous results

Nonlocal case: ∂tu = Lµ[ϕ(u)].

• Numerical results:
Discretizations of the singular integral:

E. R. Jakobsen, K. H. Karlsen, and C. La Chioma. Error estimates for approximate
solutions to Bellman equations associated with controlled jump-diffusions. Numer. Math.,
110(2):221–255, 2008.

J. Droniou. A numerical method for fractal conservation laws. Math. Comp., 79(269):95–124,
2010.

S. Cifani and E. R. Jakobsen. Entropy solution theory for fractional degenerate
convection-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 28(3):413–441, 2011.

Y. Huang and A. Oberman. Numerical methods for the fractional Laplacian: a finite
difference–quadrature approach. SIAM J. Numer. Anal., 52(6):3056–3084, 2014.

Powers of the discrete Laplacian:
O. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea, and J. L. Varona. Nonlocal
discrete diffusion equations and the fractional discrete Laplacian, regularity and applications. Adv.
Math., 330:688–738, 2018.

Bounded domain:
N. Cusimano, F. del Teso, L. Gerardo-Giorda, and G. Pagnini. Discretizations of the
spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary
conditions. SIAM J. Numer. Anal., 56(3):1243–1272, 2018.
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Thoughts

Which other equations will behave in a similar way?

How general can we make the nonlinearity u 7→ um and the
operator ∆?

Why are the mentioned properties so important?
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Goal: Numerical simulations

The goal of this presentation is to obtain mathematically rigorous
numerical simulations.

So, what do we need?

UNIQUENESS: Connected with convergence. Any
approximation converges to the same actual solution.

PROPERTIES/COMPACTNESS: We need to identify an
abstract space in which we cannot escape. The properties of
the numerical scheme will help us do so.

CONVERGENCE: Connected with uniqueness. As the grid
gets finer, we are sure that the numerical solution becomes a
more and more accurate approximation of the actual solution.
Note that we can be certain of this without knowing the actual
solution.
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Uniqueness
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Concept of solution

Let us reconsider

(HE)

∂tu = ∆[u] in QT ,

u(x , 0) = u0(x) on RN .

When does this equation actually make sense?

Well, at least when u ∈ C 1([0,T ];C 2(RN)) because then

∂tu = ∆[u] for all (x , t) ∈ QT

and
u(x , 0) = u0(x) for all x ∈ RN .

We call such a solution a pointwise solution.

And yes, this is (in general) very restrictive.
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Concept of solution

Nature is in fact way more rough. Typically, 0 ≤ u0 ∈ L1 because it
represents a density of some sort. Then we expect 0 ≤ u ∈ L1.

But: How do we differentiate u with respect to time and twice with
respect to space?

Note that even if solutions of the heat equation will become C∞,
the solutions of the porous medium equation is not more than Cγ

for some γ ∈ (0, 1) (however, C∞ where u > 0).
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Concept of solution: distributional

Definition
u is a distributional solution/very weak of (GPME) if

0 =

ˆ T

0

ˆ
RN

(
u(x , t)∂tψ(x , t) + ϕ(u(x , t))L[ψ(·, t)](x)

)
dx dt

+

ˆ
RN

u0(x)ψ(x , 0) dx

for all ψ ∈ C∞c (RN × [0,T )).

Positive: We require very little of u.
Negative: The more general the solution concept, the more
difficult it is to prove uniqueness.
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Uniqueness

Theorem (Uniqueness, [del Teso&JE&Jakobsen, 2017])

Assume (Aϕ), (Aµ), and u0 ∈ L∞(RN). Then there is at most one
distributional solution u of (GPME) such that u ∈ L∞(QT ) and
u − u0 ∈ L1(QT ).

Corollary (Uniqueness, [del Teso&JE&Jakobsen, 2017])

Assume (Aϕ), (Aµ), and u0 ∈ L1 ∩ L∞(RN). Then there is at most
one distributional solution u ∈ L1 ∩ L∞(RN) of (GPME).
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Properties
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Finite-difference discretizations: local

Again we return to

(HE)

∂tu = ∆[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Recall what we did with the random walk (with ∆t
h2

= 1
2):

Uh(x , t + ∆t)− Uh(x , t)

∆t
=

Uh(x + h, t) + Uh(x − h, t)− 2Uh(x , t)

h2 .

You probably recognize the left-hand side (≈ ∂tu) as
u(x , t + ∆t) = u(x , t) + ∆t∂tu(x , t) + O(∆t2),

and the right-hand side (≈ ∂2
xxu) as

u(x + h, t) = u(x , t) + h∂xu(x , t) +
h2

2
∂2
xxu(x , t) + O(h3)

u(x − h, t) = u(x , t)− h∂xu(x , t) +
h2

2
∂2
xxu(x , t) + O(h3).
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Finite-difference discretizations: local

Again we return to

(HE)

∂tu = ∆[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Recall what we did with the random walk (with ∆t
h2

= 1
2):

Uh(x , t + ∆t)− Uh(x , t)

∆t
=

Uh(x + h, t) + Uh(x − h, t)− 2Uh(x , t)

h2 .

You probably recognize the left-hand side (≈ ∂tψ) as
ψ(x , t + ∆t) = ψ(x , t) + ∆t∂tψ(x , t) + O(∆t2),

and the right-hand side (≈ ∂2
xxψ) as

ψ(x + h, t) = ψ(x , t) + h∂xψ(x , t) +
h2

2
∂2
xxψ(x , t) + O(h3)

ψ(x − h, t) = ψ(x , t)− h∂xψ(x , t) +
h2

2
∂2
xxψ(x , t) + O(h3).
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Finite-difference discretizations: local

Again we return to

(HE)

∂tu = ∆[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Recall what we did with the random walk (with ∆t
h2

= 1
2):

Uh(x , t + ∆t)− Uh(x , t)

∆t
=

Uh(x + h, t) + Uh(x − h, t)− 2Uh(x , t)

h2 .

Written in a different way:∥∥∥∂tψ − ψ(x , t + ∆t)− ψ(x , t)

∆t

∥∥∥
L1(RN)

= O(∆t2)

and∥∥∥∂2
xxψ −

ψ(x + h, t) + ψ(x − h, t)− 2ψ(x , t)

h2

∥∥∥
L1(RN)

= O(h3).
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Finite-difference discretizations: local

Again we return to

(HE)

∂tu = ∆[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Recall what we did with the random walk (with ∆t
h2

= 1
2):

Uh(x , t + ∆t)− Uh(x , t)

∆t
=

Uh(x + h, t) + Uh(x − h, t)− 2Uh(x , t)

h2 .

↓ ↓

∂tu ∂2
xxu

Note that we have implicitly assumed that Uh → u when h→ 0+!
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Finite-difference discretizations: local

Again we return to

(HE)

∂tu = ∆[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Recall what we did with the random walk (with ∆t
h2
≤ 1

2):

Explicit method:

Uh(x , t+∆t) = Uh(x , t)+
∆t

h2

(
Uh(x+h, t)+Uh(x−h, t)−2Uh(x , t)

)
.
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Finite-difference discretizations: local

Again we return to

(HE)

∂tu = ∆[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Recall what we did with the random walk (with ∆t
h2
≤ 1

2):

Explicit method:

Uh(x , t+∆t) = Uh(x , t)+
∆t

h2

(
Uh(x+h, t)+Uh(x−h, t)−2Uh(x , t)

)
.

Lax equivalence theorem: Consistent finite-difference methods of a
linear equation are convergent iff they are stable (at least CFL).
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Finite-difference discretizations: local

Again we return to

(HE)

∂tu = ∆[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

∆t

h2



( h2
∆t
− 2) 1 0 · · · · · · · · · 0

1 ( h2
∆t
− 2) 1 0 · · · · · · 0

0 1 ( h2
∆t
− 2) 1 0 · · · 0

. . .

0 · · · · · · 0 1 ( h2
∆t
− 2) 1

0 · · · · · · · · · 0 1 ( h2
∆t
− 2)





U0
−m

U0
−m+1

U0
−m+2

.

.

.

U0
m−1
U0
m


=



U1
−m

U1
−m+1

U1
−m+2

.

.

.

U1
m−1
U1
m



Comment: • Outside [−M,M], we put Uh = 0.
• Sparse matrix, easy to “build’.
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Finite-difference discretizations: local

Again we return to

(HE)

∂tu = ∆[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

−1−2−3−4 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

x (cm)

ρ(x,t)

t=0.1"

t=0.2"

t=0.5"

t=2"

Diffusion of Brownian particles https://upload.wikimedia.org/wikipedia/commons/7/7d/Diffusi...

1 of 1 31/01/2019, 19:45

Figure due to Wikipedia.
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Finite-difference discretizations: nonlocal

Let us for simplicity study

(FHE)

∂tu = Lµ[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Let us try to deduce that

Lh[ψ](x) :=
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h

≈ P.V.
ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dµ(z) = Lµ[ψ]

where ωβ = ω−β ≥ 0. Recall what we did with the long-jump
random walk.

In a similar way,

∆h[ψ](x) :=
(
ψ(x−h)−ψ(x)

) 1
h2 +

(
ψ(x+h)−ψ(x)

) 1
h2 ≈ ∆[ψ](x).
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Finite-difference discretizations: nonlocal

Let us for simplicity study

(FHE)

∂tu = Lµ[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Let us try to deduce that

Lh[ψ](x) :=
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h

≈ P.V.
ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dµ(z) = Lµ[ψ]

where ωβ = ω−β ≥ 0. Recall what we did with the long-jump
random walk.

In a similar way,

∆h[ψ](x) :=
(
ψ(x−h)−ψ(x)

) 1
h2 +

(
ψ(x+h)−ψ(x)

) 1
h2 ≈ ∆[ψ](x).

Jørgen Endal Nonlocal (and local) nonlinear diffusion equations



Finite-difference discretizations: nonlocal

Let us for simplicity study

(FHE)

∂tu = Lµ[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Let us try to deduce that

Lh[ψ](x) :=
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h

≈ P.V.
ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dµ(z) = Lµ[ψ]

where ωβ = ω−β ≥ 0. Recall what we did with the long-jump
random walk.

In a similar way,

∆h[ψ](x) :=
∑

{−1,1}3β 6=0

(
ψ(x + hβ)− ψ(x)

) 1
h2 ≈ ∆[ψ](x).
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Finite-difference discretizations: nonlocal

Roughly speaking, we can separate between 3 cases for the nonlocal
operator Lµ:

Singluar part:´
0<|z|≤r

(
ψ(x + z)− ψ(x)

)
dµ(z)

Nonsingluar, middle part:´
r<|z|≤R

(
ψ(x + z)− ψ(x)

)
dµ(z)

Nonsingular, tail part:´
|z|>R

(
ψ(x + z)− ψ(x)

)
dµ(z)
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Finite-difference discretizations: nonlocal

Roughly speaking, we can separate between 3 cases for the nonlocal
operator Lµ:

Singluar part:´
0<|z|≤r

(
ψ(x + z)− ψ(x)

)
dµ(z) ≈ 0

Nonsingluar, derivative part:´
r<|z|≤R

(
ψ(x + z)− ψ(x)

)
dµ(z)

Nonsingular, tail part:´
|z|>R

(
ψ(x + z)− ψ(x)

)
dµ(z)
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Finite-difference discretizations: nonlocal

Roughly speaking, we can separate between 3 cases for the nonlocal
operator Lµ:

Singluar part:´
0<|z|≤r

(
ψ(x + z)− ψ(x)

)
dµ(z) ≈ 0

Nonsingluar, derivative part:´
r<|z|≤R

(
ψ(x + z)− ψ(x)

)
dµ(z)

Nonsingular, tail part:´
|z|>R

(
ψ(x + z)− ψ(x)

)
dµ(z) ≈ “small enough(R)”
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Finite-difference discretizations: nonlocal

Roughly speaking, we can separate between 3 cases for the nonlocal
operator Lµ:

Singluar part:´
0<|z|≤r

(
ψ(x + z)− ψ(x)

)
dµ(z) ≈ 0

Nonsingluar, derivative part:´
r<|z|≤R

(
ψ(x + z)− ψ(x)

)
dµ(z)

Nonsingular, tail part:´
|z|>R

(
ψ(x + z)− ψ(x)

)
dµ(z) ≈ “small enough(R)”
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Finite-difference discretizations: nonlocal

Let us use the grid

Gh := {hβ : β ∈ Z} and Rh := h
(
− 1

2
,
1
2

]

Let {pkβ}β be an interpolation basis of order k for the
uniform-in-space spatial grid Gh, and let the interpolant of a
function ψ be I kh [ψ](z) :=

∑
Z3β 6=0 ψ(hβ)pkβ(z). Then (with r = h)

Lh[ψ](x) =

ˆ
|z|>h

I kh
[
ψ(x + ·)− ψ(x)

]
(z) dµ(z).
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Finite-difference discretizations: nonlocal

Let us use the grid

Gh := {hβ : β ∈ Z} and Rh := h
(
− 1

2
,
1
2

]

Let {pkβ}β be an interpolation basis of order k for the
uniform-in-space spatial grid Gh, and let the interpolant of a
function ψ be I kh [ψ](z) :=

∑
Z3β 6=0 ψ(hβ)pkβ(z). Then (with r = h)

Lh[ψ](x) =
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

) ˆ
|z|>h

pkβ(z) dµ(z).

Monotone (
´
|z|>h p

k
β(z) dµ(z) ≥ 0) when k = 0, 1.

Better monotonicity if µ abs. cont. and regular (Newton-Cotes).
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Finite-difference discretizations: nonlocal

Let {pkβ}β be an interpolation basis of order k for the
uniform-in-space spatial grid Gh, and let the interpolant of a
function ψ be Ih[ψ](z) :=

∑
β 6=0 ψ(hβ)pkβ(z). Then (with r = h)

Lh[ψ](x) =
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

) ˆ
|z|>h

pkβ(z) dµ(z).

Monotone (
´
|z|>h p

k
β(z) dµ(z) ≥ 0) when k = 0, 1.

Better monotonicity if µ abs. cont. and regular (Newton-Cotes).
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Finite-difference discretizations: nonlocal

Let {pkβ}β be an interpolation basis of order k for the
uniform-in-space spatial grid Gh, and let the interpolant of a
function ψ be Ih[ψ](z) :=

∑
β 6=0 ψ(hβ)pkβ(z). Then (with r = h)

Lh[ψ](x) =
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

) ˆ
|z|>h

pkβ(z) dµ(z).

k = 0 (midpoint rule/constant interpolation basis):

ˆ
hβ+Rh

(
ψ(x + z)−ψ(x)

)
dµ(z) ≈

(
ψ(x + hβ)−ψ(x)

)
µ(hβ + Rh)
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Finite-difference discretizations: nonlocal

Let {pkβ}β be an interpolation basis of order k for the
uniform-in-space spatial grid Gh, and let the interpolant of a
function ψ be Ih[ψ](z) :=

∑
β 6=0 ψ(hβ)pkβ(z). Then (with r = h)

Lh[ψ](x) =
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
µ(hβ + Rh).

k = 0 (midpoint rule/constant interpolation basis):

ˆ
hβ+Rh

(
ψ(x + z)−ψ(x)

)
dµ(z) ≈

(
ψ(x + hβ)−ψ(x)

)
µ(hβ + Rh)
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Finite-difference discretizations: nonlocal

Let {pkβ}β be an interpolation basis of order k for the
uniform-in-space spatial grid Gh, and let the interpolant of a
function ψ be Ih[ψ](z) :=

∑
β 6=0 ψ(hβ)pkβ(z). Then (with r = h)

Lh[ψ](x) =
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
µ(hβ + Rh).

k = 0 (midpoint rule/constant interpolation basis):

‖Lµ[ψ]− Lh[ψ]‖L1(RN) → 0 as h→ 0+.
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Finite-difference discretizations: nonlocal

Let {pkβ}β be an interpolation basis of order k for the
uniform-in-space spatial grid Gh, and let the interpolant of a
function ψ be Ih[ψ](z) :=

∑
β 6=0 ψ(hβ)pkβ(z). Then (with r = h)

Lh[ψ](x) =
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
µ(hβ + Rh).

k = 0 (midpoint rule/constant interpolation basis):

‖ − (−∆)
α
2 [ψ]− Lh[ψ]‖L1(RN) = O(h + h2−α).

Jørgen Endal Nonlocal (and local) nonlinear diffusion equations



Finite-difference discretizations: nonlocal

Let {pkβ}β be an interpolation basis of order k for the
uniform-in-space spatial grid Gh, and let the interpolant of a
function ψ be Ih[ψ](z) :=

∑
β 6=0 ψ(hβ)pkβ(z). Then (with r = h)

Lh[ψ](x) =
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h.

k = 0 (midpoint rule/constant interpolation basis):

‖ − (−∆)
α
2 [ψ]− Lh[ψ]‖L1(RN) = O(h + h2−α).
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Finite-difference discretizations: nonlocal

Let {pkβ}β be an interpolation basis of order k for the
uniform-in-space spatial grid Gh, and let the interpolant of a
function ψ be Ih[ψ](z) :=

∑
β 6=0 ψ(hβ)pkβ(z). Then (with r = h)

Lh[ψ](x) =
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h.

k = 0 (midpoint rule/constant interpolation basis):

‖ − (−∆)
α
2 [ψ]− Lh[ψ]‖L1(RN) = O(h + h2−α).
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Finite-difference discretizations: nonlocal

Let {pkβ}β be an interpolation basis of order k for the
uniform-in-space spatial grid Gh, and let the interpolant of a
function ψ be Ih[ψ](z) :=

∑
β 6=0 ψ(hβ)pkβ(z). Then (with r = h)

“∆h[ψ](x) ⊂ Lh[ψ](x)” =
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h.

k = 0 (midpoint rule/constant interpolation basis):

‖ − (−∆)
α
2 [ψ]− Lh[ψ]‖L1(RN) = O(h + h2−α).
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Finite-difference discretizations: nonlocal

Let us return to

(FHE)

∂tu = Lµ[u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Explicit method:

Uh(x , t+∆t) = Uh(x , t)+∆t
∑

Z3β 6=0

(
Uh(x +hβ, t)−Uh(x , t)

)
ωβ,h.
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Finite-difference discretizations: nonlocal

Let us return to

(FHE)

∂tu = −(−∆)
α
2 [u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Explicit method (with midpoint rule):

Uh(x , t + ∆t) = Uh(x , t) +
∆t

hα

∑
Z3β 6=0

(
Uh(x +hβ, t)−Uh(x , t)

)
Cβ,

where

C−β = Cβ =
c1,α
α

(
(β − 1

2
)−α − (β +

1
2

)−α
)

when β ≥ 1.
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Finite-difference discretizations: nonlocal

Let us return to

(FHE)

∂tu = −(−∆)
α
2 [u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Explicit method (with midpoint rule):

Uh(x , t + ∆t) = Uh(x , t) +
∆t

hα

∑
Z3β 6=0

(
Uh(x +hβ, t)−Uh(x , t)

)
Cβ.
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Finite-difference discretizations: nonlocal

Let us return to

(FHE)

∂tu = −(−∆)
α
2 [u] in R× (0,T ),

u(x , 0) = u0(x) on R.

[U1
−m,U

1
−m+1,U

1
−m+2, · · · ,U

1
m−1,U

1
m ]T =

∆t

hα



( hα

∆t
− C) C1 C2 · · · · · · · · · C2m

C1 ( hα

∆t
− C) C1 C2 · · · · · · C2m−1

C2 C1 ( hα

∆t
− C) C1 C2 · · · C2m−2

. . .

C2m−1 · · · · · · C2 C1 ( hα

∆t
− C) C1

C2m · · · · · · · · · C2 C1 ( hα

∆t
− C)





U0
−m

U0
−m+1

U0
−m+2

.

.

.

U0
m−1
U0
m



Comment: • Outside [−M,M], we put Uh = 0 AND outside
[−2M, 2M], we put Cβ = 0.
• Dense matrix, hard to “build”.

Jørgen Endal Nonlocal (and local) nonlinear diffusion equations



Finite-difference discretizations: nonlocal

Let us return to

(FHE)

∂tu = −(−∆)
α
2 [u] in R× (0,T ),

u(x , 0) = u0(x) on R.

Figure due to Wikipedia.
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Numerical schemes for (GPME)

Recall that our Cauchy problem was given as

(GPME)

∂tu = L[ϕ(u)] in QT = RN × (0,T ),

u(x , 0) = u0(x) on RN .

Corresponding numerical scheme (NM):U j
β−U

j−1
β

∆t = Lνh,1 [ϕ(U j
β)] + Lνh,2 [ϕh(U j−1

β )] in hZN ×∆tN,
“U0

β = u0” in hZN ,

where
Lνh,1 + Lνh,2 ≈ L = Lσ + Lµ

ϕh ≈ ϕ
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Convergence
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Convergence of the numerical schemes

Theorem (Convergence, [del Teso&JE&Jakobsen, 2018])

For the interpolant Uh, we have

Uh → u in C ([0,T ]; L1
loc(RN)) as h→ 0+

where u ∈ L1(QT ) ∩ L∞(QT ) ∩ C ([0,T ]; L1
loc(RN)) is a

distributional solution of (GPME).

Note that we only assume u0 ∈ L1 ∩ L∞.
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Advantage using general nonlocal framework

Keep in mind the following formula:

Lh[ψ](x) =
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h.

Now, note that∑
Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h =

ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dνh(z)

where dνh(z) =
∑

Z3β 6=0 ωβ,h dδhβ(z).

This includes the local discretization by simply choosing

ωβ,h =

{
1
h2

when β = {−1, 1},
0 otherwise.
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Advantage using general nonlocal framework

Keep in mind the following formula:

Lh[ψ](x) =
∑

Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h.

Now, note that∑
Z3β 6=0

(
ψ(x + hβ)− ψ(x)

)
ωβ,h =

ˆ
|z|>0

(
ψ(x + z)− ψ(x)

)
dνh(z)

where dνh(z) =
∑

Z3β 6=0 ωβ,h dδhβ(z).

Moreover, the discretizations of local and nonlocal operators are
nonlocal operators!!
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Proof of convergence

1. Since the operator and the nonlinearity are x-independent, the
numerical scheme can be written, for x ∈ RN , as

U j(x)−∆tLνh,1 [ϕ(U j)](x) = U j−1(x) + ∆tLνh,2 [ϕh(U j−1)](x).

2. At every time step, we have a combination of explicit and
implicit steps:

(EP) w −∆tLνh,1 [ϕ(w)] = f on RN ,

where U j = w = Timp[f ] and

f (x) = Texp[U j−1](x) = U j−1(x) + ∆tLνh,2 [ϕh(U j−1)](x).

3. Well-posedness of (NM) ⇐⇒ Well-posedness of (EP) and
properties of Texp.

4. To study Texp, the CFL-condition comes naturally

∆tLϕhνh,2(RN) ≤ 1 “time derivative ∼ spatial derivatives”
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Proof of convergence

5. Both operators Timp and Texp are “well-posed” in L1 ∩ L∞ and
enjoy

comparison principle;
L1-contraction; and
L1/L∞-bounds.

6. All properties then carries over to the numerical scheme (NM).
7. In particular, we have for the interpolant Uh

sup
h
‖Uh(·+ ξ, t)− Uh(·, t)‖L1(RN) ≤ λ(|ξ|)

sup
h
‖Uh(·, t)− Uh(·, s)‖L1(K) ≤ λ(|t − s|).

8. An application of the Arzelà-Ascoli and Kolmogorov-Riesz
compactness theorems then gives the desired compactness and
convergence in C ([0,T ]; L1

loc(RN)). Check that the limit of the
numerical solution is indeed a distributional solution.

9. And then all the properties carries over to distributional
solutions of (GPME).
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Numerical simulations
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Numerical simulations

Main difference between local and nonlocal:

the computational domain is different from the actual domain.

Jørgen Endal Nonlocal (and local) nonlinear diffusion equations



Error plot for the fractional heat equation with α = 1
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Powers of the discrete Laplacian & Mildpoint Rule

Comments: • We see that it converges, but we also KNOW that
it does!
• We do the simulations with “classical” solutions, so we basically
test the consistency error of the operator.
• The MpR behaves better in practise O(h2) than in theory O(h).
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The fractional (one-phase) Stefan problem with α = 1: plot

Comments: • ϕ(u) = max{0, u − 0.5}.
• ϕ(u) is only Lipschitz even if u is smooth!
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The fractional (one-phase) Stefan problem: error with MpR
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Comments: • Recall that “Error”∼ h + h2−α.
• Since pointwise values did not make sense, the error is more
stable in L1.
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Numerical simulations: 2D (one-phase) Stefan problem

• 2D (one-phase) Stefan problem with ϕ(u) = max{0, u − 1}.
Explicit method. L = ((1

2 ,
47
100) · D)2 + (−∂2

xx)
1
4 .
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Thank you for your attention!

Jørgen Endal Nonlocal (and local) nonlinear diffusion equations




