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Abstract

We establish a simple criterion for a variety to be defined over a number
field, which allows us to extend to higher dimension several known results
relative to the field of definition of complex curves as well as providing
some new results in dimension one.

1 Introduction

Let C be a compact Riemann surface, that is a complex algebraic curve. The, by
now well known, theorem of Belyi states that C can be defined over a number
field if and only if there is a meromorphic function f : C → P1 with three
critical values, say 0, 1,∞ ([2]). Such functions (resp. Riemann surfaces) are
often called Belyi functions (resp. Belyi surfaces). Belyi’s theorem has attracted
much attention ever since Grothendieck noticed in his Esquisse d’un Programme
(see [8]) that it implies amazing inter-relations between algebraic curves defined
over number fields and a certain class of graphs embedded in a topological
surface, which he named dessins d’enfants.

While the “only if” part of Belyi’s theorem results from a surprisingly simple
construction (in Grothendieck’s words “jamais sans doute un résultat profond et
déroutant ne fut démontré en si peu de lignes!”, [8], 14

15 ), for the “if part” Belyi
invokes Weil’s criterion in [26]. This criterion, however powerful, is not always
easy to apply (at least by us, the non experts) since, as often occurs in practice,
it is difficult to check if its hypotheses are satisfied in a given problem (cf. [27]).
On the contrary, our criterion (Criterion 1) is easy to handle. Although it is
much less ambitious, in that it only attempts to determine whether or not a
given variety can be defined over a number field without specifying which one.
It goes as follows
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1) An irreducible complex projective variety X can be defined over a number
field if and only if the family of all its conjugates Xσ, where σ is any field
automorphism of C, contains only finitely many isomorphism classes of complex
projective varieties.

The proof of Criterion 1 is based on the following key result (Theorem 12).

2) If an irreducible complex projective variety X can be defined over two
subfields of C algebraically disjoint over Q then X can in fact be defined over
Q.

A similar criterion holds for the field of definition of a morphism (Criterion
2).

Based on these two criteria we prove the following results.

3) If C1 and C2 are curves defined over Q and the genus of C2 is greater
or equal 2, then any morphism f : C1 → C2 is necessarily defined over Q
too (Proposition 20). The case in which C1 = C2, the automorphism case, is
proved by different means in [15]. We also extend this result to automorphisms
of varieties of general type of arbitrary dimension (Corollary 17).

4) The holomorphic image of a Belyi surface is also a Belyi surface (Theorem
21). Similarly, if Y is a n-dimensional variety of general type which is the image
of a n-dimensional variety X defined over Q then Y can also be defined over
Q (Proposition 15).

5) A Riemann surface C is a Belyi surface if and only if it can be uni-
formized by some Fuchsian group commensurable with the classical modular
group PSL2(Z) (Theorem 25). The corresponding result for subgroups instead
of commensurable groups appears first in the article [1] by Cohen, Itzykson and
Wolfart (see also [10]), and perhaps goes back to Shabat-Voevodsky ([23]) and
Grothendieck ([8]) himself.

We note that Criterion 1 can also be applied to give an elementary proof
of the “if part” of Belyi’s theorem (Theorem 19), different from those in [15]
and [27], which requires only Hilbert’s Nullstellensatz and some standard facts
of algebraic field theory. In particular neither Grothendieck’s notion of scheme
nor Weil’s concept of generic point is needed. Such a simple version of Belyi’s
theorem may be of independent interest in view of the growing attention being
devoted to this subject by researchers from different areas of mathematics.

In conclusion we point out that, in the forthcoming paper ([7]) Criterion 1
will allow us to provide a Belyi type theorem for complex surfaces. It will turn
out that in that case the role of Belyi functions is played by composed Lefschetz
pencils with three critical values.

Acknowledgement I would like to express my gratitude to a number of
people. To F. Catanese and I. Tsai for kindly answering several questions rel-
ative to Proposition 15. To J. Wolfart for generous discussions on the content
of section 4. To P. Lochak for the precise formulation of Theorem 25 and other
suggestions. And to R. Clement for saving me from more than one mistake in
section 2.
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2 A criterion for a variety to be defined over Q
Let X ⊂ Pn(C) be a projective variety. We shall say that X is defined over
a field k ⊂ C if there is a finite collection of homogeneous polynomials with
coefficients in k {

Pα(X0, ..., Xn) =
∑

ανX
ν0
0 ...Xνn

n

}
α

whose zero set Z (Pα) is precisely X.
We shall say that X can be defined over k if it is isomorphic to a variety defined
over k. We are primarily interested in the question of whether a given variety X
can be defined over a number field, or equivalently, over Q, the field of algebraic
numbers.

For a subfield k of C we denote by k the algebraic closure of k in C and by
Gal(C/k) the group of all field automorphisms of C which fix the elements in k.
For k = Q we simply write Gal(C/Q)= Gal(C).

For given σ ∈ Gal(C) and a ∈ C, we shall write aσ instead of σ(a). We
shall employ the same rule to denote the obvious action induced by σ on the
projective space Pn(C), the ring of polynomials C [X0, .., Xn], etc. Namely, for
a point x = (x0 : ... : xn) ∈ Pn(C) we put xσ = (xσ

0 : ... : xσ
n), for a subset

U ⊂ Pn(C) we write Uσ = {xσ : x ∈ U}. For a polynomial P =
∑

aνX
ν0
0 ...Xνn

n

we put Pσ =
∑

aσνX
ν0
0 ...Xνn

n , etc. It follows that Xσ = Z (Pσ
α ), hence if X is

defined over K, then Xσ is defined over Kσ. We also see that if U is a Zariski
open set of X, the set Uσ will be a Zariski open set of Xσ.

For a map f : X → Y from X to a second projective variety Y ⊂ Pr(C) we
define fσ : Xσ → Y σ to be the map fσ = σ ◦ f ◦σ−1. We see that if f : X → Y
is a morphism of projective varieties with local expression

f|U ≡ (F0, ..., Fr)

for some homogeneous polynomials Fk, then fσ : Xσ → Y σ is a morphism lo-
cally defined by f|Uσ ≡ (Fσ

0 , ..., F
σ
r ) and that if f happens to be an isomorphism

so will be fσ.
We can now state our criterion for a complex variety to be defined over k.

Criterion 1 Let X be an irreducible complex projective variety and k a count-
able subfield of C. The following conditions are equivalent
i) X can be defined over k.
ii) The family {Xσ}σ∈Gal(C/k) contains only finitely many isomorphism classes
of complex projective varieties.
iii) The family {Xσ}σ∈Gal(C/k) contains only countably many isomorphism classes
of complex projective varieties.

The proof of this criterion will be given in section 2.3.
We will simultaneously prove a similar criterion for the field of definition of

a morphism. Let f ∈ Mor(X,Y ) be a morphism between irreducible projective
varieties X and Y both defined over k. We shall say that f is defined over k if
it can be described by a finite collection of local expressions f|U ≡ (F0, ..., Fr)
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with each Fk having coefficients in k, whereas we shall say that f can be defined
over k if it is equivalent to a morphism f0 : X → Y defined over k; that is,
if there are automorphisms h1 : X w X, h2 : Y w Y such that the following
diagram commutes

X
f→ Y

↓ h1 ↓ h2

X
f0→ Y

We have

Criterion 2 Let f : X → Y be a morphism between irreducible projective vari-
eties both defined over a countable subfield k of C. The following conditions are
equivalent
i) f can be defined over k.
ii) The family {fσ}σ∈Gal(C/k) contains only finitely many equivalence classes of
morphisms.
iii) The family {fσ}σ∈Gal(C/k) contains only countably many equivalence classes
of morphisms.

2.1 Specialization of k-algebras

We now recall some basic facts of the theory of transcendental field extensions
that can be found e.g. in [3] or [16]. Let K be an extension field of a field k. A
subset {π1, ..., πd} ofK is said to be algebraically independent over k if the evalu-
ation map k [X1, .., Xd] → K which sends a polynomial a(X1, ., ., Xd) to its value
at (π1, .., πd), a(π1, .., πd) is injective; in other words, if it induces an isomor-
phism between k [X1, .., Xd] and its image, usually denoted by k [π1, ..., πd]. Be-
cause of this, given an arbitrary field extension k ⊂ L and any d-tuple (q1, ..., qd)
of elements in L, the rule that sends a(π1, ..., πd) to a(q1, ..., qd) provides a well
defined homomorphism of k-algebras S : k [π1, ..., πd] → L. In fact, it is obvi-
ous that S extends to the subring k [π1, ..., πd]S of K consisting of all fractions
a1(π1,...,πd)
a2(π1,...,πd)

with a2 (q1, ..., qd) ̸= 0.

In what follows, for an element a ∈ k [π1, ..., πd]S we shall write aS = S(a) =
a (q1, ..., qd) and so for a polynomial q(T ) :=

∑
qlT

l ∈ k [π1, ..., πd]S [T ] we put
qS(T ) :=

∑
qSl T

l.
An algebraically independent subset {π1, .., πd} ⊂ K is called a transcendence
basis of K over k if K is algebraic over k(π1, ..., πd). Two extensions K1 and K2

of k, both assumed to be subfields of a common field, are said to be algebraically
disjoint over k if for any pair of algebraically independent subsets over k, A1 of
K1 and A2 of K2, A1 ∩ A2 is empty and A1 ∪ A2 is algebraically independent
over k.
For the problem we are dealing with here, we can restrict ourselves to the case
in which L = C and k ⊂ K is a finitely generated extension of subfields of C.
In this situation, the Primitive Element Theorem implies that K is necessarily
of the form K = k (π1, ..., πd;u) where u ∈ K is algebraic over k (π1, ..., πd) and
π1, ..., πd are algebraically independent over k.
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Definition 3 By a standard set of generators of K over k we shall mean a set
of generators {π1, ..., πd;u} such that {π1, ..., πd} is a transcendence basis.
A specialization of K;π1, ..., πd;u over k is a homomorphism of k-algebras
S : k [π1, ..., πd, u] → C such that if m(T ) is the irreducible polynomial of u
over k (π1, ..., πd) (with leading coefficient 1), then m(T ) ∈ k [π1, ..., πd]S [T ].

If S(πi) = qi and S(u) = b, we denote S by S
(π1,...,πd;u)
(q1,...,qd;b)

, or more simply by

S
(πi;u)
(qi;b)

. Similarly, for any elements q1, ..., qd ∈ C we write S = S
(πi)
(qi)

for the

homomorphism S from k [π1, ..., πd] to C given by S(πi) = qi.

Proposition 4 Let {π1, ..., πd;u} be a given standard set of generators of K
over k, and a =

∑
aiu

i, with ai ∈ k (π1, ..., πd), a given element of K. Then
there exists ε > 0 such that for any d-tuple of complex numbers (qi)i with

|πi − qi| ≤ ε the homomorphism S = S
(πi)
(qi)

satisfies the following two condi-
tions

i) The elements ai as well as the coefficients of the irreducible polynomial
m(T ) of Definition 3 lie all in k [π1, ..., πd]S.

ii) For each root ui of m(T ) there is a root bi of mS(T ) which is closer to
ui than any other root of mS(T ).

Moreover, for such a homomorphism S the following property holds
iii) There is a bijective correspondence between roots b of mS(T ) and spe-

cializations Sb = S
(πi;u)
(qi;b)

extending S to k [π1, ..., πd, u, a].

Proof. i) Let {dβ (π1, ..., πd) ̸= 0}β , with dβ (X1, ..., Xd) ∈ k [X1, ..., Xd]
the finite set of denominators occurring in the elements ai as well as in the
coefficients of m(T ). Let (qi) be a d-tuple of complex numbers and let ε =
max |πi − qi|. It is clear that if ε is sufficiently small we will still have
dβ (q1, ..., qd) ̸= 0 ( in fact the set of d-tuples satisfying this property forms
a Zariski open subset of Cd containing (π1, ..., πd)).
ii) This is a consequence of the continuous dependence of the zeros of a poly-
nomial on its coefficients. Let {ui} and {bi} be the roots of m(T ) and mS(T )
respectively. As ε tends to zero the polynomial mS(T ) will come close to m(T ).
It follows (see [16], 12.7) that if ε is sufficiently small, for each ui there will be a
root of mS(T ), say bi, such that the distance from ui to bi is as small as wanted.
If, in particular, we require this distance to be less than 1

2min |uj − ui| then the
triangle inequality will imply that bi is the only root of mS(T ) satisfying this
property.
iii) Since mS(T ) is well defined, any extension of S to k [π1, ..., πd, u] must, in-
deed, send u to one of its roots.
In order to show that for each root b of mS(T ) one can define an extension
Sb of S such that Sb(u) = b, let us begin by considering the following obvious
isomorphisms produced by sending T to u

k(π1, . . . , πd)[T ]

(m(T ))
≃ k (π1, . . . , πd;u)
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and
k [π1, ..., πd] [T ]

(m(T )) ∩ k [π1, ..., πd] [T ]
≃ k [π1, ..., πd, u]

Now we claim that if b ∈ C is any root of mS(T ), the extension of
S : k [π1, ..., πd] → C to k [π1, ..., πd] [T ] obtained by sending T to b factor-
izes through k [π1, ..., πd, u], thereby providing the desired extension Sb. This is
so because its kernel contains the ideal (m(T )) ∩ k [π1, ..., πd] [T ]. (Here we use
Gauss lemma, see e.g. [16], to ensure that if p(T ) ∈ k(π1, .., πd)[T ] is such that
q(T ) = p(T )m(T ) ∈ k [π1, ..., πd] [T ] then p(T ) lies, in fact, in k [π1, ..., πd]S [T ]
and so qS(b) = pS(b)mS(b) = 0).
Finally, we note that the requirements in i) relative to the element a ∈ K mean
that a ∈ k [π1, ..., πd]S [u], thus Sb(a) =

∑
aSi b

i is well defined.

The root bi of mS(T ) corresponding to the root ui of m(T ) in part ii) of
the previous proposition is sometimes referred to as the root that belongs to ui

([16], 12.7). We are, of course, interested in the root that belongs to u. This
one we shall denote by b(u). Maintaining the rest of our notation, we make the
following

Definition 5 Let {π1, ..., πd;u} be a standard set of generators of K over k and
Σ a finite subset of K. We shall say that ε > 0 is good for {π1, ..., πd;u} and Σ if
for each a ∈ Σ the positive number ε satisfies the three conditions in Proposition
4. If Σ is the empty set we will simply say that ε is good for {π1, ..., πd;u}.
Let F =

∑
aνX

ν0
0 ...Xνn

n be a polynomial with coefficients in K. We shall say
that ε is good for {π1, ..., πd;u} and F if it is good for {π1, ..., πd;u} and the set
of the coefficients of F .

In what follows, given a specialization S = S
(πi;u)
(qi;b)

of K;π1, ..., πd;u over k,

we will write
δS = max

i
|πi − qi|

Thus, if ε is good for {π1, ..., πd;u} and a set Σ = {aα}, any specialization S =

S
(πi;u)
(qi;b(u))

with δS < ε extends to the ring k [π1, ..., πd, u, {aα}]. In particular, if ε

is good for {π1, ..., πd;u} and a polynomial F =
∑

aνX
ν0
0 ...Xνn

n with coefficients
in K, we are allowed to write FS =

∑
aSνX

ν0
0 ...Xνn

n .

Lemma 6 Let K3 be a finitely generated extension field of k, and K1 and K2

two subextensions algebraically disjoint over k. Let us choose a standard set of
generators of K1 over k

π1, ..., πd;u1

and a standard set of generators of K3 over k

π1, . . . πd, πd+1, . . . , πs, πs+1, . . . , πl;u3

where {πd+1, ..., πs} is a transcendence basis of K2 over k. Finally, let Σ3 be
a finite subset of K3. Then there exists ε > 0 good for {π1, ..., πd;u1} and
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at the same time good for {π1, ..., πl;u3} and Σ3, such that any specialization

S1 = S
(πi;u1)
(qi;b(u1))

of K1;π1, ..., πd;u1 over k with δS1 ≤ ε extends to a specialization

S3 of K3;π1, ..., πl;u3 over k with δS3 ≤ ε such that S3(K2 ∩ Σ3) ⊂ k.

Proof. Let u2 ∈ K2 such that K2 = k(πd+1, ..., πs;u2) and let ε2 > 0 be
good for {πd+1, ..., πs;u2}. Let ε1 > 0 be good for {π1, ..., πd;u1} and ε3 > 0
be good for {π1, ..., πl;u3} and the set Σ3 ∪ {u1, u2}. Set ε′ = min εi, i = 1, 2, 3
and assume that δS1 ≤ ε′. We are aiming for an extension of S1.

Well, let qd+1, ..., ql ∈ k, with |πi − qi| < ε′. Then S2 = S
(πi;u2)
(qi;b(u2))

and

S3 = S
(πi;u3)
(qi;b(u3))

are specializations of (K2;πd+1, ..., πs;u2) and (K3;π1, ..., πl;u3)

over k such that δS1 , δS3 ≤ ε′. It is clear that the restriction of S3 to k [π1, ..., πd]
(resp. k [πd+1, ..., πs]) agrees with that of S1 (resp. S2). Therefore, if we denote
by m1(T ) and m2(T ) the irreducible polynomials of u1 over k(π1, ..., πd) and u2

over k(πd+1, ..., πs), we have that S3(uk) must be a root of mS3

k (T ) = mSk

k (T )
for k = 1, 2. Let us now write u1 =

∑
ci(π1, ..., πl)u

i
3. It is clear that by taking

ε′ is sufficiently small, S3(ci) (resp. S3(u3) = b(u3)) can be made to be as close
to ci (resp. u3) as wanted, hence S3(u1) can be made to be as close to u1 as
wanted. In particular, closer to u1 than any other root of mS1

1 (T ) (see part ii
of Proposition 4), hence S3(u1) = S1(u1) = b(u1). This proves the existence of
ε such that if δS3 ≤ ε then S3 is an extension of S1.

Now, by construction, we obviously have S3(K2∩Σ3) ⊂ k(S3(u2)), so it only
remains to be seen that S3(u2) is algebraic over k. But this is clear since, again
by construction, mS2

2 (T ) is a polynomial over k.

2.2 Specialization of morphisms of projective varieties

In this section X = Z (Pα) and Y = Z (Qβ) will be irreducible projective
subvarieties of Pn(C) and Pr(C) respectively. We would like to have a purely
algebraic formulation of the concept of morphism or regular mapping between
X and Y .

By a homogeneous (r+1)-tuple of polynomials we shall mean a (r+1)-tuple of
homogeneous polynomials (F0, ..., Fr) all of which have the same degree. Thus,
a homogeneous (r + 1)-tuple defines a map from a Zariski open set U of X to
Pr(C). In fact we can take U = ∪kD(Fk) with D(Fk) = {x ∈ X : Fk(x) ̸= 0}.

Proposition 7 Defining a morphism f : X → Y is equivalent to specifying a
finite collection of homogeneous (r + 1)-tuples of polynomials {(Fk,0, ..., Fk,r)}k
satisfying the following three conditions
i)

∪j,kD(Fk,j) = X (1)

ii) For each of these (r+ 1)-tuples (Fk,0, ..., Fk,r) there are polynomials Wα,β ∈
C [X0, .., Xn] and a positive integer q such that the following identity holds

(Qβ (Fk,0(X0, .., Xn), ..., Fk,r(X0, .., Xn))
q
=

∑
Wα,βPα (2)
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iii) Any pair of these (r+1)-tuples (Fk,0, ..., Fk,r) and (Fl,0, ..., Fl,r) is compatible
in the sense that for each pair of indices 0 ≤ i, j ≤ r there are polynomials Tα

and a positive integer p such that the following identity holds

(Fk,iFl,j − Fk,jFl,i)
p
=

∑
TαPα (3)

The morphism f : X → Y is then defined by

f(x) = (Fk,0(x), ..., Fk,r(x)), if x ∈ ∪
j
D(Fk,j) (4)

Furthermore, two such collections {(Fk,0, ..., Fk,r)}k and {(Gl,0, ..., Gl,r)}l define
the same morphism if its union defines a morphism.

Proof. Clearly, the map given by (4) is a regular mapping. Identity (1)
precisely means that f is defined in the whole set X, identity (2) expresses
the fact that the image f (∪jD(Fk,j)) ⊂ Pr(C) lies in fact in Y , and identity
(3) shows that f is coherently defined in the intersection of ∪jD(Fk,j) and
∪jD(Fl,j).

Conversely, recall (see e.g. [21], I.4.2) that a map f : X → Y ⊂ Pr(C) is
called a morphism if there is an open cover {Uk} of X such that

f|Uk
≡ (Fk,0, ..., Fk,r)

for some of homogeneous (r + 1)-tuple of polynomials Fk,j . By the Identity
theorem for holomorphic functions f is given by this expression on the whole
Zariski open set ∪jD(Fk,j). As Uk ⊂ ∪jD(Fk,j) our collection of (r + 1)-
tuples satisfy condition i). Now, since the target variety Y is defined by the
polynomials {Qβ}, we must haveQβ (F0(x), ..., Fr(x)) = 0 for all x in ∪jD(Fk,j),
hence for all x ∈ X. By Hilbert’s Nullstellensatz this occurs if and only if the
polynomial Qβ(Fk,0(X0, .., Xn), ..., Fk,r(X0, .., Xn)) belongs to the radical of the
ideal generated by {Pα}; this is what condition ii) asserts. Moreover, at any
point x ∈ Uk∩Ul we must have (Fk,0(x), ..., Fk,r(x)) = (Fl,0(x), ..., Fl,r(x)) which
in turn implies that for any pair of indices i, j the identity Fk,j(x)/Fk,i(x) =
Fl,j(x)/Fl,i(x) holds onD(Fk,i)∩D(Fl,i), hence Fk,iFl,j−Fk,jFl,i vanishes on the
whole X. But again by Hilbert’s Nullstellensatz, this is the same as identity (3).
Finally, it is clear that two morphisms f and g coincide if their corresponding
collections of (r+1)-tuples are compatible with each other, that is if the larger
collection of (r+1)-tuples resulting as the union of these two collections satisfy
condition iii).

We shall write f ≡ {(Fk,0, ..., Fk,r)}. We observe that even if X or Y are not
irreducible, a collection of (r+1)-tuples enjoying the three properties above will
still define a morphism. Each of the defining (r+1)-tuples will be called a local
expression for f . The sets ∪jD(Fk,j) and f (∪jD(Fk,j)) are called, respectively,
the domain of definition and the image of the local expression (Fk,0, ..., Fk,r).

Corollary 8 Let f : X → Y be as before and g : Y → Z and h : X → Z
be morphisms to a third irreducible variety Z ⊂ Pm(C). Then h = g ◦ f if
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and only if for any triple of local expressions (F0, ..., Fr) for f , (G0, ..., Gm) for
g and (H0, ...,Hm) for h such that the image of the first one has non-empty
intersection with the domain of the second one and for each pair of indices
0 ≤ i, j ≤ r there exist a positive integer l and polynomials Dα such that the
following identity holds

(HjGi(F0, ..., Fr)−HiGj(F0, ..., Fr))
l
=

∑
DαPα, 0 ≤ i, j ≤ m (5)

Proof. Clearly the morphism g ◦ f is defined by the collection of local ex-
pressions of the form (G0(F0, ..., Fr), ..., Gm(F0, ..., Fr)) where (F0, ..., Fr) and
(G0, ..., Gm) are as in the statement. Now observe that identity (5) is a partic-
ular case of identity (3); it merely expresses the compatibility of this collection
and that defining h.

Corollary 9 A morphism f ≡ {(Fk,0, ..., Fk,r)}k between two irreducible va-
rieties X and Y is an isomorphism if and only if there is a collection of homo-
geneous (n + 1)-tuples {(Gs,0, ..., Gs,n)}s, with Gs,u ∈ C [Y0, .., Yr], defining a
morphism g : Y → X (which is going to be its inverse), so that for any indices
k, s and any pair of indices 0 ≤ i, j ≤ r and 0 ≤ u, v ≤ n, there are positive
integer s, t and polynomials Mα and Mβ such that the following identities hold

(XjGs,u(Fk,0, ..., Fk,r)−XiGs,v(Fk,0, ..., Fk,r))
s
=

∑
MαPα (6)

and
(YjFk,i(Gs,0, ..., Gs,n)− YiFk,j(Gs,0, ..., Gs,n))

t
=

∑
MβQβ (7)

Proof. Relations (6) and (7) are a particular case of relation (5) in which we
have made Hj = Xj and Hj = Yj respectively. Thus, they express the identities
id = g ◦ f and id = f ◦ g respectively.

We are now in position of specializing morphisms

Proposition 10 Let k ⊂ K be a finitely generated extension of subfields of C
with standard generators {π1, ..., πd;u}.

Let f : X = Z(Pα) → Y = Z(Qβ) with f ≡ {(Fk,0, ..., Fk,r)}k be a morphism
between irreducible projective varieties. Assume that Pα, Qβ , Fk,i are all defined
over K. Let ε > 0 be good for the given generators and all these polynomials, and
let S be a specialization of K;π1, ..., πd;u over k with δS < ε. Let us consider
the varieties XS = Z(PS

α ), Y S = Z(QS
β ) and the collection of homogeneous

(r + 1)-tuples {(FS
k,0, ..., F

S
k,r)}k. Then, if ε is sufficiently small, this collection

defines a morphism fS : XS → Y S. Moreover, if f : X → Y is an isomorphism,
ε can be chosen so that fS is an isomorphism too.

Proof. In order to prove that fS = {(FS
k,0, ..., F

S
k,r)}k defines a morphism

between XS and Y S it is enough to check conditions i), ii) and iii) of Proposi-
tion 7. To deal with ii) (resp. iii)) we first consider the larger field K ′ obtained
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by adding to K the set Σ of coefficients of the polynomials Wαβ (resp. Tα) oc-
curring in the identities of type (2) (resp. (3)) existing among the various local
expressions for f . Let us now apply Lemma 6 with K1 = K, K2 = k, K3 = K ′,
Σ3 = Σ and generators of K3 and K1 over k as required in the statement of this
lemma. We then infer that if δS is sufficiently small there is a specialization S3

extending S which can be applied to identities (2) and (3) to show that condi-
tions ii) and iii) are satisfied. As for the equality ∪j,kD(FS

k,j) = Z(PS
α ) of which

condition i) consists of, it will also be fulfilled provided δS is sufficiently small.
Indeed, suppose there is a sequence of parameters (q1,m, ..., qd,m) converging to

(π1, ..., πd) and points xm ∈ Z(PSm
α ) ⊂ Pn at which all polynomials FSm

k,j vanish

(Here Sm = S
(πi;u)
(qi,m;b(u))). Then, by continuity, any accumulation point x would

lie in X but, at the same time, it would be a zero of all polynomials Fk,j con-
tradicting the fact that ∪j,kD(Fk,j) = X. Thus, fS is a morphism.
If, moreover, f is an isomorphism, we take as K3 the field obtained by adding
to K ′ the coefficients of the polynomials defining f−1 as well as those occurring
in the corresponding identities (6) and (7). Still the same argument proves that
if δS is sufficiently small fS must be an isomorphism too.

Obviously, the varieties XS , Y S and the morphism fS introduced in Propo-
sition 10 depend on the choice of the defining polynomials. However, we have
the following uniqueness result

Proposition 11 Let the notation be as in Proposition 10, then the following
properties hold

a) If X is given by another collection of polynomials P ′
α defined over K, then

ε can be chosen sufficiently small so that Z(PS
α ) = Z(P ′S

α ).
b) If g = {(Gk,0, ..., Gk,r)}k is another collection of (r+1)-tuples with coeffi-

cients in K defining f , then ε can be chosen sufficiently small so that fS = gS.

Proof. a) By hypothesis the radicals of the ideals generated by both sets of
polynomials coincide. This means that we have polynomial identities of the
form (

P ′
β

)p
=

∑
Wα,βPα and P q

β =
∑

W ′
α,βP

′S
α

and hence it is enough to require the positive number ε in Proposition 10 to be
good also for the polynomials Wα,β , W

′
α,β and P ′

α.
b) Proposition 10 applied to the defining collection for f obtained as the

union of both collections of (r + 1)-tuples yields the equality fS = gS (see last
statement in Proposition 7).

Theorem 12 1) If an irreducible projective complex variety X can be defined
over two subfields of C algebraically disjoint over k then X can in fact be defined
over k.

2) Let X and Y be irreducible projective complex varieties defined over k. If
a morphism f ∈ Mor(X,Y ) can be defined over two subfields of C algebraically
disjoint over k then f can in fact be defined over k.

10



Proof. 1) Let h : X → Y be an isomorphism between irreducible projective
varieties X ⊂ Pn(C) and Y ⊂ Pr(C). Write X = Z(Pα), Y = Z(Qβ) and
h ≡ {(Fk,0, ..., Fk,r)}. Let Σ1 (resp. Σ2, resp. Σ) be the set of coefficients of the
polynomials Pα (resp. Qβ , resp. Fk,i). Denote by K1 (resp. K2, resp. K3) the
field generated over k by Σ1 (resp. Σ2, resp. Σ3 = Σ1 ∪ Σ2 ∪ Σ). We have to
show that if K1 and K2 are algebraically disjoint over k then X can be defined
over k. In order to do that let us choose generators of K3 and K1 over k as
in Lemma 6. Then this lemma tells us that there is a specialization S = S3 of
K3 and these generators over k, with δS as small as wanted, which extends the
identity specialization of K1 and such that for any a ∈ Σ2 one has S(a) ∈ k.
By Proposition 10, if δS is sufficiently small, we can specialize h : X → Y to
obtain a new isomorphism hS : XS → Y S . Now, by construction, XS = X and
Y S is defined over k as desired.

2) This is similar to part 1). Suppose there is a commutative diagram

X
f→ Y

↓ h1 ↓ h2

X
g→ Y

where the vertical arrows are isomorphisms. Let us choose sets of defining
polynomials for f , g, h1 and h2. Let us denote by Σ1 and Σ2 be the set of
coefficients of the local expressions defining f and g respectively. Let Σ be
the set of coefficients of the local expressions defining h1 and h2 as well as
those of the polynomials intervening in the identities of type (3) expressing
the compatibility of the local expressions defining g ◦ h1 with those defining
h2 ◦ f . Denote by K1 (resp. K2, resp. K3) the field generated over k by Σ1

(resp. Σ2, resp. Σ3 = Σ1 ∪ Σ2 ∪ Σ). We now have to show that if K1 and K2

are algebraically disjoint over k then f can be defined over k. In order to do
that we apply Lemma 6 in the same way as before to conclude that there is a
specialization S = S3 of K3 and a suitable set of generators over k, with δS as
small as wanted, extending the identity specialization of K1 and such that for
any a ∈ Σ2 we have S(a) ∈ k. If we now apply S to our commutative diagram
for the chosen sets of defining polynomials we obtain gS ◦hS

1 = hS
2 ◦ fS . On the

other hand, by the construction of S, we see that gS is defined over k and that
XS = X, Y S = Y and fS = f . Moreover, by Proposition 10, if δS is sufficiently
small, then hS

1 and hS
2 are again isomorphisms, thus f is equivalent to gS . This

concludes the proof.

2.3 Proof of Criteria 1 and 2

Theorem 12 has the following implication

Corollary 13 Criteria 1 and 2 hold.

Proof. We will prove the equivalence of the three statements in criteria 1 and
2 simultaneously.

11



Let us denote by K the field generated over k by the coefficients of the
polynomials defining X (resp. the local expressions for f).

Assume that K ⊂ k, then K is clearly a finite extension of k and therefore
the number of distinct restrictions of Gal(C/k) to K is finite, hence the family
{Xσ} (resp. {fσ} ) can only contain finitely many distinct projective varieties
(resp. morphisms). In other words, i) implies ii). On the other hand it is obvi-
ous that ii) implies iii).
It remains to prove that iii) implies i). Let {π1, ..., πd} be a transcendence basis
of K over k. We may assume that d ≥ 1 for otherwise there would be nothing
to prove. Since K is a countable field we can construct an uncountable family
of field automorphisms σs ∈ Gal(C/k) by first sending {π1, ..., πd} bijectively
to pairwise algebraically independent sets over k, {σs(π1), ..., σs(πd)} ⊂ C, and
then extending that to an automorphism of C (see e.g. [3] chap. 5.14.4). Now
assumption iii) implies that in this family there are plenty of distinct elements
σ1, σ2 ∈ Gal(C/k) such that Xσ1 and Xσ2 (resp. fσ1 and fσ2) are equiva-

lent and hence so must be X and Xσ−1
1 σ2 (resp. f and fσ−1

1 σ2). Thus X
(resp. f) can be defined over finite extensions K1 of k(π1, ..., πd) and K2 of
k(σ−1

1 σ2(π1), ..., σ
−1
1 σ2(πd)). From here, we only have to invoke Theorem 12.

3 Some applications in higher dimensions

Before we concentrate on the Riemann surface case we give some applications
in higher dimensions.

Proposition 14 Let S be a non singular projective surface defined over a num-
ber field and C ⊂ S an irreducible curve with negative self-intersection C2 < 0.
Then C is also defined over a number field.

Proof. Suppose C = Z(Qα) for certain polynomials Qα such that the field
K generated over Q by their coefficients is transcendental. Choose a standard
set of generators π1, ..., πd;u of K over Q. Let ε be good for π1, ..., πd;u and the
polynomials Qα, and let Sm be a sequence of specializations of K;π1, ..., πd;u
over Q with δSm < ε tending to zero and Sm(πi) ∈ Q. Then we can apply Sm

to the inclusion morphism C ⊂ S to obtain a corresponding sequence of curves
CSm defined over Q inside the surface SSm = S. When CSm gets sufficiently
close to C, the intersection numbers CSm · C equal C · C < 0. This inequality
implies that CSm = C as wanted. Indeed, let

CSm = C1 ∪ · · · ∪ Cd

be the expression of CSm as the finite union of its irreducible components, then
CSm ·C =

∑
Ci ·C. Now, if Ci ̸= C then, by definition, Ci ·C ≥ 0, therefore for

at least one of the components, say C1, we must have C1 = C. What remains
to be observed is that because CSm is defined over Q each of its irreducible
components can be defined over Q too. This can be easily seen as follows.
First let the group Gal(C) act on both sides of the expression for CSm above
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to conclude that there are only finitely many isomorphism classes of Galois
conjugates of C1 and then apply Criterion 1.

Proposition 15 If a smooth n-dimensional projective variety of general type Y
occurs as image of a n−dimensional projective variety X defined over a number
field, then Y can be defined over a number field too.

Proof. For any σ ∈ Gal(C) we have a morphism fσ : Xσ → Y σ. Since X is
defined over a finite extension of Q, in the collection of varieties {Xσ}σ∈Gal(C)
we only have finitely many isomorphism classes. Now the result of Tsai ([25])
that a given n-dimensional variety can be surjectively mapped to only finitely
many smooth n-dimensional varieties of general type implies that the same must
be true for the family {Y σ}σ∈Gal(C). Thus Criterion 1 applied to Y gives the
desired conclusion.

Actually I don’t know if this result is completely general, that is, whether it
holds true if one makes no assumptions on the variety Y at all. An affirmative
answer to this question would follow from an affirmative answer to the following,
apparently unsolved, problem

Are there only finitely many smooth n-dimensional varieties Y to which a
given n-dimensional variety X can be surjectively mapped with given degree d?

De Franchis-Severi theorem, which will be formulated in detail in the next sec-
tion, implies that this is always the case when n = 1.

Now following [11] we denote by Holk(X,Y ) the set of holomorphic maps f
with rank(f) ≥ k from a complex analytic space X into a complex manifold
Y . Here rank(f) denotes the maximum rank of f on the regular points of X;
thus f(X) is is an analytic space and dim(f(X)) = rank(f). In particular
Hol1(X,Y ) is the subset of all non constant morphisms and, if m = dimY ,
Holm(X,Y ) is the subset of the surjective ones. As usual, Isom(X,Y ) will
stand for the subset consisting of the isomorphisms.

Proposition 16 Let X and Y be irreducible projective varieties defined over
Q such that Y is non singular. Assume that Holk(X,Y ) (resp. Isom(X,Y )) is
finite. Then any f in Holk(X,Y ) (resp. Isom(X,Y )) is defined over a number
field.

Proof. Let K be the field generated over Q by the set Σ of the coefficients of
the local expressions defining f . Choose a standard set of generators π1, ..., πd;u
ofK over Q and let ε be good for π1, ..., πd;u and the set Σ. Let Sn be a sequence
of specializations of K;π1, ..., πd;u over Q with δSn < ε tending to zero such
that Sn(πi) ∈ Q. Then we can apply Sn to the morphism f : X → Y to obtain
a sequence of morphisms fSn : X → Y all defined over Q. Moreover, since
the requirement rank(f) ≥ k is an open condition on the coefficients of f , we
infer that if fSn is sufficiently close to f then fSn lies in Holk(X,Y ) (resp.
Isom(X,Y )). Thus, for n sufficiently large fSn must equal f .

13



Due to work by Kobayashi and Ochiai ([14]) the typical case in which Propo-
sition 16 applies occurs when Y is of general type and k = dimY . In particular
we have

Corollary 17 The automorphisms of a non singular variety of general type
which is defined over Q are all defined over Q.

But Proposition 16 can be applied in many other situations such as the
various cases discussed by Kalka, Shiffman and Wong in [11]. One can show,
for instance, that the above statement holds also for any K3 surface Y . This
is because on the one hand Corollary 6 in that paper states that Hol2(Y, Y ) is
discrete, and on the other it is clear that the proof of Proposition 16 still works
if instead of finiteness one only requires discreteness.

4 Applications in the Riemann surface case

4.1 Riemann surfaces

In one direction the proof of Belyi’s theorem consists of a very elementary (and
clever) algorithm to construct a Belyi function on a given Riemann surface
defined over Q. For the converse statement he invokes a criterion of rationality
due to Weil ([26]). We begin this section by applying Criteria 1 and 2 to
produce an elementary proof of this part of Belyi’s theorem as well as of the
supplementary fact that the Belyi function can be defined over Q.

Theorem 18 Let f : C1 → C2 be a surjective morphism between algebraic
curves. If C2 and the branch values of f, y1, ...yr ∈ C2 are defined over Q, then
C1 and f can also be defined over Q.

Proof. For any σ ∈ Gal(C) the morphism fσ : Cσ
1 → Cσ

2 has the same
degree as f : C1 → C2. By hypothesis, in the family {(Cσ

2 , y
σ
1 , ..., y

σ
r )}σ∈Gal(C)

there are only finitely many distinct pointed curves, therefore standard mon-
odromy theory (see e.g. [18]) puts us in position to apply Criterion 1 to C1 and
Criterion 2 to f .

This obviously implies the Weil part in Belyi’s theorem. Namely

Corollary 19 Let C be a complex algebraic curve admitting a morphism
f : C → P1 ramified over three values. Then C can be defined over a num-
ber field. Moreover, the morphism f can be defined over a number field too.

Our next results depend on the de Franchis-Severi theorem ( [5], see also [6],
[9], [12] or [17]). This theorem has two parts:

1) If C1 and C2 are compact Riemann surfaces and the genus of C2 is at
least two, then Mor(C1, C2) contains only finitely many non constant elements.
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2) The number of isomorphism classes of Riemann surfaces of genus g ≥ 2
(resp. of genus 1) to which a given one C can be surjectively mapped (resp.
mapped with fixed degree) is finite.

Proposition 20 If C1 and C2 are defined over Q and the genus of C2 is at
least two any non constant morphism f : C1 → C2 is necessarily defined over Q
too.

Proof. In view of the first part of the de Franchis-Severi theorem, this is a
consequence of Proposition 16.

Theorem 21 Let f : C1 → C2 be a surjective morphism between compact Rie-
mann surfaces. Suppose C1 is a Belyi surface, then so must be C2.

Proof. For any σ ∈ Gal(C) we have a morphism fσ : Cσ
1 → Cσ

2 with the
same degree as f : C1 → C2. Since, by hypothesis, C1 can be assumed to be
defined over a finite extension of Q, in the collection of curves {Cσ

1 }σ∈Gal(C)
we only have finitely many isomorphism classes. By the second part of the de
Franchis-Severi theorem, the same is true for the family {Cσ

2 }σ∈Gal(C), provided
the genus of C1 is ≥ 1. In this circumstance Criterion 1 applied to C2 gives
the desired conclusion. If the genus of C1 is 0, then C1 is isomorphic to P1 and
so the theorem is trivial in this case.

As the referee has pointed out to me there is an alternative proof of Theorem
21 in the case f is a Galois cover and the genus of C1 is at least 2 which avoids
using de Franchis-Severi theorem. In this situation C2 is the quotient of C1 by
the corresponding Galois group. As the automorphism group of C1 is finite,
Proposition 16 implies that all automorphisms of C1 are defined over Q. Hence,
the quotient C2 is defined over Q as well.

Combining Theorem 18 and Theorem 21 we get

Corollary 22 Let f : C1 → C2 be an unramified covering of compact Riemann
surfaces. Then, C2 is a Belyi surface if and only if C1 is.

We observe that when the genus is 1, the above Corollary 22 gives, as a
particular case, a classical result in Number Theory, namely that if τ is a com-
plex number with positive imaginary part, α ∈ GL2(Q)+ and j is the Jacobi
modular function, then j(τ) is an algebraic number if and only if j(α(τ)) is.
This is because, on the one hand, Q(j(τ)) is the minimum field of definition for
the complex torus Eτ = C/Z⊕ Zτ and, on the other, Eτ is always isogenous to
Eα(τ) ([22], [19]).
In turn the theory of elliptic curves shows that in general Q(j(α(τ))) is different
from Q(j(τ)). In other words, in Corollary 21, one cannot expect C2 to be
defined over each field of definition of C1.
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4.2 Fuchsian groups

In this section the reader is assumed to have some familiarity with the most
elementary aspects of the theory of Fuchsian groups, that is discrete subgroups
of PSL(2,R), and uniformization of Riemann surfaces. The triangle Fuchsian
(resp. Euclidean) group of signature (p, q, r) is the index 2 orientation preserving
subgroup of the group generated by reflections in the sides of a hyperbolic (resp.
Euclidean) triangle in the upper-half plane H (resp. the complex plane C) whose
angles are π/p, π/q and π/r. What is of interest here is that in both cases taking
the quotient by a triangle group gives P1 with three branching values of order
p, q and r corresponding to the vertices of the triangle in question. We are thus
tacitly assuming that the angles π/p, π/q and π/r are nonzero.

Let C be a compact Riemann surface isomorphic to a quotient space U/Γ,
with U = H or C, and Γ a finite index subgroup of triangle subgroup ∆. Then
the canonical map U/Γ → U/∆ affords a Belyi map from C = U/Γ to P1 = U/∆.
In fact the converse is also true. We have ([1], see also [10])

Proposition 23 A compact Riemann surface of genus g ≥ 1 is a Belyi surface
if and only if C is isomorphic to a quotient space U/Γ, with U = H or C, and
Γ a finite index subgroup of a triangle group.

Unfortunately the group Γ in Proposition 23 may not be a surface group,
that is, a co-compact group which acts freely on U, hence isomorphic to the
fundamental group of C. This question in the genus 1 case has been dealt with
in [24].

Let us assume for the rest of this section that g ≥ 2. In this case, which
corresponds to U = H, surface groups are Fuchsian groups uniquely determined
by the isomorphism class of the Riemann surface they uniformize (up to con-
jugation in PSL(2,R)). If a Riemann surface C is simultaneously obtained as
quotient by a surface group G and by a not necessarily torsion free Fuchsian
group Γ, then there is an isomorphism H : C = H/Γ → H/G which, by covering
space theory, lifts to a holomorphic map h : H → H. This map induces a group
homomorphism ϕ : Γ → G characterized by

h ◦ γ = ϕ(γ) ◦ h for all γ ∈ Γ (8)

It is not hard to show (see [4], 4.1) that both the map h and the homomorphism
ϕ are surjective. Let us say that a group homomorphism ϕ : Γ → G between
Fuchsian groups Γ and G is holomorphically induced if there is a surjective
holomorphic map h : H → H with respect to which ϕ satisfies identity (8).
We can then characterize the surface groups that uniformise Belyi surfaces as
follows.

Proposition 24 Let G be a surface group of genus g ≥ 2. Then C = H/G
is a Belyi surface if and only if G is the image of a holomorphically induced
epimorphism ϕ : Γ � G where Γ is a finite index subgroup of some co-compact
triangle group.

16



Proof. The “only if” part results from Proposition 23 together with the
comments that follow it. Conversely, if the epimorphism ϕ : Γ � G is induced
by a holomorphic surjection h : H → H satisfying (8), then it is clear that we
have an induced morphism of compact Riemann surfaces H : H/Γ → H/G. As
Γ is contained in a triangle group we see that H/Γ is a Belyi surface. Now we
apply Theorem 21.

As J. Wolfart has pointed out to me, this idea of comparing the various
groups inducing the same quotient Riemann surface was already considered,
although in a different language, by Klein in [13], p.301, for the case in which
the quotient is P1 with three distinguished points.

We can also characterize Belyi surfaces via uniformization by finite volume
Fuchsian groups. Recall that two Fuchsian groups Γ1 and Γ2 are called com-
mensurable if Γ1 has a subgroup of finite index which is conjugate in PSL2(R)
to a finite index subgroup of Γ2. We have

Theorem 25 A compact Riemann surface C is a Belyi surface if and only if
there is a finite set Σ ⊂ C such that C \ Σ is isomorphic to a quotient of the
form H/Γ for some Fuchsian group commensurable with the classical modular
group PSL2(Z). Furthermore, Γ can be chosen to be torsion free.

Proof. If f : C → P1 is a Belyi function, then the restriction
C \ Σ → P1 \ {0, 1,∞}, with Σ = f−1({0, 1,∞}), is a smooth cover isomorphic
to one of the form H/Γ → H/Γ(2) for some finite index subgroup of the level
2 principal congruence subgroup Γ(2) which itself has finite index in PSL2(Z)
and is torsion free.

Conversely, assume that there is a finite set Σ ⊂ C such that C \ Σ is
isomorphic to H/Γ for some Fuchsian group commensurable with PSL2(Z).
Let H be a finite index subgroup of Γ and α a real Möbius transformation
such that αHα−1 has finite index in PSL2(Z), then the natural projection
H/αHα−1 → H/PSL2(Z) yields a Belyi function on the Riemann surface C ′ ob-
tained by compactifying H/αHα−1 ≃ H/H. Similarly, the projection
H/H → H/Γ uniquely determines a non constant morphism from C ′ to C.
Now we only have to invoke Theorem 21.

In conclusion I would like to thank the referee for her/his valuable comments
which improved the presentation of the paper and saved me from some mistakes.

References

[1] P. Beazley Cohen, C. Itzykson, J. Wolfart. Fuchsian triangle groups and
Grothendieck dessins. Variations on a theme of Belyi. Comm. Math. Phys.
163 (1994),3, 605-627.

[2] G. Belyi. On Galois extensions of a maximal cyclotomic field, Math, USSR
Izv. 14, No.2 (1980), 247-256.

17



[3] N. Bourbaki. Elements of Mathematics. Algebra II. Springer (1990)

[4] C. Earle and I. Kra. On sections of some holomorphic families of closed
Riemann surfaces. Acta Math. 137 (1976), 49-79

[5] M. de Franchis. Un teorema sulle involutioni irrazionali, Rend. Circ. Mat.
Palermo. 36 (1913)
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