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Departamento de Matemáticas. Universidad Autónoma de Madrid
28049 Madrid, Spain
E-mail: ernesto.girondo@uam.es

Gabino González-Diez
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We prove the compactness of Whittaker sublocus of moduli space of Riemann surfaces
(complex algebraic curves). This is the subset of points representing hyperelliptic
curves which satisfy Whittaker’s conjecture on the uniformization of hyperelliptic
curves via monodromy of Fuchsian differential equations. In the last part of the
article we drive our attention to the statement made by R.A. Rankin more than forty
years ago to the effect that the conjecture “has not been proved for any algebraic
equation containing irremovable arbitrary constants”. We combine our compactness
result with other facts coming from Teichmüller theory to show that in the most
natural interpretations of this sentence we can think of, this is, in fact, impossible.

1. Introduction

The fact that a compact Riemann surface of genus g > 1 can be obtained either
as quotient space of the unit disc D under the action of a Fuchsian group or as
an algebraic curve is one of the corner stones of the theory of Riemann surfaces.
Unfortunately, this correspondence can be made explicit only in few special cases
(see e. g. [1], [2]).

Genus g hyperelliptic Riemann surfaces are simply double covers of the Riemann
sphere Ĉ = C∪{∞} ramified over 2g+2 points. As algebraic curves, they are given
by equations of the form y2 = f(x), where f(x) is a polynomial in x with 2g + 2
different roots (or 2g + 1 if ∞ is a branch value).

There is a classical approach to the problem of finding the Fuchsian group uni-
formizing a given genus g hyperelliptic curve C of equation y2 = f(x). The strategy,
which is based on ideas of H. Poincaré that were later retaken by E.T. Whittaker
[15], consists of exploiting a known fact: if K uniformizes C, then K is an index
two normal subgroup of a Fuchsian group Γ with signature (0; 2, . . . , 2). The deter-
mination of K is equivalent to that of Γ. But Γ turns out to be the monodromy

∗Work partially supported by the MCyT research project BFM2003-04964.

1



2 Ernesto Girondo and Gabino González-Diez
group of a second order differential equation of the form

y′′ +
1
2
S(z)y = 0,

where S(z) is a certain rational function with double poles at the roots of f . The-
oretically this equation is fully determined in terms of the algebraic curve, that
is in terms of (the roots of) f , but the complete determination of this differential
equation has remained an elusive problem for decades.

In the thirties, E.T. Whittaker [16], building on previous work of Burnside [2]
that ultimately goes back to Fricke, Klein and Poincaré, proposed the following
conjectural expression for the differential equation:

y′′ +
1
2
W (z)y = 0,

with

W (z) :=
3
8

((
f ′(z)
f(z)

)2

− 2g + 2
2g + 1

f ′′(z)
f(z)

)
.

The validity of this conjecture would have led to the solution of the uniformization
problem for hyperelliptic curves.

As far as we know, the history of Whittaker conjecture goes roughly as follows:
It was early noticed that the analogous statement for genus one surfaces holds, as

can be seen after some manipulation with Weierstrass ℘ function (see [18], p.439).
Already in his 1929 paper [16] E.T. Whittaker checked the conjecture for the genus
two curve y2 = x5 + 1. This result was extended one year later by M. Mursi [12] to
the curve y2 = x7 + 1, of genus three, and to all curves of the form y2 = x2g+1 + 1
by S.C. Dahr [5] in 1935. Other works on Whittaker’s conjecture carried out about
the same time are due to D.P. Dalzell [4], J. Hodgkinson [10] and Whittaker’s son
J.M. Whittaker [17]. It was not until some twenty years later that R.A. Rankin [13]
enlarged substantially the list of known Whittaker surfaces, as they should be called
in this paper, by proving the conjecture for a collection of curves “whose branch
points” (the roots wi of f and, possibly, the point at infinity) “form sets possessing
certain symmetrical properties” in the author’s own words. The conjecture was
taken up by D.V. Chudnovsky and G.V Chudnovsky in their 1990 paper [3]. There,
they performed a number of numerical experiments to find that a randomly chosen
surface is most likely to be non-Whittaker. In fact, using tools from Teichmüller
theory, I. Kra was able to prove in [11] that the coefficients in the rational function
S(z) depend only real-analytically (but not holomorphically) on the values wi. As
the coefficients in W (z) clearly depend holomorphically on these values, it can be
deduced that Whittaker’s conjecture is not true in general.

So it was natural to believe (see e.g. [3]) that the only Whittaker surfaces were
those encountered by Rankin (hyperelliptic surfaces with many automorphisms).
Nevertheless, in [7] we showed that this prediction is not correct, as the existence
of Whittaker surfaces without many automorphisms was proved.
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In this article we study the subset of the moduli space of algebraic curves of given

genus consisting of points representing hyperelliptic curves which satisfy Whit-
taker’s conjecture. This subset shall be referred as the Whittaker locus and will be
denoted by W. Our main result is (see Theorem 3.1) that W is a compact real
analytic space.

The motivation for this paper is the work of R.A. Rankin on the conjecture and,
in particular, his 1958 article [13] (see also the nicely written survey article [14]).
In its introduction he writes: In particular, it (Whittaker’s conjecture) has not
been proved for any algebraic equation containing irremovable arbitrary constants.
In Theorem 4.1 we show that in the most natural interpretations of this sentence
we can think of, this is, in fact, impossible.

2. Whittaker’s conjecture on the uniformization of hyperelliptic
surfaces via differential equations

Any hyperelliptic Riemann surface arises from a set {z1, . . . , z2g+2} of (2g+2) points
in the Riemann sphere Ĉ = C∪{∞}, as a hyperelliptic algebraic curve. Its equation
is given by y2 =

∏2g+2
i=1 (x − zi) if {zi, 1 ≤ i ≤ 2g + 2} ⊂ C or y2 =

∏2g+1
i=1 (x − zi)

if, say, z2g+2 = ∞.
As any set of three points of the sphere can be always mapped, via a Möbius

transformation, to any other set of three points, we shall normalize three of them
to be {0, 1,∞} as usual.

Definition 2.1. We shall denote by W 2g−1 the complement in Ĉ2g−1 of the nor-
malized diagonal subset ∆ := {wj = 0, 1,∞ for some j} ∪ {wj = wi, i 6= j}.

Thus, any hyperelliptic curve is isomorphic to one of the form

y2 = x(x− 1)(x− w4) · · · · · (x− w2g+2), (2.1)

where w = (w4, . . . , w2g+2) ∈ W 2g−1.

In fact, it can be shown that the moduli space of hyperelliptic curves of genus g
is obtained as a quotient space of W 2g−1 modulo the action of the symmetric group
Σ2g+2 which acts on it in a natural Möbius fashion (see [8]).

Definition 2.2. We shall denote by Cw the curve given by equation (2.1), and by
fw the polynomial x(x− 1) · · · · · (x− w2g+2).

The hyperelliptic involution is given in Cw by J(x, y) = (x,−y). Its action induces
the hyperelliptic function π : Cw → Cw

<J> ' Ĉ, given by π(x, y) = x.
From the point of view of uniformization, there is a torsion free Fuchsian group

K = Kw such that the universal covering map p : D → Cw is represented by the
obvious projection D → D/K ' Cw. Likewise, the map X := π ◦ p : D → Ĉ
corresponds to a projection of the form D → D/Γ ' Ĉ, where Γ is a Fuchsian group
generated by 2g + 2 order two elements, say γ1, . . . , γ2g+2. The group K is then
the subgroup generated by all products γiγj . A possible strategy to determine Γ is
based on the use of the following differential operator:
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Definition 2.3. Given a holomorphic function ϕ, its Schwarzian derivative is given

by S(ϕ)(z) =
ϕ′′′(z)
ϕ′(z)

− 3
2

(
ϕ′′(z)
ϕ′(z)

)2

.

Two important features of S are its behaviour with respect to composition and
the fact that it characterizes Möbius transformations. Namely

• S(ϕ) ≡ 0 ⇔ ϕ is a Möbius transformation.

• S(ϕ ◦ φ)(z) = φ′(z)2S(ϕ)(φ(z)) + S(φ)(z).

Despite the fact that the inverse of the map X is a multivalued function from
Ĉ to D, its Schwarzian derivative S(X−1) is single valued. The reason is that any
two branches f, g of X−1 are related by f = γ ◦ g for some γ ∈ Γ and therefore the
above two properties of S yield S(f)(z) = S(g)(z).

Now a fundamental fact (see e.g. [6]) is that Γ, that is the covering group of
the map X : D −→ Ĉ, is obtained as the monodromy group of the second order
Fuchsian differential equation

y′′(z) +
1
2
(S(X−1)(z))y(z) = 0. (2.2)

The quotient Y (z) = y1(z)
y2(z) , where y1, y2 are two linearly independent solutions

of equation (2.2), verifies S(Y )(z) = S(X−1)(z) (see [6]). Therefore Y = T ◦X−1

for a Möbius transformation T , again by a combination of the two properties of S
mentioned above.

If we could determine S(X−1) in terms of the curve Cw, we could then obtain Γ
(and X up to Möbius transformation), and therefore K. However the determination
of S(X−1) in terms of w has turned out to be a very elusive problem for more than
seventy years.

Let w ∈ W 2g−1, and let Sw denote the Schwarzian derivative S(X−1), where X
is as in the previous section. By examining the local behaviour at the branch points
of X, namely 0, 1,∞, w4, . . . , w2g+2, it can be shown (see [13], p. 37) that

Sw(z) =
3
8

(
h(z)
fw(z)

+
1
z2

+
1

(z − 1)2
+

2g+2∑
i=4

1
(z − wi)2

)
, (2.3)

where h is a certain polynomial of the form h(z) = −2gz2g−1 + cw
2g−2z

2g−2 + · · ·+
cw
1 z + cw

0 , and fw is given in definition 2.2.
The 2g − 1 coefficients cw

0 , cw
1 , . . . , cw

2g−2 are classically known as the accessory
parameters.

In 1929 [16] E.T. Whittaker conjectured that Sw(z) = Ww(z), where

Ww(z) :=
3
8

((
f ′w(z)
fw(z)

)2

− 2g + 2
2g + 1

f ′′w(z)
fw(z)

)
. (2.4)

From now on we shall employ the following notation and terminology: The hyper-
elliptic Riemann surface Cw is a Whittaker surface if Sw = Ww, i.e. if Cw satisfies
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Whittaker’s conjecture. Accordingly, w ∈ W 2g−1 is a Whittaker point if Cw is a
Whittaker surface. We will refer to Ww as Whittaker rational function.

Also, we shall denote byW the subset of points in W 2g−1 corresponding to curves
which satisfy Whittaker’s conjecture and by W̃ its image in the moduli space of
hyperelliptic curves W 2g−1/Σ2g+2.

Remark 2.4. From equation 2.4, we find an expression for Ww that will be useful
later on, namely

Ww(z) = 3
8

{
1
z2 + 1

(z−1)2 +
∑2g+2

i=4
1

(z−wi)2
− 2

2g+1

(
1

z(z−1)

+
∑2g+2

i=4 ( 1
z + 1

z−1 )( 1
z−wi

) +
∑

i 6=j
1

(z−wi)(z−wj)

)} (2.5)

which, in turn, can be rewritten as

Ww(z) =
3
8

(
q(z)
fw(z)

+
1
z2

+
1

(z − 1)2
+

2g+2∑
i=4

1
(z − wi)2

)
, (2.6)

where q(z) = −2gz2g−1 + qw
2g−2z

2g−2 + · · ·+ qw
1 z + qw

0 .
Now, comparing equations 2.3 and 2.6 we find

Sw(z)−Ww(z) =
A2g−2(w)z2g−2 + · · ·+ A1(w)z + A0(w)

fw
,

where Ai(w) = cw
i − qw

i . It is known (see [11]) that cw
i depends real-analytically on

w4, . . . , w2g+2. Note also that qw
i is simply a polynomial in w4, . . . , w2g+2.

Thus W can be described as the common zero set of the real-analytic functions
Ai, namely:

W = {A2g−2(w) = · · · = A0(w) = 0} ⊂ W 2g−1.

These functions Ai are, in principle, complex valued functions, but when w is real
Ai(w) is also real. This is because the Schwarzian derivative behaves nicely under
conjugation, namely Sw̄(z̄) = ¯Sw(z) (see [9]).

This allows us to give a description of the locus of real Whittaker points in terms
of real valued analytic functions. More precisely we have

W ∩ R2g−1 = {Re A2g−2 = · · · = Re A0 = 0} ∩ R2g−1.

3. Whittaker locus is compact

This section is devoted to the proof of our main result, namely

Theorem 3.1. W is a compact real analytic variety.

Note that w approaches ∆ exactly when some of the wi approaches 0, 1 or ∞,
or when wj and wk tend to get close to each other. Therefore, we have to study
the behaviour of both Sw and Ww under degeneration (coalescing of points) of the
branching value set of X, namely {0, 1,∞, w4, . . . , w2g+2}.
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3.1. Behaviour of Sw under degeneration: Kra’s theorem

Let {w(n) = (w4(n), . . . , w2g+2(n))} ∈ W 2g−1 be a sequence, and let Xn : D → Ĉ
be the regular covering map constructed as in section 2 from Cw(n). The branch
value set of Xn is An = {λ1(n), . . . , λ2g+2(n)}, where λ1(n) ≡ 0, λ2(n) ≡ 1, λ3(n) ≡
∞, and the branching indices are all equal to 2.

Assume that limn→∞ λj(n) = λj(∞) exists for j = 1, · · · , 2g + 2. Denote, re-
labeling if necessary, A∞ = {λ1(∞), . . . , λN (∞)} the maximal subset that consists
of distinct elements of {λ1(∞), . . . , λ2g+2(∞)} (the sequence could have gone to
the boundary ∆).

Set µj = 2 if a single sequence λj(n) converges to λj(∞), and µj = ∞ otherwise.
Denote by X∞ : D −→ Ĉ the regular cover corresponding to this limit branching
data. The following result is a particular case of Kra’s theorem on degeneration of
uniformizing connections (see page 603 of [11]):

Theorem 3.2 (Kra). If 1/µ1 + · · · + 1/µN < N − 2, i.e. if (0;µ1, . . . , µN ) is a
hyperbolic signature, then

S(X−1
∞ )(z) = lim

n→∞
S(X−1

n )(z)

uniformly on compact subsets of Ĉ.

As an application, one has:

Corollary 3.3. Let {w(n) = (w4(n), . . . , w2g+2(n))} ∈ W 2g−1 be a sequence such
that limn→∞ wj(n) exists for j = 4, . . . , 2g+2. Let λ1(n) = 0, λ2(n) = 1, λ3(n) = ∞,
and λk(n) = wk(n) for 4 ≤ k ≤ 2g + 2. Set {limn→∞ λj(n), 1 ≤ j ≤ 2g + 2} =
{λ1(∞), . . . , λN (∞)}, with λ1(∞) = 0, λ2(∞) = 1, λ3(∞) = ∞. Suppose further
that 3 ≤ N < 2g + 2, and that the limits of wk(n) are not all equal in the case
N = 3. Then, at least one of the following statements holds:

i) limn→∞ S(X−1
n )(1/z) = 1

2z2 + higher order terms in z.

ii) There exists λ ∈ Ĉ such that

lim
n→∞

S(X−1
n )(z) =

1/2
(z − λ)2

+ higher order terms in (z − λ).

Proof.- Note first that the condition on the set {limn→∞ λj(n), 1 ≤ j ≤ 2g + 2}
implies that the limit signature (0;µ1, . . . , µN ) is necessarily hyperbolic. This is
because µj = ∞ for some j, hence we have

N∑
j=1

1
µj
≤ N − 1

2
,

and this is strictly less than N − 2 for 3 < N . But for N = 3 at least two of
the indexes {µ1, µ2, µ3} equal ∞, hence 1/µ1 + 1/µ2 + 1/µ3 equals either 0 or 1/2
(both smaller than (N − 2) = 1). Therefore, we can apply Theorem 3.2 to study
limn→∞ S(X−1

n ).
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Now, if limn→∞ λk(n) = ∞ for some k with 4 ≤ k ≤ 2g + 2, then µ3(∞) = ∞,

which means that ∞ is a parabolic value. If, on the contrary, limn→∞ λk(n) 6= ∞
for every k > 3, then, as N < 2g + 2, there is an index j 6= 3 such that µj = ∞,
which means that in this case λ = λj(∞) is a parabolic value. A straightforward
computation in local coordinates similar to the one needed to obtain equation 2.3
gives i) in the first case and ii) in the second one (see e.g. [11] 2.3.1)

3.2. Behaviour of Ww under degeneration

We now study the effect of coalescing of branch points on Whittaker rational
function Ww. Thus, let w(n) = (w4(n), . . . , w2g+2(n)) be a sequence in W 2g−1

that converges to some point w(∞) := (w4(∞), . . . , w2g+2(∞)) ∈ Ĉ2g−1, where
limn→∞ wj(n) = wj(∞).

Let W (n) = Ww(n), and W∞ = limn→∞W (n).

Lemma 3.4. If k − 1 of the coordinates of w(∞) equal ∞, then

W∞(1/z) =
(

6k + 6gk − 3k2

16g + 8

)
z2 + higher order terms in z.

Also, if k − 1 of the coordinates of w(∞) equal λ, where λ = 0 or 1, or if k of the
coordinates of w(∞) equal λ 6= 0, 1, then

W∞(z) =
(

6k + 6gk − 3k2

16g + 8

)
1

(z − λ)2
+ higher order terms in (z − λ).

Proof.- The result follows easily taking the corresponding limits in expression
2.5.

3.3. The proof of Theorem 3.1

We will use Corollary 3.3 and Lemma 3.4 to compare the behaviour of Sw and Ww

under degeneration, which corresponds to approaching the diagonal ∆ in C2g−1. We
will need the following elementary

Lemma 3.5. The equation

6k + 6gk − 3k2

16g + 8
=

1
2

admits no solution in the variables (g, k) ∈ N2 with g > 1.

Proof.- The original equation is equivalent to

g =
3k2 − 6k + 4

6k − 8
,

which in turn yields

g = −1 +
3k2 − 4
6k − 8

.
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It follows that an integer solution must have k even, say k = 2j. But then

3k2 − 4
6k − 8

=
3j2 − 1
3j − 2

= j +
2j − 1
3j − 2

is an integer only for j = 1, as 2j−1
3j−2 < 1 when j > 1. Now, j = 1 yields k = 2, g = 1,

and we are done.

Lemma 3.6. Let w ∈ W 2g−1, and T a Möbius transformation such that the
set {0, 1,∞, w4, . . . , w2g+2} is sent via T to {0, 1,∞, w̃4, . . . , w̃2g+2}. Denote w̃ =
(w̃4, . . . , w̃2g+2). Then w is a Whittaker point if and only if so is w̃.

Proof.- It follows from the fact that Whittaker rational function behaves as a
Schwarzian derivative with respect to composition with Möbius transformations
(see [13] and Proposition 2.4 in [7]). Therefore

Sw(z)−Ww(z) = T ′(w)2 [Sw̃(T (z))−Ww̃(T (w))] ,

and the proof is complete.

Proof of Theorem 3.1.- We already know that W is an analytic space (see remark
2.4) so we only have to show that it is compact. If it were not, there would be a
sequence of Whittaker points w(n) ∈ W ⊂ W 2g−1 that accumulates in w ∈ ∆.
Take then a subsequence, labeled again w(n), tending to w.

Suppose that the coordinates w4, . . . , w2g+2 of w are not all identical or, if they
are, that w4 = · · · = w2g+2 /∈ {0, 1,∞}. We have Sw(n) ≡ Ww(n) for all n, as w(n)
are Whittaker points. On the other hand we can apply Corollary 3.3 and Lemma
3.4 to obtain information about limn→∞ Sw(n) and limn→∞Ww(n) separately. In
this way we see that Lemma 3.5 yields a contradiction.

The problem when w4 = · · · = w2g+2 = x with x = 0, 1 or ∞ is that we cannot
apply directly Corollary 3.3. Now, the cases x = 1 and x = ∞ are reduced to the
case x = 0 by taking T (z) = (z − 1)/z or T (z) = 1/z and applying Lemma 3.6.

Therefore, it is enough to deal with the case wk = 0 for k = 4, . . . , 2g+2. Passing
to a subsequence we can assume that lim w5(n)

w4(n) = a 6= ∞ (otherwise interchange
the roles of w4 and w5). Now, if Tn(z) = z/w4(n), we have

Tn({0, 1,∞, w4(n), . . . , w2g+2(n)}) =
{

0, 1,∞,
1

w4(n)
,
w5(n)
w4(n)

, · · · ,
w2g+2(n)

w4(n)

}
,

and thus Lemma 3.6 shows that {w̃(n)}, with

w̃(n) =
(

1
w4(n)

,
w5(n)
w4(n)

, . . . ,
w2g+2(n)

w4(n)

)
is also a sequence of Whittaker points.

Take a subsequence {w(nm)} for which the limits limm→∞(wk(nm)/w4(nm))
exist for k = 4, . . . , 2g + 2. Thus, w̃(n) tends to a point w̃ = (w̃4, . . . , w̃2g+2) for
which w̃4 = ∞ and w̃5 = a 6= ∞. But this is already a contradiction, since we
know by the first part of the proof that such a sequence of Whittaker points can’t
exist.
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4. Families of Whittaker surfaces

We can use Theorem 3.1 to obtain information about how a family of Whittaker
surfaces may look like (or rather about how it can’t look like). Our findings point in
the same direction as the statement made by Rankin in [13] more than forty years
ago to the effect that the conjecture has not been proved for any algebraic equation
containing irremovable arbitrary constants.

Theorem 4.1. Whittaker’s conjecture cannot be satisfied for all members of a
family of hyperelliptic curves {Cλ}λ∈Λ whose parameter space Λ ⊂ W 2g−1 verifies
any of the following conditions:

i) Λ is unbounded.

ii) Λ is not relatively compact.

iii) Λ contains infinitely many points of a polynomially parametrized arc inside
W 2g−1.

iv) Λ is a complex analytic subspace of W 2g−1 of positive dimension.

v) Λ is an algebraic subset of W 2g−1 of positive dimension.

Proof.- Case v) is a particular case of iv). For iv), simply note that near a non
singular point λ0, the analytic space can be described as the image of a small ball
B ⊂ Cr, with r ≤ 2g − 1, by a holomorphic map

B : −→ W 2g−1

z 7−→ λ(z)
.

Now, use (see [11]) that the accessory parameters are not holomorphic but just real
analytic functions of the branching points.

i) is a particular case of ii). With respect to ii), it is enough to note that if Λ is
contained in the compact set W , its closure must be compact.

As for iii), suppose Λ ⊃ {P (tn)}, where {tn} is a nontrivial sequence in R and
P (t) = (P4(t), . . . , P2g+2(t)), where each Pk is an one variable polynomial with
complex or real coefficients.

If {tn} is unbounded, then Λ is unbounded too and we apply i). If not, passing
to a subsequence if necessary, we have limn→∞ tn = t0. If P (t0) ∈ ∆, apply ii). If
P (t0) ∈ W 2g−1 then consider the difference SP (t)(z)−WP (t)(z), which (see section
2) has the form

SP (t)(z)−WP (t)(z) =
A2g−2(P (t))z2g−2 + · · ·+ A1(P (t))z + A0(P (t))

fP (t)
.

Now, Λ is a set of Whittaker points, hence each function Re(Ak(P (t))) is a real ana-
lytic function near t0 of which t0 is limit of zeros. Therefore, if P (R) ⊂ W 2g−1, then
each function Re(Ak(P (t))) identically vanishes, and thus limt→∞Re(Ak(P (t))) =
0 for each k. Same argument applied to Im(Ak(P (t))) allows us to conclude that
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P (R), which is obviously unbounded in W 2g−1, would be a set of Whittaker points,
thus contradicting i). If, on the contrary P (R) intersects ∆, denote by t′ the first
t > t0 such that P (t) ∈ ∆ and apply the argument above to P ((t0 − ε, t′)). The
conclusion is now a consequence of ii).
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