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Abstract. We exploit the Fuchsian group representation of the monodromy data

for a Riemann surface with genus g > 0 as a cyclic branched covering of the sphere

to construct a family of surfaces modelled on this structure as a quotient of the

corresponding Teichmüller family of genus g. A universal property of the family is

proved and some examples are given which indicate the nature of the general problem

and the rationale underlying our approach.

Introduction

It is often valuable in the complex geometric setting to represent a family of
genus g Riemann surfaces in terms of a single group action on a simply connected
(total) space, where the group has a product structure incorporating the funda-
mental groups of base and fibre; such a representation is a consequence of the exact
homotopy sequence for surface bundles. Even in simple cases, however, this process
is not easy to make explicit geometrically and the relationship between geometric
information such as monodromy and topological invariants is often poorly under-
stood.

It is well known that the moduli space functor of isomorphism classes of com-
pact Riemann surfaces (or nonsingular algebraic curves) of given genus g is not
representable, at least in the category of algebraic varieties or complex manifolds.
Grothendieck showed that in order to make this a representable functor one has
to rigidify the problem by fixing a marking on each Riemann surface S, an extra
topological structure which serves to distinguish it from all neighbouring struc-
tures. In [Gro] it is proved that the functor of isomorphism classes of Teichmüller
marked surfaces is represented by the Teichmüller curve V = {Vg → Tg}; thus any
holomorphic family of marked surfaces of genus g over a complex base manifold,
E = {E → B}, is expressible up to isomorphism by pullback of the universal genus
g family V through a holomorphic map φ : B → Tg, such that φ ∗ (V) ∼= E . As an
appendix in that work, Serre showed that if, instead of marking the fundamental
group π1(S), one fixes a level ` ≥ 3 and uses the homology group H1(S,Z/`Z),
then one still obtains a representable functor giving rise to the universal family of
curves with level ` structure, Cg(`)).
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The results of [Gro] were extended to surfaces with punctures (or marked points)
by Engber ([Eng]), working along similar lines, and by Earle([E]), who employed the
tools of Teichmüller theory and complex geometry. Later Earle and Fowler([E-F])
generalised their results to families of open Riemann surfaces with base an arbitrary
complex Banach manifold, by strengthening the procedure for making a fibration
rigid.

The purpose of this article is to obtain appropriate modular families of surfaces
which carry a specific type of automorphism within the Teichmüller framework and
to deduce that the functor of isomorphism classes of cyclic covers of P1 with given
ramification structure at a marked finite set of branch points is also representable
(Theorems 5.2, 5.3). We give examples showing that this property cannot hold in
general for such families if the quotient surface is not P1.

For cyclic covers of degree n with r ≥ 3 branch points, the universal curve
representing this functor will be a complex fibre space with base the affine space
Ωr−3, which denotes Cr−3 with the diagonal set ∆ = {λi = 0, 1, λj ; i 6= j} removed,
and with fibre over a point (λ3, ..., λr−1) the Riemann surface with affine algebraic
equation of the form

yn = xd1(x− 1)d2(x− λ3)
d3 ...(x− λr−1)

dr−1 ,

where ∞ is a point of branching with index dr These families arise in many con-
texts, for instance in the foundational paper of A. Kuribayashi [Kuri] on symmetric
Teichmüller -families and more recently in the work of R. Holzapfel, P. Deligne
and G.D. Mostow and others [Holz], which study number-theoretic aspects of the
monodromy problem for certain differential operators of hypergeometric type asso-
ciated with families of algebraic curves. They discover certain compactifications of
our families in the 2 dimensional case (r = 5) which arise from arithmetic quotients
of the complex unit ball first studied by E. Picard and his students.

1. The universal family of complex tori

As a simple prologue, to indicate the nature of the problem and exhibit our
methods, we examine briefly the well known case of genus 1. Consider the Riemann
surface family given by complex tori Eτ = C/Λτ , with τ in the upper half plane
H and Λτ the lattice Z + Zτ . There is a Z2-cyclic covering Eτ → P1 induced by
the elliptic involution automorphism J(z) = −z which fixes the four points of order
two 0, τ2 ,

1+τ
2 , and 1

2 . In our terminology, the Riemann surfaces Eτ endowed with
this extra data are a Teichmüller family of 4-pointed symmetric surfaces over H.

Thus we have a fibre space E = (H × C)/Z2 over H, where the lattice group
L = Z2 acts on H × C by (n,m)(τ ; z) = (τ ; z + n +mτ), and the fibre over τ is
precisely Eτ .

Corresponding to the four fixed points of J , we have four holomorphic sections
of the family E→ H, given by

s1(τ) = 0, s2(τ) =
τ

2
, s3(τ) =

1 + τ

2
, s4(τ) =

1

2
.

The modular group Γ = SL(2,Z) acts (discretely and properly) on H as Möbius

transformations A(τ) = aτ+b
cτ+d , where A =

(
a b
c d

)
. Two points τ, τ ′ ∈ H are in
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the same SL2(Z)-orbit if and only if the complex tori Eτ and E′
τ are isomorphic.

This action extends to an action of Γ on the fibre space E by the following rule for
the semidirect product group Γ · L on the universal cover H× C :-

[A, (m,n)](τ ; z) = (A(τ); (cτ + d)−1(z +mτ + n))

Here the group extension Γ·L is specified by the action of Γ on the normal subgroup
L via the rule

(m,n) 7→ (m,n)A = (am+ cn, bm+ dn).

Now consider the level-2 congruence subgroup Γ(2) of SL(2,Z), comprising ma-
trices A ≡ Id (mod 2). Each orbit of this subgroup in H consists of points whose
corresponding Riemann surfaces are isomorphic as pointed symmetric surfaces, ie.
two points τ and τ ′ are in the same Γ(2)-orbit if and only if the corresponding
surfaces Eτ and E′

τ are related by an isomorphism which commutes with the auto-
morphism J and preserves all the points of order two. Accordingly, the universal
family of symmetric surfaces of genus 1 we seek should have as base the 3-pointed
sphere H/Γ(2). However, in order to achieve the corresponding family of complex
tori, simply lifting the action of Γ(2) to the fibre space E is inadequate, because
on examining the extended group action of Γ(2) · L, one sees that the (central)

element −I =

(
−1 0
0 −1

)
of Γ(2) , while acting trivially on H, induces the auto-

morphism J on each fibre torus, so that the family so obtained has fibres of genus
zero, Eτ/〈J〉 ∼ CP1. This shows that we must find a way to remove the action of
the element −I, while keeping the lattice L-part of the action. To be more precise,
in the notation of later sections, we denote the group which represents the action
of Γ(2) on E by P (J): what we need to find is a subgroup P ′(J) of P (J) such that
on the one hand P ′(J) is isomorphic to P (J)/〈J〉, so that the factor space of its
action on the base H is still H/Γ(2), but on the other hand P ′(J) does not contain
the central element J induced by the matrix −I. In fact the existence of a universal
pointed symmetric family of cyclic covers is equivalent to the existence of such a
subgroup (Theorem 5.4).

In this example, a subgroup P ′(J) exists because Γ(2)/〈±Id〉 is a free group. We

could take, for instance, the group generated by the elements A =

(
1 2
0 1

)
and

B =

(
−1 2
−2 3

)
. However, there is a more systematic way to reach this goal which

illustrates our approach in the general case:

Each surface Eτ is an elliptic curve with equation y2 = x(x−1)(x−λ(τ)), where
λ : H → C is the Legendre modular function. The elliptic involution J representing
the action of the element −I ∈ Γ(2) is given by J(x, y) = (x,−y), which implies
that one way to exclude J and obtain the desired group P ′(J) is to consider the
subgroup of Γ(2) consisting of those elements whose action on the (algebraic model)
of the family E leaves invariant the y-coordinate. One sees that this subgroup is
the kernel of an order 2 character of the group Γ(2). A similar approach succeeds
in the case of cyclic covers of P1, as we show in section 3.
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2. Background: modular spaces and groups

2.1. Fuchsian groups and Teichmüller spaces Let G be a Fuchsian group
acting on the upper half plane, here denoted U , with compact orbit space U/G.
Then G has the following structure:-

(2-1)

Generators γ1, . . . , γr; a1, b1, . . . , ag, bg.

Relations





γm1

1 = γm2

2 = · · · = γmr

r = 1

γ1γ2...γr

g∏

i=1

[ai, bi] = 1, [ai, bi] = a−1i b−1i aibi.

The integers m1,m2, . . . ,mr (all different from 1) are called the periods of the
group. If UG denotes the upper half-plane with the fixed points of elliptic elements
of G removed, then UG/G is a Riemann surface of genus g, namely U/G, with r
punctures at the ramification points, one for each conjugacy class of finite cyclic
subgroup generated by γi. Such a surface is said to be of type (g, r). ([Harv 1],[J-S]).

The Teichmüller space T (G) of the group G is the space of quasiconformal (qc)
self-mappings f of U which fix 0, 1 and ∞ and such that G′ = fGf−1 is Fuchsian,

modulo those whose (continuous) extension to ∂U = R̂ = R ∪ ∞ is the identity
map: note that qc-mappings always have such an extension to ∂U . It is well known
that this equivalence relation serves to pick out the homotopy class of f viewed as a
homeomorphism between S = U/G and S ′ = U/G′. The class of f will be denoted
by [f ].

The extended modular group of G, mod(G), is defined to be the group of quasi-
conformal self-mappings h of U such that hGh−1 = G, where two such mappings
h1 and h2 are identified if their extensions to ∂U are equal. Clearly, the Fuchsian
group G is itself a normal subgroup of mod(G). The modular group Mod(G) of G is
defined as the quotient group mod(G)/G. The class of h in Mod(G) will be denoted
by {h}, and called the mapping class of h.

The Bers fibre space over T (G) is an open contractible subset F (G) of T (G)×C
enjoying the following properties:-

(i) Each fibre subset Ut = {z ∈ C; (t, z) ∈ F (G)} is a Jordan domain in C , and the
quotient space Ut/G is the Riemann surface represented by the point t ∈ T (G).
(ii) G acts properly discontinuously on F (G) as a group of fibre-preserving biholo-
morphic maps

γ(t, z) = (t, ρt(γ)(z)) for all γ ∈ G and (t, z) ∈ F (G),

and z 7→ ρt(γ)(z) is a Möbius transformation for every t ∈ T (G).
(iii) The projection p1 : (t, z) → t of F (G) onto T (G) induces a holomorphic map
π from the quotient manifold V (G) = F (G)/G onto T (G) with fibre St = Ut/G.
In the case where G ∼= π1(S), a closed surface of genus g, this structure π : V (G) =
Vg → T (G) = Tg determines a holomorphic family of compact genus g surfaces
known as the Teichmüller family (or Teichmüller curve).
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(iv) The group mod(G), acts properly discontinuously on F (G) as a group of bi-
holomorphic automorphisms

h(t, z) = (h(t), ht(z)), for all h ∈ mod(G) and (t, z) ∈ F (G),

where z 7→ ht(z) is a conformal map of Ut onto Uh(t). When h = γ ∈ G, this
action and the one described in (ii) coincide.
(v) The action of mod(G) on F (G) projects via p1 to an action on T (G), whose
restriction to the group G is trivial. Hence, we have a well defined action of Mod(G)
on T (G). The corresponding quotient space, the moduli space T (G)/Mod(G) will
be denoted by M(G). The quotient space of the parallel action of mod(G) on
F (G) is a singular fibre space C(G) over M(G). When G = π1(S), a compact
surface of genus g, this fibre space is called the modular curve Cg of genus g. The
fibre over a point x = [t] ∈ Mg is Sx/Aut(Sx) where Aut(Sx) is the full group of
automorphisms of the surface Sx, represented here as the stabiliser in Modg of the
point t.

The spaces Cg andMg are complex orbifolds, each having finite coverings which
are complex manifolds. For more details, the reader may consult a standard source
such as ([Be],[Nag]).

When K is a Fuchsian group without torsion uniformising a compact surface S0
of genus g ≥ 2, so that K acts freely on U and U/K is isomorphic to S0, then
the points of the Teichmüller space T (K) , also denoted by T (S0) or Tg, can be
represented as homotopy classes [f ] of topological maps f : S0 → S. Similarly
the modular group Mod(K), or Mod(S0) or Modg, is then defined as the group of
homotopy classes {h} of self-homeomorphisms of S0. In these terms the action of an
element {h} ∈Modg on Tg as in (v) can be simply described as {h}◦[f ] = [f ◦h−1].

2.2 Surfaces with an automorphism. In this section we summarise the analysis
of surfaces with automorphisms in terms of Fuchsian groups, following [Harv 2]. Let
K be a Fuchsian group uniformising a compact surface S0 of genus g ≥ 2 and let
τ0 : S0 → S0 be an automorphism of order n. Then there is a Möbius transformation
u such that u−1Ku = K and u acting on U induces the self-mapping τ0 on S0.
Hence un ∈ K and writing Γ = 〈K,u〉 we have that U/Γ = S1 is isomorphic to
S0/〈τ0〉 and there is an exact sequence

(2-2) 1→ K → Γ
δ
→ 〈τ0〉 → 1.

In terms of a presentation as in (2-1) for the group Γ, the periods {mi} are the
branching orders of the covering S0 → S1, and u can be chosen as γ1 (or, indeed,
any γi) when n = p is prime and g(Γ) = 0. In the general cyclic case, the element
u will be given as a word w(γi, aj , bk) with δ-image the generator τ0.

If τ0 : S0 → S0 has order n and fixes all r points {Pi}, so that all periods mj = n,
then in local coordinates z near any Pi we have τ(z) = εiz where εi is a primitive
nth root of unity. Thus τ0 is locally a rotation at Pi through angle 2πvi/n where
(vi, n) = 1; it can be shown that δ(γi) = τ−vi [Harv2]. In the general case, one
has that n = lcm{mj} and a similar analysis can be made for the various periodic
points of τ0.

Proposition A. In the natural inclusion ι∗ : T (Γ) ⊂ T (K) induced by ι : K → Γ
from (2-2), ι∗T (Γ) consists of the points [f ] ∈ T (K) such that the Riemann surface
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S1 = U/fKf−1 admits a cyclic group of automorphisms 〈τ1〉, with the same order,
number of fixed (or, more generally periodic) points and rotation angles as 〈τ0〉; and
such that the induced map f : S0 → S1 satisfies 〈τ1〉 = f〈τ0〉f

−1 up to homotopy.

Notation.

The surface automorphism τ0 provides a geometric realisation of the mapping
class {u} ∈ Modg which it determines. We denote the fixed subspace of τ0 ∼ {u} in
the Teichmüller space Tg = T (K) by Tg(τ0), the fibre space V (K) by Vg and the
restriction of Vg to the base Tg(τ0)(∼= T (Γ) via ι∗) by Vg(τ0). It is known ([E-K])
that the rule which associates to each point t ∈ T (Γ) the K-orbit of the fixed point
of an elliptic generator ρt(γi), 1 ≤ i ≤ r, acting on the fibre set Ut is well defined
and determines r disjoint holomorphic sections ξi(t), i = 1, . . . , r of Vg(τ0) over
ι∗T (Γ).

By making use of Riemann’s theory of theta functions, one can prove more
explicit results when n is prime, as follows.

Proposition B. Suppose that the model Riemann surface S0 has an automorphism
τ0 of prime order and that the quotient surface S0/〈τ0〉 has genus zero. Then there
exist meromorphic functions x, y : Vg(τ0) → C whose restriction to each fibre St

provides two generating meromorphic functions xt,yt satisfying the identity

ypt = xd1

t (xt − 1)d2(xt − λ3)
d3 ...(xt − λr−1)

dr−1 ,

where the integers di are inverses (mod p) of the rotation numbers vi of τ0.

We note that xt is characterised as the unique meromorphic function on St of
degree p which has a single zero (resp. pole) of order p at ξ1(t) (resp. ξr(t)) and
takes the value xt(ξ2(t)) = 1. We can then set

xt(ξ3(t)) = λ3, ..., xt(ξr−1(t)) = λr−1,

For details, see ([Kuri],[Gon1],[G-H]).

2.3 Relative modular groups and their actions. A description of the various
relevant modular subgroups from the point of view of Fuchsian groups follows:-

• modg = mod(K)

• Modg = mod(K)/K

• modg(τ0) = mod(Γ,K) = mod(K) ∩mod(Γ)

• Mod(Γ,K) = mod(Γ,K)/K

• P(Γ) = {h ∈ mod(Γ)|h−1〈γi〉h = t−1i 〈γi〉ti for some ti ∈ Γ; i = 1, ..., r}.

• Pg(τ0) = P(Γ,K) = mod(K) ∩ P(Γ).

• Pg(τ0) = P (Γ,K) = P(Γ,K)/K.

As in section 2.2, we choose u = w(γj) an element of Γ representing the au-
tomorphism τ0. Abusing notation somewhat, we usually also denote by τ0 the
corresponding mapping class element in modg and Modg induced by u, since when
K and Γ are regarded as subgroups of P(Γ,K), and Γ/K as a subgroup of P (Γ,K),
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then we have Γ/K = 〈τ0〉 and {u} is indeed the surface automorphism τ0 viewed
as a mapping class.

The groups Mod(Γ,K) and P (Γ,K) defined above will usually be denoted by
Modg(τ0) and Pg(τ0) respectively. They are referred to as the relative modular
group and the pure modular group for τ0, respectively.

An equivalent topological way to think of Modg(τ0) is as the group of map-
ping classes {f} of homeomorphisms f : S0 → S0 that normalise τ0, so that
f ◦ 〈τ0〉 ◦f

−1 = 〈τ0〉. Similarly Pg(τ0) is the normalising subgroup corresponding to
homeomorphisms which in addition preserve each fixed point of τ0. In particular,
this implies that Pg(τ0) is normal in Modg(τ0).

Notation.

Within the action of Modg on Tg, which produces as quotient the moduli space
Mg of surfaces of genus g , these two subgroups acting on Tg(τ0) produce as quo-
tient complex analytic (orbifold) spaces Tg(τ0)/Modg(τ0) and Tg(τ0)/Pg(τ0); we
denote these byMg(τ0) andM

pure
g (τ0) respectively, the latter space being a finite

holomorphic (ramified) cover of the former ([G-H],[H-M]).

2.4 A crucial remark on the action of modg(τ0). Now consider any element
h ∈ modg(τ0) acting on the Bers fibre space F (K) as in 2.1. Write h(t) = t′ for the
map induced on the base space, t, t′ ∈ Tg(τ0); the biholomorphism ht : Ut → Ut′

obtained by restriction to the fibre over t induces an isomorphism from St onto St′

which we also denote by ht. In other words, the action of modg(τ0) on F (Γ) induces
an action of Modg(τ0), and hence of Pg(τ0), on Vg(τ0).

Remark. We note, and this is perhaps the key observation of the paper, that
although the mapping class τ0 fixes Tg(τ0), its action on Vg(τ0) is not at all triv-
ial; indeed it produces a biholomorphic symmetry T of the total space of order n.
Therefore the quotient of the family Vg(τ0) by the action of Pg(τ0) is a family of
Riemann spheres.

In the next section, we shall see how to remedy this difficulty.

3. De-singularisation of the group action on Vg(τ0)

3.1 Action of the relative modular group. From now on, we assume that the
model quotient surface S0/〈τ0〉 has genus 0 and, for simplicity, that the order of τ0
is prime. Our purpose is to examine in more detail the action of the pure relative
modular group Pg(τ0) on the fixed subspace of the universal family Vg of marked
surfaces, and to identify a character of the group which ensues.

We consider first the element τ0 ∈ Pg(τ0). The action of τ0 on Vg(τ0) pre-
serves each fibre surface St and induces an automorphism τt which fixes the points
ξ1(t), ..., ξr(t): this follows immediately from the analysis in 2.2 and specifically
Proposition A.

A general element of the pure group Pg(τ0) maps fibres to fibres and also pre-
serves each section ξi : Tg(τ0)→ Vg(τ0) for i = 1, . . . , r. Thus for each h ∈ Pg(τ0),
the restriction to the t−fibre, ht : St → St′ , sends ξi(t) to ξi(t

′). We observe that
this biholomorphic map induces by the comorphism h∗t an isomorphism between
the fields of meromorphic functions K(St), K(St′) on these two (holomorphically
equivalent) Riemann surfaces, given by F ′ 7→ F = h∗t (F

′) = F ′ ◦ ht.
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Proposition 3.1. (i) (ht)
∗(xt′) = xt.

(ii) For each h ∈ modg(τ0) there is a p-th root of unity ε = ε(h) such that
(ht)

∗(yt′) = εyt holds for all t ∈ Tg(τ0).
(iii) The rule h 7→ ε(h) defines a character ε of Pg(τ0) with ε(τ0) 6= 1.

Proof. (i) (ht)
∗(xt′) = xt′ ◦ ht is a meromorphic function of degree p with a single

zero (resp. pole) at (ht)
−1(ξ1(t

′)) = ξ1(t) (resp.(ht)
−1(ξr(t

′)) = ξr(t)) and taking
the value 1 at (ht)

−1(s2(t
′)) = s2(t). Thus, it is the function xt.

(ii) Applying (ht)
∗ to the equation relating xt′ and yt′ (Proposition B ) and taking

into account part (i), we obtain

((ht)
∗yt′)

p = xd1

t (xt − 1)d2(xt − λ3)
d3 ...(xt − λr−1)

dr−1 ,

which implies that (ht)
∗yt′ differs from yt by a pth root of unity ε(h, t). But ε is

independent of t by the continuity of ε(h, t) with respect to the variable t.
(iii) It is routine to check that ε is a character by the formula for the composition
action of h1 ◦ h2. If it were trivial for the mapping class of τ0, the automorphism
τ0 of the surface S0 would fix the whole function field K(S0) and hence would be
the identity, which contradicts the definition of τ0.

3.2 The splitting homomorphism. We can now define the subgroup which will
produce the desired nonsingular quotient fibre space.

Definition. (a) The splitting subgroup for the automorphism τ0 of S0 is

P ′(τ0) = Ker (ε) = {h ∈ Pg : (ht)
∗yt′ = yt, for all t ∈ Tg(τ0)}.

(b) P ′(τ0) = P
′(τ0)/K ⊂ Pg(τ0).

It follows from Proposition 3.1 that the mapping class τ0 does not belong to
P ′(τ0).

Proposition 3.2. The element τ0 is central in P (τ0).

Proof. For any h ∈ P (τ0) we have τ0 ◦ h = h ◦ τd0 , for some integer d prime to p.
Hence γ1h = hγd1 modulo K , because from the description given in section 2 we

have γ1h = ht1γ
d
1 t

−1
1 . But it is also clear that t1γ

d
1 t

−1
1 γ−d

1 ∈ K, because K is given
as Ker{δ : Γ→ Zp}, where Zp denotes the cyclic group of pth-roots of unity.

Now, applying the character ε to this identity, we deduce that τ d0 = τ0.

These facts imply the crucial property we need for the group P ′(τ0):

Proposition 3.3. The rule h 7→ τ
−ε(h)
0 ◦ h defines an epimorphism Θ: P (τ0) →

P ′(τ0) which induces the following split short exact sequence:

(3-1) 1→ 〈 τ0 〉 → P (τ0)
Θ
→ P ′(τ0)→ 1.

Proof. The mapping is clearly surjective. It remains to prove that Θ: P (τ0) →
P ′(τ0) is a group homomorphism, but this follows from Proposition 3.2. The rest
is immediate.

The splitting image of P ′(τ0) in P (τ0) provides the group that will be used in
the next section to construct the total space of our universal symmetric family of
genus g surfaces.
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Corollary 3.4. There is a group isomorphism

P (τ0)→ P ′(τ0)× Zn

given by the rule
h→ (Θ(h), ε(h)).

Proof. This is immediate: the inverse map is (h, k) 7→ h ◦ τ k0 .

A further simple consequence of this discussion is the fact that in any genus, the
modular group Modg contains subgroups isomorphic to pure braid groups of the
sphere.

Corollary 3.5. For all values of the genus g > 0, the Teichmüller modular group
contains subgroups isomorphic to the pure mapping class group of the sphere, P0,r,
for all integers r expressible as 2(g − 1 + p)/(p − 1), p any prime. The values
r = 2g + 2, p = 2 and r = g + 2, p = 3 occur in every genus.

Proof.. For genus 1, we have seen already that P0,4 = P ′(J); see section 1. The
subgroups which we produce in Modg satisfy the Riemann-Hurwitz branching for-
mula for some (prime cyclic) Galois covering; they are the groups P ′(τ0) formed as
above from the relative modular group quotients Pg(τ0)/〈τ0〉) of any cyclic genus g
covering of the sphere. For instance, Mod0,2g+2 ⊂ Modg for all g > 0, by letting τ0
be the hyperelliptic involution J .

Thus, for every value of g > 0, Modg contains a subgroup P ′(J) which is iso-
morphic to P0,2g+2 ([G-H],[Gon]). This subgroup is already well known (as part of
the pure hyperelliptic modular subgroup). The other type which occurs in every
genus corresponds to order 3 symmetry and gives rise to a number of nonconjugate
subgroups of Modg isomorphic to P0,g+2: one of them, in genus 3, is associated with
the family y3 = x(x− 1)(x− λ1)(x− λ2) based on the Picard modular surface.

3.3 Two Examples. The following examples show that one of our hypotheses,
that S0/〈τ0〉 has genus zero, is crucial for the above results. They also show that
the integer d occurring in the proof of Proposition 3.2 is not generally equal to 1.

Example (i) Consider the Fermat curves X3d with affine equation

x3d + y3d = 1

and the automorphisms

τ(x, y) = (ωx, ω2y), with ω = e2πi/3, σ(x, y) = (y, x).

One verifies directly that σ−1 ◦ τ ◦ σ = τ2. Now σ defines a mapping class in Pg(τ)
– in this case Pg(τ) coincides with Modg(τ), as τ has no fixed points – but it does
not commute with τ , thereby contradicting Proposition 3.2.

Example (ii) Consider the Fermat curve X4 of genus 3 with equation x4 + y4 = 1
and the automorphisms υ(x, y) = (x,−y) and σ(x, y) = (x, iy). Of course σ2 = υ.
Moreover σ and υ have the same fixed points, with coordinates (±1, 0) and (±i, 0),
so that σ ∈ Pg(υ). But the statement of Proposition 3.3 cannot hold. The reason
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is that, in this case, a splitting sequence (3-1) would induce, by restriction to the
subgroup < σ > of P (υ), a split sequence as follows:

1→ 〈υ〉 → 〈σ〉
Θ
→ H → 1,

where H is the group P ′(υ)∩ < σ > and we have identified τ0 with υ as in section
2.2. Thus the image of H would be a subgroup of order 2 in < 〈σ〉, while on the
other hand it would not contain the element υ.

4. Families of Riemann surfaces

We now consider families of Riemann surfaces in a more formal way.

Definition 4.1.

(i) A family of Riemann surfaces of genus g is a holomorphic fibre space π : V →
B (with π a proper holomorphic submersion) in which at each point b ∈ B the fibre
Vb = π−1(b) is a compact Riemann surface of genus g.

(ii) A symmetric family of Riemann surfaces of genus g is a family as in (i)
together with an automorphism T : V → V of holomorphic fibre spaces over B
which acts trivially on the base.

An r-pointed symmetric family of Riemann surfaces is a symmetric family (π :
V → B, T ), equipped with disjoint sections si : B → V for i = 1, ..., r such that
for each b ∈ B the set of fixed points of the automorphism T|Vb

is precisely the set
{s1(b), ..., sr(b)}. Here disjoint means that for each b ∈ B, si(b) 6= sj(b), ifi 6= j.

A morphism between two pointed symmetric families (π1 : V1 → B1;T1; {s
1
i })

and (π2 : V2 → B2;T2; {s
2
i }) is given by a pair of holomorphic maps (H,h) such

that the following diagram commutes:-

(4-1)

V1
H

−−−−→ V2

π1

y
yπ2

B1
h

−−−−→ B2

and satisfying the following properties:
(1) H restricted to each fibre is a biholomorphism;
(2) H ◦ T1 = T k

2 ◦H for some k prime to n;
(3) H(si(b)) = si(h(b)) for i = 1, ..., r and all b ∈ B1.

By a theorem of Ehresmann, one knows that for each point b ∈ B there is a C∞-
trivializing open neighbourhood for the family, i.e. a neighbourhood U of b and a
diffeomorphism F : π−1(U)→ U ×X making the following diagram commutative:-

(4-2)

π−1(U)
F

−−−−→ U ×X

π

y
y

U
Id

−−−−→ U

We just mention here that results of M. Kuranishi, J.H. Hubbard, and others (see
[E-F] for more details) strengthen this theorem for families π : V → B of compact
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Riemann surfaces over a finite dimensional base: the trivialisation mapping F :
π−1(U)→ U ×X enjoys the following extra properties:
(i) the fibre model X is a compact Riemann surface of genus g;
(ii) for each x ∈ X, the map b 7→ F−1(b, x) is holomorphic from U into V ;
(iii) for each b ∈ U , the map x 7→ F−1(b, x) is quasiconformal.

For any local trivialization of our symmetric family (π : V → B, T ), we put

(F ◦ T ◦ F−1)|{b}×X = Id× τb

so that τb is the self-map of the fibre modelX induced by the holomorphic symmetry
T .
Note that once we have chosen a reference point t ∈ B and employ the fibre Vt = St

as model surface X, then all topological information about surfaces in the family
is naturally expressible in terms of this model fibre by means of the mappings in
(iii) above.

In this way, we know that the family of diffeomorphisms {τb = T|b, b ∈ U} in
a local trivialisation are isotopic to the same mapping class in Modg = Mod(X),
and this is true too for any connected base B. Furthermore, different trivialisations
of the same family give rise to conjugate mapping classes. Note that, if we use as
model fibre X our reference Riemann surface S0 from before, the symmetry T is
representable as the conformal automorphism τ0 of the model S0. We shall refer
to the conjugacy class determined by the mapping class {τ0} as the (topological)
model type of the symmetry T .

We summarise this discussion in the following statement.

Proposition 4.1. For each symmetric family (V,B, T ), there is an associated topo-
logical model type determined by the automorphism τ0 : S0 → S0 induced on the
model fibre S0 = Vb for a chosen reference point b ∈ B.

Remark 4.2. The topological types which occur in this article, with τ0 having
prime order p and quotient surface the sphere, are characterised by the rotation
angles at the r fixed points (see 2.2):-

Let D = Dp be the subset of the projective space Pr−1(Fp) over the field with p
elements, defined as

Dp = {(v1, ..., vr)/
∑

vi = 0,
∏

li 6= 0}.

Then the possible topological types are in bijection with the classes in D relative
to the equivalence relation induced by the obvious action of the symmetric group
Sn ([Gon2]).

Example 4.3. The Teichmüller family V = {Vg(τ0) → Tg(τ0)} equipped with
the automorphism T : V → V defined by the family of symmetries τt = τ0|St

on each fibre surface and the sections ξ1(t), ..., ξr(t) introduced in section 2 is an
r-pointed symmetric family of Riemann surfaces, which we call the Teichmüller
pointed symmetric curve with type τ0.

Notes. 1) The essence of the construction of these Teichmüller families of symmetric
surfaces is that the trivialization F of Vg(τ0) can be chosen so that if we denote by
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Vt the fibre over a point t ∈ Tg(τ0) , then t is the point of Tg(τ0) defined as the
homotopy class of the homeomorphism S0 → Vt that F induces by restriction.
2) We usually make no distinction between the Teichmüller families which arise
from two conjugate elements, τ0 and τ1 = ατ0α

−1 with α ∈ Modg, since they can
be identified using the induced holomorphic map α∗ : Vg → Vg.

5. The universal curve

5.1 Ordering the sections of a pointed family. Grothendieck’s theorem on the
universality of the Teichmüller family implies, when applied to the case of a sym-
metric r-pointed family over a contractible base, that the underlying holomorphic
family of marked surfaces is induced by a mapping of the base into the correspond-
ing fixed subspace in Tg. Furthermore, there is an automatic way to order the
set of r sections on the pulled-back family which is compatible with our choice of
sections ξj for the model surface S0. Thus the only part of the following statements
which remains to be proved concerns identification of the symmetry type and the
associated sections of the family.

Proposition 5.1. Let (π : V → U ;T ; {si}) be an r-pointed symmetric family of
Riemann surfaces with U a contractible complex manifold and let τ0 : S0 → S0 be
an automorphism representing the topological type of T .
(i) There is a map h : U → Tg(τ0) inducing by pullback a morphism (H,h) of
symmetric families, as below:-

(5-1)

V
H

−−−−→ Vg(τ0)

π

y
y

U
h

−−−−→ Tg(τ0).

(ii) When the sections of V → U are ordered in accordance with those of Vg(τ0)
under the morphism (H,h), any other morphism (H1, h1) preserving this ordering
is related to (H,h) as follows: h1 = ϕ◦h and H1 = Φ◦H ◦α where ϕ and Φ denote
the action on Tg(τ0) and Vg(τ0) respectively of an element of Pg(τ0), and α is an
automorphism of the pointed symmetric family (π : V → U ;T ; {si}) which fixes the
base.

(iii) If S0/〈τ0〉 has genus zero, then any two pairs (H,h) and (H1, h1) are related by
an element of P ′(τ0) up to post-composition with a power of τ0. Namely, h1 = ϕ◦h
and H1 = τk0 ◦ Φ ◦H, where Φ ∈ P ′(τ) acting on Vg(τ0) induces ϕ on Tg(τ0).

Proof. For a proof of Grothendieck’s result, see for instance [Nag]. Parts (i) and (ii)
then follow straightforwardly from earlier sections. To prove part (iii), we rewrite
the ϕ given in (ii) as τd0 φ, with φ ∈ P ′(τ0). This then implies that H1 = τd0ΦHα,
Φ ∈ P ′(τ0), and one sees that the symmetric family automorphism α = T s, for
some integer s, by the rigidity condition imposed by the ordering of the r ≥ 3
sections. Now the definition (4.1) of morphism between symmetric pointed families
shows that ΦH ◦ T = τm0 ◦ ΦH, which implies that H and H1 are related by

H1 = τ sm+d
0 ΦH, h1 = τ sm+d

0 φh.

5.2 A smooth family overMpure
g (τ0): the symmetry excluded. We continue

with pointed symmetric families of type given by τ0 : S0 → S0 such that S0/〈τ0〉
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has genus zero. Recall from section 2.2 that the natural quotient of the universal
Teichmüller curve family by the action of the modular group modg produces the
modular curve Cg → Mg, whose fibre at the point representing S is the surface
S/Aut(S), hence not always of genus g. However from the results of section 4, it
will follow that on taking suitable quotients of the Teichmüller symmetric family
π : Vg(τ)→ Tg(τ) we can achieve symmetric smooth modular families in this case.

Theorem 5.2. (i) The action of the group Pg(τ) on Vg(τ0) produces as quotient an
analytic space C0,r which determines a family of Riemann surfaces of genus 0 over
Mpure

g (τ0). The sections ξ1, ..., ξr of the pointed symmetric family Vg(τ0)→ Tg(τ0)
induce sections Z = {ζ1, ..., ζr} of C0,r, giving an r-pointed family of Riemann
spheres over Mpure

g (τ0).

(ii) The action of the group P ′(τ) on Vg(τ0) produces as quotient an analytic space
C′g(τ0) which is a family of Riemann surfaces of genus g over Mpure

g (τ0). The
automorphism T = {τt|t ∈ Tg(τ0)} and ordered set of sections Ξ = {ξ1, ..., ξr} of the
pointed symmetric curve Vg(τ0) → Tg(τ0) induce an automorphism τ and sections
η1, ..., ηr of C′g(τ0), giving an r-pointed symmetric family of Riemann surfaces of
genus g over Mpure

g (τ0) with symmetry T modelled on the automorphism τ0.

(iii) There is a natural morphism Φ0 of pointed symmetric families

(5-2)

C′g(τ0)
Φ0−−−−→ C0,r

π

y
y

Mpure
g (τ0)

Id
−−−−→ Mpure

g (τ0)

The restriction of Φ0 to each fibre St is the quotient map φt : St → S/〈τt〉.

Proof. The construction of these families follows that of the universal curve π :
Cg →Mg from the Bers fibre spaces Fg → Vg = Fg/K → Tg, where K = π1(S0).
But the fibre at a point π−1(t) of Cg(τ0) is St/〈τt〉 ∼= P1, whereas that of C′g is St,
since the stabilising group in P ′(τ) for the Bers fibre disc Ut over t is Kt = ρt(K) =
π1(St) as we saw in section 3.2.

5.3 A universal property for C ′g(τ0). We are now ready to prove our main result:
the symmetric family (π : C ′g(τ0) → Mpure

g (τ0), τ), which becomes r-pointed when
we choose an ordering on the set of sections Ξ, represents the functor of isomorphism
classes of cyclic genus g covers of P1 with topological type τ0.

Theorem 5.3. Let V = (π : V → B;T ; {si}) be any r-pointed symmetric family of
topological type τ0 of order n, with S0/〈τ0〉 of genus zero. Then, there is a finite-

cyclic covering B → B of degree d, with defining subgroup < τ
n/d
0 > for some d|n,

and a classifying map φ : B →Mg(τ0) such that the family V obtained from V by

pullback admits a morphism to C ′(τ) of symmetric families over B as follows:

(5-2)

V
Φ

−−−−→ C′(τ0)

π−

y
y

B
ϕ

−−−−→ Mgpure(τ0)
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Proof. We sketch the lines of the argument. Each point has a nbd B0 ⊂ B which is
contractible, so that Theorem 5.1 applies to V|B0

. To give a marking on one fibre

S0 in the family V → B is to define a map φ from the universal cover B̃ into Tg,
which must have image in some Tg(τ0. We then compose with projection pg from Tg
into the pure modular variety Mpure

g (τ0), calling the map ϕ = pg ◦ φ. The smooth
family Vg(τ0) defined over Tg(τ0) is marked by the exact sequence of (marked)
Fuchsian groups (2-2) for the model surface. It then has an ordered set of canonical
sections ξi, ; , i = 1, . . . , r. This gives a pointed symmetric structure to the family
we produce by pulling back each restricted V−subfamily over the images ϕ(U) of
a suitable finite covering by contractible open nbds U ⊂ B , Φ∗(Vg(τ0)|ϕ(U). The
U−based pieces are fitted together using analytic continuation in B. The choice of
some power of the symmetry τ0 needs to be made in patching the families together
at each transition, since composing the modular family (C ′(τ0),Mg(τ0), τ,Ξ) with
any τk changes none of the data, but the map ϕ is otherwise uniquely defined, by
Proposition 5.1(iii).

The monodromy of the family over B is then given by a homomorphism from
π1(B) into the cyclic group Zn, which makes the structure induced by pulling back
further to the corresponding smooth cyclic covering B of minimal degree. The
kernel determines the degree of the covering B.

To complete the picture, we append some comments on uniqueness:-
1. The covering B → B of lowest degree is unique.
2. The map ϕ is unique up to composition with τ k0 .
3. The ordering of sections is unique up to composition with an automorphism α
of the underlying symmetric family {V → B, T}. A unique isomorphism of pointed
families ensues if one considers two such orderings to be equivalent.

We note finally that Theorem 5.3 is equivalent to the existence of our pure
symmetric mapping class subgroup P ′(τ0). For we have

Theorem 5.4. The functor of isomorphic classes of pointed symmetric cyclic cov-
ers of given topological type τ0 is representable if and only if P (τ0) admits a subgroup
Q which fits in a split exact sequence of the form

1→ 〈τ0〉 → P (τ0)
Θ
→ P (τ0)/〈τ0〉 ∼= Q→ 1

Proof. Such a subgroup Q ⊂ P (τ0) exists if and only if there is a corresponding
subgroup Q ⊂ P(τ0) with Q ∩ Γ = K. If so, then we can proceed as above. If
not, then there is no possibility of constructing a smooth fibre space over the base
Mg(τ0) by the action of a suitable subgroup of P(τ0), since it must contain K on
the one hand but also excludes anything in P(τ0) whose δ−image (in the terminolgy
of (2-2)) is nontrivial.

5.5 A remark on prime order coverings of P1. In the case S0/〈τ0〉 of genus 0,
it is known (see [Gon1],[G-H]) that the base of the universal family, M pure

g (τ0), is

Ωr−3 = Cr−3 −∆ with ∆ the diagonal set ∆ = {λi = 0, 1, λj ; i 6= j} removed, and
the fibre over a point (λ1, ..., λr−3) is the Riemann surface with algebraic equation

yp = xd1(x− 1)d2(x− λ3)
d3 ...(x− λr−1)

dr−1 .
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One could therefore introduce the universal family in an elementary way by suit-
ably compactifying each fibre, avoiding all reference to Teichmüller theory. However
Teichmüller methods would still be needed to prove that the family is indeed uni-
versal, that is, in order to construct morphisms of any other family to this one, we
need the Grothendieck theorem even to treat the situation locally.

5.6 A final example. This is an illustration of theorem 5.3. Consider a holo-
morphic family V = {π : V → B} with base the punctured disc D∗ given by the
equation:-

Vt = {y
2 = x2g+1 − t2g+1} ∪ {∞t}.

Adding in the points at infinity ∞t in each fibre, we have a family of compact
surfaces with automorphism of order 2 given by:

αt :

(
x
y

)
7→

(
x
−y

)
.

There are 2g + 2 sections, located at the 2g + 1 points ξk(t) = (e2kiπ/(2g+1)t, 0)
and ξ2g+2(t) = ∞t. This is a constant family locally, i.e. V ∼= D∗ × V1, via

the isomorphism sending (x, y, t) 7→ (x/t, y/tg+1/2, t) but not globally. A double
covering of the base is needed.

A further point to note in this example, relating to our comments on uniquenes
in Theorem 5.3, is the existence of automorphisms of the family which project to
nontrivial automorphisms of the base, and which correspond to permutations of the
sections: there is an automorphism β of order 2g+1 which permutes cyclically the
first 2g + 1 sections ξk.

It is not hard to see that all automorphisms of pointed families with symmetry
quotient P1 arise from permutations of the sections, as a result of the rigidity
argument for automorphisms of P1 used earlier in 3.2.
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