Moduli of Riemann surfaces with symmetry

G. González-Díez and W. J. Harvey

To Murray Macbeath on the occasion of his retirement

The moduli space \mathcal{M}_g of Riemann surfaces with genus $g \geq 2$ contains an important subset corresponding to surfaces admitting non-trivial automorphisms. In this paper, we study certain irreducible subvarieties $\mathcal{M}_g(G)$ of this singular set, which are characterised by the specification of a finite group G of mapping-classes whose action on a surface S is fixed geometrically. In the special case when the quotient surface S/G is the sphere, we describe a holomorphic parameter function λ which extends the classical λ -function of elliptic modular theory, and which induces a birational isomorphism between the normalisation of $\mathcal{M}_g(G)$ and a certain naturally defined quotient of a configuration space $\mathbb{C}^n - \Delta$ where Δ is the discriminant set $\{z_i = z_j, \text{ for some } i \neq j\}$. Thus $\mathcal{M}_g(G)$ is always a unirational variety. We also show that in general $\mathcal{M}_g(G)$ is distinct from its normalisation, and construct a (coarse) modular family of G-symmetric surfaces over the latter space.

1. Teichmüller spaces and modular groups

First we introduce some of the necessary formalism. Let H_0 be a subgoup of the group $Aut(S_0)$ of automorphisms of a closed surface S_0 of genus $g \ge 2$; by a famous theorem of Hurwitz (see e.g. [19]), $Aut(S_0)$ is finite of order at most 84(g-1). We shall later concentrate on the case-where the quotient

surface S_0/H_0 is \mathbb{P}^1 , the Riemann sphere, but results in §1 and §2 apply without this restriction.

DEFINITION. A Riemann Surface with H_0 -symmetry is a pair (S, H) comprising a Riemann surface S with H < Aut(S) such that (S_0, H_0) and (S, H)are topologically conjugate by some homeomorphism θ : $S_0 \rightarrow S$.

Two surfaces (S, H), (S', H') with H_0 -symmetry are H_0 -isomorphic if there is a biholomorphic mapping $\phi: S \to S'$ such that $H' = \phi H \phi^{-1}$.

NOTATION. An H_0 -isomorphism class is denoted by $\{S, H\}$ and the set of all H_0 -isomorphism classes of surfaces with H_0 -symmetry is denoted by $\widetilde{\mathcal{M}}_g(H_0)$.

We shall also need to consider the weaker equivalence relation of (nonequivariant) isomorphism for surfaces (S, H), (S', H') with H_0 -symmetry; here there must be a biholomorphic mapping $\phi : S \to S'$ as before, but it is no longer required to satisfy the condition $H' = \phi H \phi^{-1}$. We shall denote by $\mathcal{M}_g(H_0)$ the set of all isomorphism classes of surfaces with H_0 -symmetry.

There is a natural surjection $\widetilde{\mathcal{M}_g}(H_0) \to \mathcal{M}_g(H_0)$ between these two sets. Our primary purpose is to provide complex analytic structures for them which make this mapping a morphism of analytic spaces. Our approach rests on well-known results of Teichmüller theory which we now discuss briefly. Good references for the facts we need are [9], [22]. More details of our methods are given in earlier papers [14, 20].

Let T_g be the *Teichmüller space* of S_0 . A point $t \in T_g$ is an equivalence class $[S, \theta]$, where $\theta : S_0 \to S$ is a *marking* homeomorphism, and two marked pairs $(S, \theta), (S', \theta')$ are equivalent iff there is a biholomorphic $f : S \to S'$ such that θ' is isotopic to $f \circ \theta$.

If $b = \{b_1, \ldots, b_n\}$ is a finite subset of S_0 , and $S_0^* = S_0 - b$ denotes the surface punctured at b, then the (stronger) equivalence relation obtained by requiring the isotopy between θ' and $f \circ \theta$ to fix the points of b determines the Teichmüller space $T_{g,n}$ of S_0^* , $n \ge 1$.

The group of mapping classes $Mod(S_0)$, viewed as the path components of the group of homeomorphisms of S_0 , is denoted Mod_g if S_0 has genus g (or $Mod_{g,n}$ for S_0^*). This group operates on T_g (or on $T_{g,n}$) by the rule

$$[S, \theta] \xrightarrow{\mathbf{f}} [S, \theta \circ f]$$

By fundamental results of Bers [3], there is a canonical representation of each $T_{g,n}$ as a bounded domain in some \mathbb{C}^N , with N = 3g - 3 + n. Furthermore, the action of $Mod_{g,n}$ is by holomorphic isomorphisms and properly discontinuous [18], [20].

We shall regard a subgroup $H_0 \subseteq Aut(S_0)$ as tantamount to a subgroup of $Mod(S_0)$, since by a theorem of Hurwitz an automorphism of S_0 that is homotopic to the identity must be trivial. By a result which goes back to W. Fenchel and J. Nielsen, the fixed point set in T_g of any such finite group $G \subset Mod(S_0)$ is a (complex) submanifold denoted by $T_g(G)$.¹ In the present terminology it was reformulated in [14] as follows.

THEOREM A. $T_g(H_0)$ is the set of Teichmüller points $[S, \theta]$ such that S possesses a group of automorphisms H conjugate to H_0 by means of the homeomorphism $\theta: S_0 \to S$.

Because the action of the modular group on T_g is properly discontinuous, the quotient *moduli space* $\dot{\mathcal{M}}_g$ carries an induced structure of complex analytic V- manifold, for which the canonical projection map $p: T_g \to \mathcal{M}_g$ is holomorphic. In fact \mathcal{M}_g is a projective variety; it is worth noting that the $\underline{\lambda}$ -functions which we describe later fit in naturally with the projective embedding originally constructed by Baily [1] using Jacobi varieties and the Lefschetz embedding theorem.

COROLLARY. $\mathcal{M}_g(H_0)$ is the image of $T_g(H_0)$ under the projection p.

The submanifold $T_g(H_0)$ is itself a Teichmüller space. To see this, let the quotient surface $R_0 = S_0/H_0$ have genus γ , let $b = \{b_1, \ldots, b_r\}$ be the point set over which the projection $S_0 \to R_0$ is ramified and denote by $T_{\gamma,r}$ the Teichmüller space of the punctured surface $R_0^* = R_0 - b$.

For each $[S, \theta] \in T_g(H_0)$, write R for the quotient surface S/H and R^* for the corresponding unramified subsurface. Then $\theta : S_0 \to S$ induces a homeomorphism $\theta^* : R_0^* \to R^*$, which defines a rule

$$[S,\theta] \stackrel{\psi}{\longmapsto} [R^*,\theta^*].$$

At the level of Teichmüller spaces, this is a bijection.

¹ The fact that $T_g(G)$ is non-empty for all finite G was proved by S. Kerckhoff [17].

THEOREM B. The spaces $T_g(H_0)$ and $T_{\gamma,r}$ are biholomorphically equivalent via the mapping ψ .

For a proof, see [18], [14], [23].

Not every element in Mod_g stabilizes $T_g(H_0)$. The modular group permutes the various finite subgroups H_0 by conjugation and the relevant group for our purposes is the *relative modular group* with respect to H_0 , which is defined as the subgroup of those mapping classes that do stabilise $T_g(H_0)$; this is the normaliser of H_0 in Mod_g (see[20]). We denote it by $Mod_g(H_0)$.

For each $[S, \theta] \in T_g(H_0)$ with a marked symmetry group $H = \theta H_0 \theta^{-1}$, the rule $[S, \theta] \to \{S, H\}$ defines a mapping from $T_g(H_0)$ into $\mathcal{M}_g(H_0)$ which we shall denote by π_1 . This map is clearly surjective.

Let f be an H_0 -equivariant homeomorphism of S_0 representing an element \mathbf{f} of $\mathcal{M}_g(H_0)$. Then $\mathbf{f}([\mathbf{S},\theta]) = [\mathbf{S},\theta \circ \mathbf{f}]$ has marked symmetry group H_f , obtained via $H_f = (\theta \circ f)H_0(\theta \circ f)^{-1} = \theta H_0 \theta^{-1}$. Notice that the underlying Riemann surface S and its automorphism group H are unchanged: the change of marking by \mathbf{f} induces a complementary change of marking for H. This implies that the images under π_1 of $[S,\theta]$ and $\mathbf{f}([\mathbf{S},\theta])$ coincide in $\widetilde{\mathcal{M}_g}(H_0)$.

Suppose now that we have two pairs (S_1, H_1) , (S_2, H_2) of surfaces with H_0 -symmetry, related by a biholomorphic isomorphism $\phi : S_1 \to S_2$ such that $H_2 = \phi H_1 \phi^{-1}$. Choose two markings $\theta_j : S_0 \to S_j$, j = 1, 2, so that etc. $[S_j, H_j]$ is a Teichmüller point in $T_g(H_0)$ lying over $\{S_j, H_j\}$. Then there is a homeomorphism $f : S_0 \to S_0$ making the diagram

$$\begin{array}{cccc} S_0 & \xrightarrow{\theta_1} & S_1 \\ f \downarrow & & \downarrow \phi \\ S_0 & \xrightarrow{\theta_2} & S_2 \end{array}$$

commute and compatible with $H_0(=\theta_j^{-1}H_j\theta_j)$. Therefore f determines an element of $Mod_g(H_0)$ and we have proved the following statement.

PROPOSITION 1. The mapping $\pi_1 : T_g(H_0) \to \widetilde{\mathcal{M}}_g(H_0)$ induces a natural bijection between the quotient space $T_g(H_0)/Mod_g(H_0)$ and $\widetilde{\mathcal{M}}_g(H_0)$.

Since $T_g(H_0) \cong T_{\gamma,r}$ is a bounded domain in \mathbb{C}^m where $m = 3\gamma - 3 + r$, it follows that $\widetilde{\mathcal{M}}_g(H_0)$ is a complex V-manifold of dimension m.

2. The relationship between $\widetilde{\mathcal{M}}_g(H_0)$ and $\mathcal{M}_g(H_0)$.

The first aim of this section is to prove that $\widetilde{\mathcal{M}}_g(H_0)$ is the normalisation of $\mathcal{M}_g(H_0)$. We shall use [11] as a basic reference for analytic spaces.

THEOREM 1. $\mathcal{M}_g(H_0)$ is an irreducible subvariety of \mathcal{M}_g and $\widetilde{\mathcal{M}_g}(H_0)$ is its normalisation.

PROOF. Because $Mod_g(H_0)$ acts discontinuously with finite isotropy groups on $T_g(H_0) \cong T_{\gamma,r}$, a domain in \mathbb{C}^m , it follows from a theorem of Cartan [4] that $\widetilde{\mathcal{M}}_g(H_0)$ is a normal complex space. Also, by the discontinuity of Mod_g on T_g , the family of submanifolds $\{\mathbf{h}(T_g(H_0)), \mathbf{h} \in Mod_g\}$ is locally finite, that is each point of $T_g(H_0)$ has a neighbourhood in T_g intersecting only finitely many distinct subvarieties $\mathbf{h}(T_g(H_0))$.

We have already defined the natural mapping $\pi: \widetilde{\mathcal{M}_g}(H_0) \to \mathcal{M}_g$ whose image is precisely $\mathcal{M}_g(H_0)$. Thus if we check that:

(1) π is closed,

(2) π has finite fibres,

(3) π is injective outside a proper subvariety,

then by the Proper Mapping Theorem and the definition of normalisation the theorem will be proved.

Let us prove (2) and (3). The diagram below summarises the situation; the map $\pi_2 = \pi \circ \pi_1 : T_q(H_0) \to \mathcal{M}_q(H_0)$ is the restriction of p to $T_q(H_0)$.

Two points in $T_g(H_0)$ with the same image in $\mathcal{M}_g(H_0)$ are of the form $[S, \theta]$ and $[S, \theta \circ h]$ with $\mathbf{h} \in Mod_g$. By Theorem A, $H = \theta H_0 \theta^{-1}$ and $H' = (\theta \circ h) H_0(\theta \circ h)^{-1}$ are both subgroups of Aut(S). Now, if $[S, \theta]$ and $[S, \theta \circ h]$ have different images in $\widetilde{\mathcal{M}}_g(H_0)$, then $\mathbf{h} \notin Mod_g(H_0)$ and so $\mathbf{h}H_0\mathbf{h}^{-1} \neq H_0$. Hence necessarily $H \neq H'$. Since Aut(S) is finite, there are only finitely many possibilities for $[S, \theta \circ h]$, which proves (2).

This argument also shows that π fails to be injective only on the π_1 image of intersections $T_g(H_0) \cap \mathbf{h}(T_g(H_0))$ with $\mathbf{h} \in Mod_g - Mod_g(H_0)$. By the local finiteness this is a subvariety of $\widetilde{\mathcal{M}}_g(H_0)$, which proves (3).

For completeness we sketch the elementary property (1). Referring to the diagram above, it is sufficient to prove that if C is a closed subset of $T_g(H_0)$ then $\pi_2(C)$ is closed in $\mathcal{M}_g(H_0)$ or, equivalently, that the union of all $\mathbf{h}(C)$, $\mathbf{h} \in Mod_g$, is closed in T_g . Suppose that $y = \lim \mathbf{h}_n(x_n)$ with $x_n \in C$ and $\mathbf{h}_n \in Mod_g$. Taking N_y a small enough open set in T_g containing ysuch that N_y intersects only finitely many sets $\mathbf{h}(C)$, there is then a single set $\mathbf{h}_0(C)$ which contains an infinite subsequence of the $\{\mathbf{h}_n(x_n)\}$. Thus we have a sequence of points $x'_n \in C$ with $\mathbf{h}_0(x'_n) \to y$. But $T_g(H_0)$ is closed in T_g and \mathbf{h}_0 is an isometry in the Teichmüller metric, so it follows that $x'_n \to x \in C$. This completes the verification of the property (1).

We next address the question whether $\mathcal{M}_g(H_0)$ is biholomorphic to $\mathcal{M}_g(H_0)$. From the proof of the theorem we can see that these spaces are different if and only if there is a surface S whose automorphism group contains two subgroups H, H' that are conjugate topologically but not holomorphically. This situation occurs, for instance, when there is a surface S, which admits a larger group G of automorphisms containing a pair of (conjugate) subgroups H, H' such that $\langle H, H' \rangle = K$ is a proper subgroup of G with H, H' not conjugate in K. Usually a deformation of S may then be constructed which preserves the K-symmetry but destroys the G-symmetry. Examples are readily produced using the fact that for any finite group G there exist Riemann surfaces S with G as a group of automorphisms and such that the quotient surface S/G has arbitrarily given genus γ ; see for instance [12]. An elementary example of this type is given later in this section (example 1).

Provided that the Teichmüller space $T_g(K)$ is not a point (the case $T_{0,3}$) and is *not* in the small list of types for which there is an isomorphism between Teichmüller spaces of surfaces with different signatures, we may conclude that the space $T_g(G)$ is *properly* contained in $T_g(K)$ for any proper overgroup G > K. This list is as follows (see [22] p.129 for details):

$$T_{0,6} \cong T_{2,0}, \qquad T_{0,5} \cong T_{1,2}, \qquad T_{0,4} \cong T_{1,1}.$$

The implication is that in general the locus of points $[S, \theta] \in T_g(K)$, with S admitting two automorphism groups $\theta H \theta^{-1}$ and $\theta H' \theta^{-1}$ which are conjugate only in some larger group than $\theta K \theta^{-1}$, forms an analytic subset Z of strictly lower dimension. Therefore the restriction of the mapping π : $\widetilde{\mathcal{M}}_g(H) \to \mathcal{M}_g(H)$ to the π_1 -image of $T_g(K)$ is not injective since outside $\pi_1(Z)$ one has $\pi([S, H]) = \pi([S, H'])$. Thus π is not biholomorphic, and the variety $\mathcal{M}_g(H)$ is non-normal at all points in the image of $\pi_1(T_q(K) - Z)$. Furthermore, using elementary facts on analytic spaces, we can conclude that since this subset of the non-normal points of $\mathcal{M}_g(H)$ is Zariski-open in $\mathcal{M}_g(K)$, and therefore dense, the whole subvariety $\mathcal{M}_g(K) = \pi_1(T_g(K))$ is non-normal because the non-normal set is necessarily closed ([11], p.128).

These arguments prove the following result.

THEOREM 2. The modular subvariety $\mathcal{M}_g(H_0)$ is in general distinct from its normalisation $\widetilde{\mathcal{M}}_g(H_0)$.

As illustration, we give two examples.

EXAMPLE 1. Let F_{2p} be the compact (Fermat) Riemann surface with affine algebraic equation

$$x^{2p} + y^{2p} = 1 \; ,$$

let H (respectively H') be the cyclic group generated by the involution $(x, y) \rightarrow (\neg x, y)$ (respectively by $(x, y) \rightarrow (x, -y)$) and let $K = \langle H, H' \rangle$. Then H and H' are not conjugate in K but in $G = Aut(F_{2p})$ they are conjugate by the automorphism $\alpha(x, y) = (y, x)$. Now F_{2p}/K has genus > 2; in fact F_{2p}/K is isomorphic to the surface F_p with equation $x^p + y^p = 1$, the isomorphism being given in affine coordinates by $\phi(x, y) = (x^2, y^2)$; F_p has genus (p-1)(p-2)/2 which is > 2 for $p \ge 4$.

Thus, by the discussion preceding theorem 2, the modular subvariety $\mathcal{M}_g(H), g = (p-1)(2p-1)$, is not normal; in fact the point representing the Fermat surface F_{2p} is a non-normal point of this modular subvariety.

On the other hand, for certain types of surface with automorphism, the modular subvariety $\mathcal{M}_q(H)$ is itself normal.

EXAMPLE 2. Let S be a hyperelliptic surface of genus g, with $J: S \to S$ the hyperelliptic involution. Since J is the unique automorphism of S with order 2 having quotient $S/\langle J \rangle \equiv \mathbb{P}^1$, we obtain $\widetilde{\mathcal{M}}_g(\langle J \rangle) = \mathcal{M}_g(\langle J \rangle)$.

REMARK. Since \mathcal{M}_g is a projective variety, the G.A.G.A. Principle implies that our complex-analytic results remain valid within the framework of complex algebraic geometry. Thus $\mathcal{M}_g(G)$ is also an irreducible algebraic subvariety of \mathcal{M}_g by Chow's Theorem ([11] p.184). Furthermore, since the algebraic normalisation of a projective variety is again projective ([13] p.232) and therefore analytic, it follows from the uniqueness of the normalisation ([11] p.164) that $\widetilde{\mathcal{M}}_g(G)$ is also the algebraic normalisation of $\mathcal{M}_g(G)$.

8. A. B

÷.

4910

3. The case of tori: Legendre's modular function.

We review the classical theory of moduli for elliptic curves from the point of view developed in the previous section. In genus 1, the Teichmüller space T_1 is the upper half plane U: any Riemann surface of genus 1 may be expressed as a complex torus $E = E_{\tau} = \mathbb{C}/\Lambda(\tau)$ with $\Lambda(\tau) = \mathbb{Z} + \mathbb{Z}\tau$ a lattice subgroup of the additive group \mathbb{C} and $\tau \in U$. There is a standard involutory automorphism $J: E \to E$, given by the symmetry $z \to -z$ of \mathbb{C} and so, writing $H = \langle J \rangle$, we have that $T_1(H) = T_1$. The quotient E/H is the projective line \mathbb{P}^1 , with four ramification points a_1, \ldots, a_4 corresponding to the four fixed points of J (which are the points of order 2, the orbits of $0, \frac{\tau}{2}, \frac{1+\tau}{2}$, and $\frac{1}{2}$ under $\Lambda(\tau)$).

Let the orbit of the origin $\underline{0}$ be chosen as a base point of E and write $T_{1,1}$ for $T(E-\underline{0})$: this procedure renders the (flat) homogeneous space E into a hyperbolic surface, thereby placing the theory of moduli for E within the framework of Teichmüller spaces. Theorem B now captures the identification of T-spaces, $T_{1,1} \cong T_{0,4}$, in our earlier list.

This space may be identified with the upper half-plane U by associating to $\tau \in U$ the Teichmüller pair $[E_{\tau}, f_{\tau}], f_{\tau} : E_i \to E_{\tau}$, where $E_i = \mathbb{C}/\Lambda(i)$ has been chosen as reference surface and f_{τ} is the projection of the real linear homeomorphism $L_{\tau} : \mathbb{C} \to \mathbb{C}$ which sends 1, *i* to 1, τ respectively (see e.g. [22] 2.1.8).

Similarly the fact that $T_{1,1}(H)$ is the whole of $T_{1,1}$ implies, by the definition of relative modular group given in §1, that $Mod_1(H)$ is the modular group of genus 1, $SL(2,\mathbb{Z})$, so we have

$$\mathcal{M}_1(J) \equiv \mathcal{M}_1 \equiv U/SL(2,\mathbb{Z}) \; .$$

Here $SL(2,\mathbb{Z})$ acts by $A \cdot \tau = \frac{a\tau + b}{c\tau + d}$, where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. We identify τ with $[E_{\tau}, f_{\tau}]$ and A with the homeomorphism $f_A : E_i \to E_i$ characterised by the real-linear map $L_A(1) = ci + d$, $L_A(i) = ai + b$. Then the Teichmüller modular group acts by the rule

$$f_A \cdot (E_\tau, f_\tau) = (E_\tau, f_\tau \circ f_A) = (E_{A \cdot \tau}, h_A \circ f_\tau \circ f_A)$$

where $h_A: E_{\tau} \to E_{A,\tau}$ is the isomorphism induced by $h_A(z) = (c\tau + d)^{-1}z$. To see that this is a genuine group action, one checks directly that $h_A \circ f_{\tau} \circ f_A$ is just $f_{A,\tau}$, so we have $f_A \cdot (E_{\tau}, f_{\tau}) = (E_{A,\tau}, f_{A,\tau})$ as it should be. Next we focus attention on the level-2 congruence subgroup $\Gamma(2)$, comprising matrices $A \equiv Id \pmod{2}$ in $SL_2(\mathbb{Z})$. The involution J corresponds to the central element $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ of $\Gamma(2)$, which fixes every point of U. The quotient group $P\Gamma(2)$ acts faithfully on U and (see for instance [5], [16]) this action is free and discontinuous. In classical vein, we define a complex function λ on U by the rule

$$\lambda(\tau) = \{ \wp(a_1), \, \wp(a_2); \, \wp(a_3), \, \wp(a_4) \, \},\,$$

where $\wp(z) = \wp_{\tau}(z)$ is the Weierstrass \wp -function of the lattice $\Lambda(\tau)$ and $\{-, -; -, -\}$ denotes cross-ratio; λ is the Legendre modular function, which is automorphic with respect to $P\Gamma(2)$ and induces an isomorphism

$$\lambda: U/P\Gamma(2) \to \mathbb{C} - \{0, 1\}.$$

The famous modular invariant $j(\tau)$ may then be written as an invariant (degree 6) rational function of λ .

We shall need the following description of this classical theory in terms of the universal family **E** of tori over U; a brief account appears in [26]. This is a fibre space $\mathbf{E} = (U \times \mathbb{C})/\mathbb{Z}^2$ over U where \mathbb{Z}^2 acts on $U \times \mathbb{C}$ by $(n,m) \cdot (\tau; z) = (\tau; z + n + m\tau)$, so that the fibre over τ is precisely E_{τ} .

Corresponding to the four fixed points of J, we have the following four holomorphic sections of the family $\mathbf{E} \to U$,

$$s_1(\tau) = 0,$$
 $s_2(\tau) = \frac{\tau}{2},$ $s_3(\tau) = \frac{1+\tau}{2},$ $s_4(\tau) = \frac{1}{2}$

By normalising the \wp -function we obtain a meromorphic function $x(\tau, z)$ on E which when restricted to each fibre gives rise to a function $x_{\tau}: E_{\tau} \to \mathbb{P}^1$, having these four points as branch points and with corresponding branch values

$$x_{\tau}(s_1(\tau)) = \infty$$
, $x_{\tau}(s_2(\tau)) = 1$, $x_{\tau}(s_3(\tau)) = 0$, $x_{\tau}(s_4(\tau)) = \lambda(\tau)$.

Finally, the congruence group $\Gamma(2)$ can be characterised as the group of matrices A such that the corresponding mapping classes f_A introduced above preserve each of these four points; and $SL(2,\mathbb{Z})/\Gamma(2)$ is isomorphic to the subgroup stabilising s_1 of the symmetric group Σ_4 which permutes the $\{s_j\}$. This description will become relevant later on.

Printed in Great Britain

© Cambridge University Press 1992

London Mathematical Society Lecture Note Series 173.

Reprinted from Discrete Groups and Geometry edited by W.J. Harvey and C. Maclachlan

Moduli of Riemann surfaces with symmetry G. González-Díez & W.J. Harvey

References

- [1] W. L. BAILY. On the theory of θ -functions, the moduli of abelian varieties, and the moduli of curves. Ann. of Math. 75 (1962) 342-381.
- [2] G. V. BELYI. Galois extensions of a maximal cyclotomic field. Math. of U.S.S.R. Izv. 14 (1980) 247-256.
- [3] L. BERS. Uniformization, moduli and Kleinian groups. Bull. London Math. Soc. 4 (1972) 250-300.
- [4] H. CARTAN Quotient d'un espace analytique par un groupe d'automorphismes. Algebraic Geometry and Topology, (Princeton U. Press, 1957) 90-102 or Collected Works Vol II (Springer-Verlag, 1979).
- [5] C. H. CLEMENS. A Scrapbook of Complex Curve Theory. (Plenum Press, N. Y., 1980).
- [6] C. J. EARLE. Families of Riemann surfaces and Jacobi varieties. Ann. of Math. (1978) 225-286.
- [7] C. J. EARLE and I. KRA. On sections of some holomorphic families of closed Riemann surfaces. Acta Math. (1976) 49-79.
- [8] H. M. FARKAS and I. KRA. *Riemann Surfaces*. (Springer, Berlin, 1980).
- [9] F. P. GARDINER. Teichmüller Theory and Quadratic Differentials. (John Wiley & Sons, N. Y., 1987).
- [10] G. GONZALEZ-DÍEZ. Loci of curves which are prime Galois coverings of P¹. Proc. London Math. Soc. 62 (1991) 469-489.
- [11] H. GRAUERT and R. REMMERT. Coherent Analytic Sheaves. (Springer, Berlin, 1980).
- [12] L. GREENBERG. Maximal Fuchsian groups. Bull. Amer. Math. Soc. 4 (1963) 569-573.

- [13] R. HARTSHORNE. Algebraic Geometry. (Springer, Berlin, 1977).
- [14] W. J. HARVEY. On branch loci in Teichmüller space. Trans. Amer. Math. Soc. 153 (1971) 387-399.
- [15] W. J. HARVEY. A lifting criterion for surface homeomorphisms. (Preprint)
- [16] G. A. JONES and D. SINGERMAN. Complex Functions. (Cambridge Univ. Press, 1987).
- [17] S. KERCKHOFF. The Nielsen realisation problem. Ann. of Math. 117 (1983) 235-265.
- [18] S. KRAVETZ. On the geometry of Teichmüller spaces and the structure of their modular groups. Ann. Acad. Sci. Fenn. (1959) 1-35.
- [19] A. M. MACBEATH. On a theorem of Hurwitz. Proc. Glasgow Math. Assoc. 5 (1961) 90-96.
- [20] C. MACLACHLAN and W. J. HARVEY. On mapping-class groups and Teichmüller spaces. Proc. London Math. Soc. (3) 30 (1975) 496-512.
- [21] D. MUMFORD. Tata Lectures on theta I. Progress in Maths. 28 (Birkhaüser, Boston, 1983).
- [22] S. NAG. The Complex Analytic Theory of Teichmüller Spaces. (Wiley-Interscience, N. Y., 1988).
- [23] H. E. RAUCH. A transcendental view of the space of algebraic Riemann surfaces. Bull. Amer. Math. Soc. 71 (1965) 1-39.
- [24] J-P. SERRE. Groupes de Galois sur Q. Séminaire Bourbaki, Exposé 689 (November, 1987).
- [25] H. VÖLKLEIN. $PSL_2(q)$ and extensions of $\mathbf{Q}(x)$. Bull. Amer. Math. Soc. 24 (1991) 145-154.
- [26] S. A. WOLPERT. Homology of the moduli space of stable curves. Ann. of Math. 118 (1983) 491-522.

Departamento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid, Spain Department of Mathematics King's College London London WC2R 2LS Email: udah055@uk.ac.kcl.cc.oak