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Moduli of Riemann surfaces with syrnrnetry

G. González- Díez and 'vV. J. Harvey

To 1\!Iurray .:.1.1aebeath on the oeeasion oi his retirement

The moduli space A1. 9 of Riemann surfaces with genus 9 > 2 contains
an important subset corresponding to surfaces admitting non-trivial auto
morphisms. In this paper, we study certain irreducible subvarieties /vig( G)

of this singular set, \vhich are characterised by the specification of a finite
group G of mapping-classes whose action on a surface S is fixed geomet
rically. In the special case when the quotient surface 5/ G is the sphere,
we describe a holomorphic parameter function A which extends the classical
A-function of elliptic modular theory, and \vhich induces a birational isomor

phism between the normalisation of ;\,1. 9 (G) and a certain natural1y defined
quotient of a configuration space en - ,6. where .6. is the discriminant set

{Zi = Zj, for some i i= j}. Thus A·1g(G) is always a unirational variety.
vVealso show that in general ¡Vi g( G) is distinct from its normalisation, ancl
construet a (coarse) modular family of G-symmetric surfaces oyer the latter
space.

1. TeiehmüIler spaees and 1110dulargroups

First we introduce some of the necessary formalismo Let Ho be a subgoup
of the group A.7.1t( So) of automorphisms of a closed surface So of genus 9 > 2:
by él famous theorem of Hurwitz (see e.g. [19]), A..7.1t(50) is n.nite oi' order at
most 84(g - 1). vVe shalllater concentrate on the case.where the quotiem
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surface So / Ho is p1, the Riemann sphere, but results in § 1 and §:2 apply
without this restrietion.

DEFINITION. A Riemann Surfaee with Ho-symmeiry is a pair (S, H) com
prising a Riemann surface S with H < Aui( S) such that (So, H o) and (S, H)

are topologically conjugate by some homeomorphism e: So ---+ S.

Two surfaces (S, H), (S', H/) with Ho-symmetry are Ho-isomorphie if
there is a biholomorphic mapping ~: S ---+ S' such that H' = ~H ~-1.

NOTATION. An Ho-isomorphism class is denoted by {S, H} and the set
of all Ho-isomorphism classes of surfaces with Ho-symmetry is denotecl by

/vig(Ho).

vVe shall also need to consider the weaker equivalence relation of (non
equivariant) isomorphism for surfaces (S, H), (S', H') with Ho-symmetry;
here there must be a biholomorphic mapping ~: S ---+ S' as before, but it is
no longer required to satisfy the condition H' = 9H 6-1. \,TVe shall denote by

l'v1g(Ho) the set of all isomorphism classes of surfaces with Ho-symmetry.

There is a natural surjeetion ¡lvi 9 (H o) ---+ ¡Vi 9 (H o) behveen these hvo
sets. Our primary purpose is to provide complex analytic struetures for
them which make this mapping a morphism of analytic spaces. Our ap
proach rests on well-known results of Teichmüller theory \,vhich "ve now

discuss briefiy. Good references for the faets we need are [9], [:2:2]. :0.lore

details of our methods are given in e<1jJ.ierpapers [14, 20].

Let Tg be the Teiehmüller spaee of So. A point t E Tg is an equivalence
class [S, 8], where 8 : So ---+ S is a marking homeomorphism, and hvo markecl
pairs (5,8), (5',8') are equivalent iff there is a biholomorphic f : S ---+ S'
such that 8' is isotopic to f o e.

If b = {b1, ... , bn} is a finite subset of So, ancl S~ = So - b denotes the
surface punetured at b, then the (stronger) equivalence relation obtained by

requiring the isotopy behveen 8' and f o e to fix the points of b determines

the Teichmüller space Tg,n of Só, n > 1.

The group of mapping classes Alocl( So), vie\ved as the pat.h componems
of the group of homeomorphisms of So, is denoted jIodg if So has genus g
(or 1Vlodg,n for Só)' This group operates on Tg (or on Tg,n) by the rule

[S el f l'S e ~'l, 1 1------+, e J J
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By fundamental results oí Bers [3]' there is a canonical representation of
each Tg,n as a bounded domain in some eN, with N = 3g - 3 + n. Further
more, the aetion oí lvIodg,n is by holomorphic isomorphisms and properly
discontinuous [18]' [20].

vVesha11regard a subgroup Ho ~ Aui(So) as tantamount to a subgroup
of lVIod( So), since by a theorem of Hurwitz an automorphism of So that
is homotopic to the identity must be trivial. By a result which goes back

to vV. Fenchel and J. Nielsen, the fixed point set in Tg of any such finite
group G e lvlod(So) is a (complex) submanifold denoted by Tg(G).l In the
present terminology it was reformulated in [14] as fo11ows.

THEOREM A. Tg(Ho) is the set ofTeichmiiller points [S, e] such that S
possesses a group of automorphisms H conjugate to Ho by means oi' tile
homeomorphism e: So -+ S.

Because the aetion of the modular group on Tg is properly discontinuous~
the quotient moduli space JVi 9 carries an induced strueture oí complex
analytic V-manifold, for which the canonical projeetion map p: Tg -+ JVi 9

is holomorphic. In faet JVig is a projeetive variety; it is worth noting that
the A-funetions which \ve describe later fit in naturally with the projedive
embedding originally construeted by Baily [1] using Jacobi varieties and the
Lefschetz embedding theorem.

COROLLARY. Mg(Ho) is the image ofTg(Ho) under the projection p.

The submanifold Tg (H o) is itself a Teichmü11er space. To see this, let
the quotient surface Ro =50/ Ho have genus 1, let b = {b1, •.. , br} be the
point set over which the projection So -+ Ro is ramified and denote by T-(.r

the Teichmü11er space of the punetured surface R~ = Ro - b.

For each [S, e] E Tg(Ho), \vrite R for the quotient surface S / H and R'"
for the corresponding unramifiecl subsurface. Then e : So -+ S induces a
homeomorphism e* : Ró -+ R*, which defines a rule

[S, e] ~ [R*, e*].

At the level of Teichmüller spaces, this is a bijeetion.

1 The fact that Tg( G) is non-empty for all finite G \Vas proved by s. Kerckhoff [1¡l,
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TIIEOREM B. The spaces Tg(Ho) and T¡,r are biholomorphical1y equi"ralent

via the mapping 7p.

For a proof, see [18], [14], [23].

Not every element in lvIodg stabilizes Tg(Ho). The modular group per
mutes the various finite subgroups Ho by conjugation and the relevant group
for our purposes is the relatíve modular group with respect to Ho, which is

defined as the subgroup of those mapping classes that do stabilise Tg(Ho);

this is the normaliser of Ho in lvIodg (see[20]). "Ve denote it by ivIoclg (Ha).

For each [S, e] E Tg(Ho) with a marked syrnmetry group H = eHoe-l,
the rule [S, e] -+ {S, H} defines a mapping from Tg(Ho) into ./vig(Ho) "\vhich
we sha11denote by íTl: This map is clearly surjectiye.

Let 1be an Ho-equivariant homeomorphisrn of So representing an ele

ment f of /'vig(Ho). Then f([S, el) = [S, e o f] has marked symmetry group
H¡, obtained vía H¡ = (e o I)Ho(e o 1)-1 = eHoe-1. Notice that the un
derlying Riemann surface S and its automorphism group H are unchanged:
the change of marking by f induces a complementary change of marking for
H. This implies that the images under 11"1 of [S, e] and f([S, e]) coincide in
/vig(Ho).

Suppose now that we have two pairs (Sl,Hd, (S2,H2) ofsurfaces with
Ho-symmetry, related by a biholomorphic isomorphism <jJ: SI -+ S2 such

that H2 = <jJH1<jJ-1. Choose two markings ej: So -+ Sj, j = 1,2, so that
e.h [Sj,Hj] is a Teichmü11er point in Tg(Ho) lying over {Sj,Hj}. Then
there is a homeomorphism 1: So -+ So making the diagram

So

So

commute and compatible with Ho( = ejl Hjej). Therefore 1determines an
element of lViodg( Ho) ancl we have proved the follO\\'ing statement.

PROPOSITION 1. The mapping íTl : Tg(Ho) -+ ./Vig(Ho) induces a natural

bijection between the quotient space Tg( Ho) / .1\Iodg (Ho) anc1 .~ (Ho).

Since Tg(HoL T¡,r is a bounded 'domain in cm where m = 3;, - 3 + T'.

it follows that Jvig(Ho) is a complex y'-manifold of dirnension m.
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2. The relationship between J'v'Íg(Ho) and Mg(Ho).

The first aim of this seetion is to prove that JVi 9 (H o) is the normalisation
of /Vig(IIo). vVe shall use [11] as a basic reference for analytic spaces.

THEOREM 1. Mg(Ha) is an irreducible subvariety oI Mg and JVig(Ha) 1S

i ts normalisation.

PROOF. Because lvlodg(Ha) acts discontinuously with finite isotropy groups

on Tg(H9l-rv T¡,n a domain in cm, it follows from a theorem of Cartan
[41 that JVi 9 (Ha) is a normal complex space. Also, by the discontinuity of
lvlodg on Tg, the family of submanifolds {h(Tg (Ha)), h E l\11odg} is locally

finite, that is each point of Tg(Ha) has a neighbourhood in Tg interseeting
only finitely many distinet subvarieties h(Tg(Ho)).

----
vVehave already defined the natural mapping íT": Mg(Ho) -+ JVig whose

image is precisely Mg(Ho). Thus if we check that:
(1) íT" is c1osed,
(2) íT" has finite fibres,
(3) íT" is injective outside a proper subvariety,

then by the Proper Mapping Theorem and the definition of normalisation
the theorem will be proved.

Let us prove (2) and (3). The diagram below summarises the situation;

the map íT"2 = íT" o íT"1 : Tg(Ho) -+ Mg(Ho) is the restrietion of p to Tg(Ho).

Two points in Tg(Ho) with the same image in lvig(Ho) are of the form
[5, 8] and [5, 8 o h] with h E lvlodg• By Theorem A, H = 8Ho8-1 and
H' = (8 o h)Ho(8 o h)-l are both subgroups of Aui(5). Now, if [5,8] and
[5, 8 o h] have different images in M;(Ho), then h tf. lvlodg(Ho) and so
hHa h-1 ¡.Ha. Hence necessarily H ¡.H'. Since Aui(5) is finite, there are
only finitely many possibilities for [5, 8 o h], which proves (2).

This argument also shows that íT" fails to be injeetive only on the íT"1

image of intersections Tg(Ho) n h(Tg(Ho)) with h E JI¡lodg - l\1odg(Ho).

By the local finiteness this is a subvariety of JVig(Ho), \:,hich proves (3).
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For completeness we sketch the elementary property (1). Referring to
the diagram above, it is sufficient to prove that if C is a closed subset of

Tg(Ho) then 7r2(C) is closed in A1g(Ho) or, equivalently, that the union of all
h( C), h E lvlodg, is closed in Tg• Suppose that y = lim hn (x n) with x n E e
and hn E .1\1odg• Taking lVy a small enough open set in Tg containing y

such that Ny intersects only finitely many sets h( C), there is then a single
set ho(C) which contains an infinite subsequence of the {hn(xn)}. Thus \ve
have a sequence of points x~ E C with ho(x~) -+ y. But Tg(Ho) is closed
in Tg and ho is an isometry in the Teichmüller metric, so it follows that
x~ -+ x E C. This completes the verification of the property (1). I

'vVe next address the question whether ¡'vtg(Ho) is biholomorphic to

Mg(Ho). From the proof of the theorem we can see that these spaces
are different if and only if there is a surface S whose automorphism group
contains two subgroups H, H' that are conjugate topologically but not holo
morphically. This situation occurs, for instance, when there is a surface 5,
which admits a larger group G of automorphisms containing a pair of (con
jugate) subgroups H, H' such that (H, H') = J{ is a proper subgroup of G

with H, H' not conjugate in le Usually a deformation of S may then be
constructed which preserves the l( -symmetry but destroys the G-symmetry.
Examples are readily produced using the fact that for any finite group G
there exist Riemann surfaces 5 with G as a group of automorphisms and
such that the quotient surface S/ G has arbitrarily given genus "(; see for in
stance [12]. An elementary example of this type is given later in this seetion
(example 1).

Provided that the Teichmül1er space Tg(l{) is not a point (the case TO,3)

and is not in the smalllist of types for which there is an isomorphism bebveen
Teichmüller spaces of surfaces with different signatures, we may conclude

that the space Tg (G) is properly contained in Tg (I() for any proper over
group G > l{. This list is as follows (see [22] p.129 for details):

To 6 ,-....¡ T2 o ,, , TO,5 ,-....¡ T1,2 , To 4 ,-....¡ Ti 1 ., ,

The implication is that in general the locus of points [5, e] E Tg(I{), with
S admitting two automorphism groups eHe-1 and eH' e-1 \vhich are con
jugate onIy in some larger group than eJ(e-1, forms an analytic subset Z

oí strictly lower dimension. Therefore the restriction of the mapping 7:" :

Jv..g(H) -+ ¡v..g(H) to the 7rrimage of Tg(K) is not injeetive since outsicle
7r1(Z) one has 7r([5, Hl) = 71([5, H'J). Thus 71 is not biholomorphic, and the

variety ./v.. 9 (H) is non-normal at all points in the image of ;-;J T:J(]{) - Z .
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Furthermore, using elementary facts on ana1ytic spaces, we can conduele
that since this subset of the non-normal points of Mg(H) is Zariski-open in
Mg(I(), and therefore dense, the whole subvariety J',.;f.g(1() = 7rl(Tg(K) is
non-normal because the non-normal set is necessarily closed ([11), p.128).

These arguments prove the following result.

THEOREM 2. Th~odular subvariety Mg(Ho) is in general distinct from
its normalisation /vig(Ho).

As illustration, we give two examples.

EXAMPLE 1. Let F2p be the compaet (Fermat) Riemann surface with affine
algebraic equation

2p + 2p - 1x y-,

let H (respeetively H') be the cyclic group generated by the involution
(x,y) -+ (.....Jx,y) (respeetively by (x,y) -+ (x, -y) ) and let I{ = (E,E').

Then H and E' are not conjugate in J{ but in, G = Aut( F2p) they are
conjugate by the automorphism a(x, y) = (y, x). Now F2p/I{ has genus
> 2; in faet F2p /I( is isomorphic to the surface Fp with equation xP +yP = 1,
the isomorphism being given in affine coordinates by cP( x, y) = (x2, y2); Fp

has genus (p - l)(p - 2)/2 which is > 2 for p > 4.

Thus, by the discussion preceding theorem 2, the modular subvariety

J'v1.g(E), g = (p - 1)(2p - 1), is not normal; in fact the point representing
the Fermat surface F2p is a non-normal point of this modular subvariety.

On the other hand, for certain types of surface with automorphism, the
modular subvariety Mg(H) is itself normal.

EXA:tvIPLE 2. Let S be a hyperelliptic surface of genus g, with J: S -+ S
the hyperelliptic involution. Since J is the unique automorphism of S Ivith

order 2 having quotient 5/ (J)= P\ we obtain J'v1.g( (J)) = ivig( (J)).

REMARK. Since J'vtg is a projective variety, the C.A. C.A. PrincipIe im
plies that our complex-analytic results remain valiel within the framework

of complex algebraic geometry. Thus M 9 (G) is also an irreducible algebraic
subvariety of j'v1.g by Chow's Theorem ([11] p.184). Furthermore, since the
algebraic normalisation of a projeetive variety i5 again projective ([13] p.232)
and therefore analytic, it follows from the uniqueness of the normalisation

([11] p.164) that ivig(G) is also the algebraic normalisation of j'v1.g(G).
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3. The case of tori: Legendre's modular function.

vVe review the classical theory of moduli for elliptic curves fram t-he

point of view developed in the previous sectiono In genus 1, the Teichmüller
space TI is the upper half plane U: any Riemann surface of genus 1 may

be expressed as a complex torus E = Er = e/ A(,) with A(,) = l + lT a
lattice subgroup of the additive group e and T E U. There is a standard
involutory automorphism J : E -+ E, given by the symmetry z -+ -z of e
and so, writing H = (J), we have that TI (H) = TI- The quotient E/ H 1S

the projeetive line pl, with four ramification points al, __. , a4 corresponding
to the four fixed points of J (which are the points of order 2, the orbits of

O,~, liT, and ~ under A(,)).

Let the orbit of the origin .Q be chosen as a base point of E and write

T1,1 for T(E - .Q): this procedure renders the (flat) homogeneous space
E into a hyperbolic surface, thereby placing the theory of moduli for E
within the framework of TeichmüIler spaceso Theorem B now captures the

identification of T-spaces, T1,1 '" To,4, in our earlier listo

This space may be identified with the upper half-plane U by associating

to T E U the TeichmüIler pair [E" i,]' i, :Ei -+ E" where Ei = e/ A(i)
has been chosen as reference surface and ir is the projeetion of the real
linear homeomorphism L, : e -+ e which sends 1,i to 1, , respectively

(see e.g. [22] 2.1.8)0

Similarly the faet that T1,1(H) is the whole of T1,1 implies, by the defi
nition of relative modular group given in §1, that jV1od1(H) is the modular
group oí genus 1, SL(2, l), so we have

A,tr(J) = MI = U / SL(2, 1) .

Here SL(2, l) acts by A· T = :;: ~, where A = (~ ~). We identify T

with [E" i,] and A with the homeomorphism 1.4. : Ei -r.Ei characterised by
the real-linear map LA(l) = ci + d, LA(i) = a·i + b. Then the Teiehmüller
modular group aets by the rule

where hA.: E, -+ E.4.., is the isomorphism indueed by h"/t(z) = (C,+cl)-lz.

To see that this is a genuine group aetion, one cheeks directly that hA. ofr oI-t
is just fA-" so "ve have fA· (E"fr) = (EA.,,1.-t.,). as it should be.
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Next we focus attention on the level-2 congruence subgroup f(2), com
prising matrices A..- Id (mod 2) in SLz(I). The involution J corresponcls

to the central element (~1 ~1) of f(2), which n.xes every point oí U.
The quotient group Pf(2) aets faithfully on U and (see for instance [5], [16])
this aetion is free and discontinuous. In classical vein, we define a complex
function .A on U by the rule

where p(z) = gJr(z) is the Weiersirass p- function of the lattice A(7) and
{-, ,-;-, -} denotes cross-raiio; A is the Legendre mod'ular function, which is
automorphic with respeet to pr(2) and induces an isomorphism

A: Ujpr(2) ~ C - {O, 1}.

The famous modular invariant j(7) may then be written as an invariant
(degree 6) rational fundion of A.

\Ve shall need the following description of this c1assical theory in terms
of the universal family E of tori over U; a brief account appears in [26].
This is a fibre space E = (U x C) jlZ over U where IZ acts on U x C by
(n, m) . (7; z) = (7; Z + n + m7), so that the fibre over 7 is precisely Er.

Corresponding to the four n.xed points of J, we have the follmving four
holomorphic sections of the family E ~ U, •

1+7
33(7) =--2 '

By normalising the p-funetion we obtain a meromorphic funetion x( 7, z) on
E \vhich when restrieted to each fibre gives rise to a funetion Xr : Er -7 pl.
having these four points as branch points and with corresponding branch
values

Finally, the congruence group r(2) can be characterised as the group
of matrices A such that the corresponding mapping classes f;l introduced

above preserve each of these four points; and SL(2, Z) jr(2) is isomorphic
to the subgroup stabilising SI of the symmetric group ¿-lo \vhich permutes

the {S j}. This description \vill become relevant later on.
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