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Smooth Double Coverings of Hyperelliptic Curves
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Abstract. It is well known that the number of smooth double coverings of an
irreducible complex algebraic curve C is 22g−1. Assume that C is hyperelliptic,

say C : y2 =
Q2g+2

d=1 (x− µd). It was proved by Bujalance (extending previous
work of Farkas) that, in this case, the set of smooth double covers of C splits

into the disjoint union of subsets
P

p, p = 0, ...,
h

g−1
2

i
, each one consisting of

curves eC which are simultaneously double covers (now ramified) of some curve

C of genus p.
Here we prove, firstly, that the curves C arising in this way are also

hyperelliptic; in fact the hyperelliptic curves C : y2 =
Q

d∈A(x−µd), where A

ranges among the subsets of even cardinality of {1, ..., 2g + 2}, and, secondly,

that eC can be recovered as the fibre product of C and C over P1. This, in
turn, allows us to provide explicit equations for all smooth double covers of a
given hyperelliptic curve.

1. Introduction

Throughout this article we will use the same term curve to refer to an affine al-
gebraic curve, its complete non singular model and its associated compact Riemann
surface. And so, the expressions birational map and Riemann surface isomorphism
will be used as synonymous. By the symbol |A| we shall mean the number of ele-
ments of a finite set A.

It is well known that a given compact Riemann surface C admits exactly 22g−
1 smooth, or unramified, double coverings, corresponding to the 22g − 1 group
epimorphisms of its fundamental group (or, equivalently, its first homology group)
onto Z2, the cyclic group of order 2. Here, we shall consider the case in which C is
a hyperelliptic curve of genus g, hence given by an equation of the form

(1) C : y2 =
2g+2∏

d=1

(x− µd).

It was first proved by Farkas ([2]) that, in this case, among these 22g − 1
covers there are precisely

(
2g+2

2

)
of them which are again hyperelliptic. Then,
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Bujalance ([1]) classified the whole set of smooth double covers of a hyperelliptic
curve C by showing that it splits into the disjoint union of 1 +

[
g−1
2

]
subsets Σp,

p = 0, ...,
[

g−1
2

]
, each one consisting of

(
2g+2
2p+2

)
( 1

2

(
2g+2
2p+2

)
, if p = g−1

2 ) curves which

are p−hyperelliptic; that is, each curve C̃ in Σp is also a (now ramified) double
cover of some curve C of genus p. (Such curves are called p−hyperelliptic. When
more precision is needed we will say that C̃ is a p−hyperelliptic covering of C).
Bujalance’s result was later reproved by Farkas (see [3]).

Here we prove the following

Theorem 1. Let C be the hyperelliptic curve given by equation (1). Then
i) Every unramified double cover of C is isomorphic to a space curve C̃A given by

C̃A :





y2 =
∏2g+2

d=1 (x− µd)

z2 =
∏

d∈A(x− µd)

where A ranges among all nonempty proper subsets of even cardinality of
X = {1, ..., 2g + 2}. The covering map being given by projection onto the (x, y)-
coordinates.
ii) Two such curves C̃A and C̃B are isomorphic coverings of C if and only if B = A
or B = AC , the complement of A in X. In the second case, the isomorphism is
given by

C̃A → C̃AC

(x, y, z) 7→ (x, y,±y/z).

iii) Every unramified double cover C̃A is both p and q-hyperelliptic with
p = |A|

2 − 1 and q = (g − 1− p). More precisely, C̃A is a p (resp. q)-hyperelliptic
covering of the hyperelliptic curve CA (resp. CAC ) given by

CA : z2 =
∏

d∈A

(x− µd) and CAC : z2 =
∏

d∈AC

(x− µd).

iv) (Bujalance, [1]) Let us denote by Σ the set of all equivalence classes of smooth
double covers of C. Then Σ is the disjoint union of subsets Σp, p = 0, ...,

[
g−1
2

]
,

each one consisting of equivalence classes of curves which are p-hyperelliptic. For
every p ≤ [

g−2
2

]
, we have |Σp| =

(
2g+2
2p+2

)
while, for p = g−1

2 , |Σp| = 1
2

(
2g+2
2p+2

)
.

Corollary 2. Any hyperelliptic curve given by C : y2 = f(x) as in (1), such
that f(x) lies in Q [x] and splits over Q into the product of two polynomials of
even degree, admits a smooth double cover which is also defined over the rational
numbers.

2. Proof of the Theorem

The key point in proving this theorem is the observation that, by definition
(see e.g. [4]), the curve C̃A is nothing but the fibre product CA ×

P1
C determined by

the diagram

(2)
C̃A = CA ×

P1
C

π2
A→ C

↓ π1
A ↓ f2

CA
f1→ P1
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where the maps fi are the corresponding hyperelliptic morphisms f1(x, z) = x,
f2(x, y) = x and the maps πi

A are defined by π1
A(x, y, z) = (x, z) and π2

A(x, y, z) =
(x, y).

Since every branching value of f1 is also a branching value of f2 with same
branching order 2 at all ramification points, we may conclude that π2

A is an un-
ramified double covering of C (see e.g. [6], p. 116). Furthermore, C̃A has to be
connected, for otherwise the restriction of the degree two maps πi

A to each connected
component T ⊂ C̃A could only have degree one, hence T would be simultaneously
isomorphic to CA and C, a contradiction.

We observe that the number of curves C̃A we obtain this way by letting A vary
among all proper non empty subsets of even cardinality of
X = {1, ..., 2g + 2} equals

∑r=g
r=1

(
2g+2
2r

)
=

∑r=g
r=1

((
2g+1
2r−1

)
+

(
2g+1
2r

))
=

=
∑k=2g

k=1

(
2g+1

k

)
= (1 + 1)2g+1 − 2 = 2

(
22g − 1

)
, among which

(
2g+2
2p+2

)
of them are

p−hyperelliptic coverings of its corresponding curve CA.
Now we address the question of whether two such coverings C̃A and C̃B are

isomorphic (as coverings of C). Thus, let us assume that we have an isomorphism φ :
C̃A → C̃B such that π2

B ◦ φ = π2
A. Then we must have φ(x, y, z) = (x, y, R(x, y, z))

for certain rational function R satisfying R2 =
∏

d∈B(x− µd). On the other hand,
diagram (2) tells us that C̃A is a Z2 ⊕ Z2−Galois covering of P1 whose elements of
order two are given by

α




x
y
z


 =




x
y
−z


 , β




x
y
z


 =




x
−y
z


 and α ◦ β




x
y
z


 =




x
−y
−z


 .

It is clear that the index two subfields of C(C̃A) = C(x, y, z) fixed by these ele-
ments are C(C) = C(x, y), C(CA) = C(x, z) and C(CAC ) = C(x, y/z) respectively,
while the index four subfield fixed by the whole group is C(x). Now, as R2 ∈ C(x),
R = R(x, y, z) must lie in one of the index two subfields C(x,w) where w is one of
the three functions y, z or y/z. In fact, R will generate such subfield; this is because
if R ∈ C(x) then φ could not induce an isomorphism between the function fields of
C̃A and C̃B .

Thus we have R = a (x) + b (x) w, hence R2 = a(x)2 + b (x)2 w2 + 2a(x)b(x)w
which implies w ∈ C(x) unless a (x) b (x) = 0, which, since R /∈ C(x), can only occur
if a(x) = 0, which, in turn, implies the identity

∏
d∈B(x− µd) = R2 = b2 (x)w2 =

b2 (x)
∏

d∈H(x − µd), or equivalently, b2 (x) =
∏

d∈B(x− µd)∏
d∈H(x− µd)

, where H = X,A or

AC depending on whether w = y, z or y/z. Since the rational function on the right
hand side has neither zeros nor poles of order greater than one, we conclude that
b(x) = ±1 and B = H. Now, the first possibility B = X is in contradiction with
our hypothesis B  X, while the remaining two ones B = A and B = AC are the
cases contemplated in the statement of the theorem.

This shows that in our construction each covering appears exactly twice, thus
our 2

(
22g − 1

)
curves C̃A give rise to the total number

(
22g − 1

)
of pairwise in-

equivalent coverings. This proves parts i), ii) and iii). Moreover, let us denote by
Σ̃p the set of curves C̃A with p = |A|

2 − 1. Then we have seen that each curve
C̃A ∈ Σ̃p gives rise to only one element in the set of isomorphic classes Σp since its
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replica C̃AC does not lie in Σ̃p but in Σ̃q, except, of course, when p = q, that is
when p = g−1

2 . This proves the remaining part iv).

3. The case of hyperelliptic coverings

Let us look more closely at the case p = 0. These are precisely the curves with
A = {i, j}, namely

C̃i,j :





y2 =
∏2g+2

d=1 (x− µd)

z2 = (x− µi)(x− µj)

Being hyperelliptic curves, one should like to find a hyperelliptic equation, that is
an expression of type (1), for them.

If we reparametrize C̃i,j by (x, y, z) → (x, y, t = z�(x− µi)) we obtain a bira-
tionally equivalent space model of C̃i,j given by the equations
y2 =

∏2g+2
d=1 (x− µd) and t2 = (x− µj)�(x− µi).

Writing the latter in the form x =
(
µj − t2µi

)
�

(
1− t2

)
allows us to provide

a plane model for C̃i,j , namely

y2 =
∏2g+2

d=1

(
µj−t2µi

1−t2 − µd

)
=

∏2g+2
d=1

(
t2(µd−µi)−(µd−µj)

1−t2

)

= t2(µj−µi)
2

(1−t2)2

∏
d 6=i,j

(
t2(µd−µi)−(µd−µj)

1−t2

)

=
(√Q

d6=i,j(µd−µi)

(1−t2)g+1

)2

(µi − µj)
2
t2

∏
d 6=i,j

(
t2 − µd−µj

µd−µi

)
,

which, by means of the reparametrization

(t, y) →
(

t, ω = (1−t2)g+1

t(µi−µj)
√Q

d6=i,j(µd−µi)
y

)
,

is seen to be birationally equivalent to the equation ω2 =
∏

d6=i,j

(
t2 − µd−µj

µd−µi

)
,

which is the model we were aiming for.
We can also trace what the covering map π2

A : C̃i,j → C, π2
A(x, y, z) = (x, y)

and the covering group 〈α (x, y, z) = (x, y,−z)〉 look like in terms of the (t, ω) co-

ordinates. As x =
(
µj − t2µi

)
�

(
1− t2

)
and y =

ωt(µi−µj)
√Q

d6=i,j(µd−µi)

(1−t2)g+1 , the
covering group is given by 〈α(t, ω) = (−t,−ω)〉 and the covering map by (t, ω) →(

µj−t2µi

1−t2 ,
ωt(µi−µj)

√Q
d 6=i,j(µd−µi)

(1−t2)g+1

)
.

We also observe that by this map the set
{(
±

√
µd−µj

µd−µi
, 0

)}
d6=i,j

of Weierstrass

points of C̃i,j maps onto {(µd, 0)}d 6=i,j , that is, the whole Weierstrass point set of
C minus the points (µi, 0) and (µj , 0) . On the other hand, it is known (see [2])
that there are only

(
2g+2

2

)
unramified hyperelliptic coverings of C, thus precisely

our curves C̃i,j . Summarizing, we have (c.f. [5]).

Corollary 3. Let

C : y2 =
2g+2∏

d=1

(x− µd)

be an arbitrary hyperelliptic curve of genus g. For each of the
(
2g+2

2

)
pairs of

Weierstrass points {Pi = (µi, 0), Pj = (µj , 0)} there is a smooth hyperelliptic double
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covering Fij : C̃ij → C, with

C̃ij : y2 =
∏

k 6=i,j

(
x2 − µk − µj

µk − µi

)

and

Fij(x, y) =


µj − µix

2

1− x2
, xy(µi − µj)

√∏
d6=i,j(µd − µi)

(1− x2)g+1




characterized, up to equivalence, by the property that Pi, Pj are the only Weierstrass
points of C which are not covered by Weierstrass points of the covering curve. The
covering group being generated by α(x, y) = (−x,−y).

All smooth hyperelliptic double coverings of C arise in this way.
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Departamento de Matemáticas. Universidad Autónoma de Madrid. 28049 Madrid
E-mail address: gabino.gonzalez@uam.es


