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Abstract. In this paper, for all genera g > 1, g ≡ 1 mod 4, we construct an explicit

hyperelliptic curve whose field of moduli is Q such that the minimum subfield of R
over which it can be hyperelliptically defined is a degree three extension of Q. These
examples are related to previous work by Earle, Shimura, and Mestre and to a recent

conjecture by Shaska.

1. Introduction

We begin by recalling some basic notions relative to a non singular complex curve C.
The field of moduli of C is the minimum subfield k0 ⊂ C such that for every σ ∈

Gal(C�k0), C is isomorphic to the curve Cσ.
The curve C is said to be defined over a field k ⊂ C if there exists a curve C ′ defined

over k such that C is isomorphic to C ′. Clearly, the field of moduli is contained in any
field of definition.

A hyperelliptic curve will be said to be hyperelliptically defined over a field k ⊂ C if
it is birationally equivalent to a curve of the form y2 = q(x), where q(x) is a polynomial
with simple roots and coefficients in k.

In this paper, for all genera g > 1, g ≡ 1 mod 4, we construct an explicit hyperelliptic
curve whose field of moduli is Q such that the minimum subfield of R over which it
can be hyperelliptically defined is a degree three extension of Q. The automorphism
group of these curves has order 8. To put matters in perspective we make the following
observations.

1) For even genus, Shimura ([15]) has produced examples of hyperelliptic curves of
even genus which cannot be defined over R whose field of moduli is some subfield of R.
He also proves that a generic polarized abelian variety of odd dimension is defined over
its field of moduli. (Now recall that an algebraic curve C of genus g uniquely defines a
polarized abelian variety of dimension g, the jacobian of C, which can be defined over
the same field and has the same field of moduli as the curve ([13] and [1])).

2) Earle ([2]), who also restricts the genus to be congruent to 1 modulo 4, has produced
other algebraic curves having the same properties as those of Shimura which are discussed
above. These algebraic curves are not hyperelliptic because, as it can be seen directly
from the construction, they are smooth cyclic coverings of degree 4n of a genus two curve;
however, according to [11], smooth hyperelliptic cyclic coverings of a hyperelliptic curve
could only have degree two.
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3) Mestre ([12]) has shown that being defined over k and being hyperelliptically defined
over k are equivalent concepts for a curve of even genus.

4) It follows directly from Weil’s seminal paper ([16]) that if a curve C has only the
trivial automorphism, then the field of moduli is a field of definition. Recently, Shaska
([14]) has conjectured that if the automorphism group of a hyperelliptic curve has order
bigger than two, then its field of moduli is also a field of definition.

We observe that, in particular, our examples show that either Mestre’s result does not
hold for odd genus or Shaska’s conjecture is false.

Notation 1. Throughout this paper i will denote a fixed square root of −1. (It will
never be used as an index).

2. Smooth hyperelliptic Galois coverings of hyperelliptic curves.

Let us begin by introducing the following hyperelliptic curve

(1) Cljk : y2 =
2g+2∏

d6=l,j,k

(
x4 − 2

(
1− 2

µl − µk

µl − µj

µd − µj

µd − µk

)
x2 + 1

)
where the parameters µ1,...,µ2g+2 are distinct complex numbers.

We observe that the coefficient

c(k, l, j, d) :=
µl − µk

µl − µj

µl − µj

µd − µk

is, precisely, the cross ratio of µk, µl, µj , µd.

The relevance of this curve rests on the following result ([4], see also [10])

Theorem 2. Let S : y2 =
∏2g+2

d=1 (x− µd) be an arbitrary hyperelliptic curve of genus g
and {Pl = (µl, 0), Pj = (µj , 0), Pk = (µk, 0)} any triple of Weierstrass points. Then, the
curve Cljk in (1) is, up to isomorphism, the unique unramified normal 4 to 1 hyperelliptic
cover of S with the property that Pl, Pj , Pk are the only Weierstrass points of S which
are not covered by Weierstrass points of the covering curve.

All smooth normal hyperelliptic 4 to 1 coverings of S arise in this way.

The proof of a crucial property of the curve Cljk will depend on the following

Lemma 3.
22c(k, l, j, d)

(
x4 − 2 (1− 2c(j, k, l, d))x2 + 1

)
=

= (i− x)4 − 2 (1− 2c(k, l, j, d)) (1 + x2)2 + (i+ x)4.

Proof. A simple calculation gives the following property of the cross ratio

c(j, k, l, d) =
c(k, l, j, d)− 1
c(k, l, j, d)

, or equivalently c(k, l, j, d) =
1

1− c(j, k, l, d)
.

Let us denote by L(x) and R(x) the left hand side and the right hand side of the
equality, respectively. To prove that L(x) = R(x) it is enough to check that the coefficient
of the leading term, x4, is the same for both polynomials and that L(x) and R(x) take
the same value at the four numbers ±1 and ±i. This is all easy using the above identities.
We have
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R(x) = (i− x)4 − 2 (1− 2c(k, l, j, d)) (1 + x2)2 + (i+ x)4 =
= −2 (1− 2c(k, l, j, d)) (1 + 2x2 + x4) + 2− 12x2 + 2x4=

= 2x4 (2c(k, l, j, d)) + x2 (−12− 4 + 8c(k, l, j, d))− 2 (1− 2c(k, l, j, d)) + 2 =

= 4x4c(k, l, j, d) + x2 (−16 + 8c(k, l, j, d)) + 4c(k, l, j, d).

This proves the first part. As for the second part we see that

L(±1) = 4c(k, l, j, d)(1− 2 + 4c(j, k, l, d) + 1) = 16c(k, l, j, d)c(j, k, l, d) =
= 16(c(k, l, j, d)− 1),

L(±i) = 4c(k, l, j, d)(1 + 2− 4c(j, k, l, d) + 1) = 16c(k, l, j, d)(1− c(j, k, l, d)) = 16

whereas
R(±1) = 4c(k, l, j, d) + (−16 + 8c(k, l, j, d)) + 4c(k, l, j, d) = 16(c(k, l, j, d)− 1),
R(±i) = 4c(k, l, j, d)− (−16 + 8c(k, l, j, d)) + 4c(k, l, j, d) = 16

as wanted. �

In the next proposition we list the properties of the curve Cljk we will need

Proposition 4. The curve Cljk satisfies the following properties:
I) The genus of Cljk equals 4 (g − 1) + 1.
II) It admits a group of automorphisms G ' Z2⊕Z2⊕Z2 generated by ψ(x, y) = (−x,−y),
τ(x, y) = (1/x,−y/x4g−2) and J(x, y) = (x,−y), the hyperelliptic involution.
III) The first two generate a Klein group K = 〈ψ, τ〉 that acts freely on Cljk with quotient
Cljk�K isomorphic to the curve y2 =

∏2g+2
m=1 (x− µm).

IV) Let us fix the first three coefficients of our defining curve µ1, µ2, µ3. Then, for the
generic choice of the remaining 2g− 1 parameters µ4, ..., µ2g+2 the corresponding curves
Cljk have full group of automorphisms Aut(Cljk) equal to G.
V) Cklj is isomorphic to Cljk (resp. to Cjkl) by means of the isomorphism

φ(x, y) =
(

i−x
i+x , 22g−1cljk

y

(x+i)2(2g−1)

)
(resp. Ψ(x, y) =

(
−i 1+x

1−x , 24g−2cjklcljk
y

((1+i)(1−x))2(2g−1)

)
)

where c2ljk =
∏

d6=l,j,k c(k, l, j, d).

Proof. I) is obvious. Cljk is a hyperelliptic curve with 4(2g − 1) Weierstrass points, the
points with y-coordinate equal to zero.
II) is easily checked by hand.
III) is part of Theorem 2 contained in [4]. But it can be proved directly by checking that,
in fact, the quotient map
F : Cklj →

{
y2 =

∏2g+2
m=1 (x− µm)

}
results as composition of the double covers

F1 : Cklj →
{
y2 =

∏
k 6=l,j

(
x2 − µk−µl

µk−µj

)}
(x, y) →

(
Ak(1+x2)

1−x2 ,
2xyAk

√∏
d6=l,j,k(A2

k−A2
d)

(1−x2)2g

)
, with Ak =

√
µk−µl

µk−µj

and

F2 :
{
y2 =

∏
k 6=l,j

(
x2 − µk−µl

µk−µj

)}
→
{
y2 =

∏2g+2
m=1 (x− µm)

}
(x, y) →

(
µl−µjx2

1−x2 , xy(µl − µj)
√∏

d6=l,j(µd−µj)

(1−x2)g+1

)
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corresponding, respectively, to quotienting by the involution ψ of Cklj and the involu-

tion τ that τ induces on Cklj� 〈ψ〉 ≡
{
y2 =

∏
k 6=l,j

(
x2 − µk−µl

µk−µj

)}
, namely τ(x, y) =

(−x,−y). These are all straightforward computations. For instance, proving that τ(x, y) =
(−x,−y) amounts to checking that F1 ◦ τ(x, y) = F1

(
1
x ,

−y
x4g−2

)
equals(

−Ak(1+x2)
1−x2 ,

−2xyAk

√∏
d6=k(A2

k−A2
d)

(1−x2)2g

)
.

In order to prove IV) we observe that by III) the quotient of Cljk by G is the same as
the quotient of Cljk/K by the automorphism induced by J , which is itself the hyper-
elliptic involution of Cljk/K. By III) this is the projective line ramified over the set
{µ1, µ2, µ3, µ4, ..., µ2g+2}. This means (see [8]) that the set of points in Mg̃, the mod-
uli space of genus g̃ = 4g − 3, representing curves admitting a group of automorphisms
topologically conjugate to G conform an irreducible subvariety Mg̃(G)  Mg̃ of complex
dimension 2g − 1. This subvariety, or rather its normalization, is a finite cover (in fact
of degree

(
2g+2

3

)
, see [10]) of M0,2+2g, the moduli space of P1 with 2+2g marked points.

Once three of these marked points are chosen, say µ1, µ2, µ3, M0,2+2g is parametrized by
the 2g − 1 remaining ones µ3, µ4, ..., µ2g+2, up to a Möbius like action of the symmetric
group Σ2g+2 (see[6]). Moreover, if G′ is any group strictly containing G, then Mg̃(G′)
is a subvariety of Mg̃(G) of lower dimension. This is the content of statement IV).
V) We observe that Theorem 2 implies, in particular, that Cklj is isomorphic to Cljk.
To prove that, in fact, φ performs this isomorphy all one has to see is that φ(x, y) =(

i−x
i+x , 22g−1cljk

y

(x+i)2(2g−1)

)
lies indeed in Cljk. In other words, one has to check that(

22g−1cljk
y

(x+i)2(2g−1)

)2

=
∏

d6=l,j,k

((
i−x
i+x

)4

− 2 (1− 2c(k, l, j, d))
(

i−x
i+x

)2

+ 1
)

whenever (x, y) ∈ Cklj . Now, (x, y) ∈ Cklj implies that
(
22g−1cljk

y

(x+i)2(2g−1)

)2

=

= 24g−2
∏

d6=klj c(k, l, j, d)
∏

d6=k,l,j(x4−2(1−2c(j,k,l,d))x2+1)
(x+i)4(2g−1) =

=
∏

d6=l,j,k

(
22c(k, l, j, d) (x4−2(1−2c(j,k,l,d))x2+1)

(x+i)4

)
=

=
∏

d6=l,j,k

((
i−x
i+x

)4

− 2 (1− 2c(k, l, j, d))
(

i−x
i+x

)2

+ 1
)

,

the last equality due to lemma 3 above. �

3. The example

The precise curve we shall work with is going to be

C : y2 =
2g+2∏
d=4

(
x4 − 2

(
1− 2

r3 − r1
r3 − r2

qd − r2
qd − r1

)
x2 + 1

)
.

That is, C is the curve C123 studied in Proposition 4 in which the first three parameters
µ1, µ2, µ3 are chosen to be the (real) roots r1, r2, r3 of x3 − 3x+ 1 (or any other degree
3 polynomial p(x) ∈ Q [x] whose Galois group has order 3) and the remaining param-
eters µ4, ..., µ2g+2 are distinct rational numbers q4, ..., q2g+2 chosen so that Aut(C) is
isomorphic to Z2⊕Z2⊕Z2. This is possible by Proposition 4, IV).
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Proposition 5. I) C is hyperelliptically defined over Q (r1).

II) The field of moduli of C is Q.

Proof. I) Obvious, by hypothesis r2, r3 ∈ Q (r1).
II) Let σ be any element of the absolute Galois group Gal(Q). Its effect on the parameters
µi is permuting the first three and preserving each of the remaining ones. Thus, applying
σ to the coefficients defining C = C123 produces a new curve Cσ

123 := Cσ(1)σ(2)σ(3) which
is isomorphic to C123 by Proposition 4, V). �

The rest of the paper is devoted to showing that Q (r1) is the minimun subfield of the
reals over which C is hyperelliptically defined.

3.1. The effect of Galois action on C. Suppose we have a birational isomorphism of
algebraic curves f : C → Ck where Ck is a curve defined over a number field k. Let γ be
any element of the Galois group Gal(Q�k). Letting γ act on the coefficients defining the
curves C and Ck and the isomorphism f yields a new isomorphism fγ : Cγ → Cγ

k = Ck.
We therefore have a commutative diagram

C h−→ Cγ

f ↓ ↓ fγ

Ck id−→ Ck

where h is an isomorphism defined by h = (fγ)−1 ◦ f . Here we are using the fact that f
is also defined over Q (see Remark 11).

We are interested in elements γ ∈ Gal(Q�k) of two particular types.

Proposition 6. If γ ∈ Gal(Q�k(r1)) then h = (fγ)−1 ◦ f ∈ Aut(C).

Proof. Obvious. In this case Cγ = C. �

The other kind of elements β ∈ Gal(Q�k) we shall be interested in are those satisfying
β(r1) = r2, and β(i) = −i. For those we have

Proposition 7. Let β ∈ Gal(Q�k) satisfying β(r1) = r2 and β(i) = −i, then (fβ3
)−1◦f

is an automorphism of C equals either ψ ◦ τ or ψ ◦ τ ◦ J .

Towards proving this statement we first note that for such elements β we have β(r1) =
r2, β(r2) = r3 and β(r3) = r1. Therefore, iterating the previous diagram we obtain a
larger commutative diagram as follows

C = C123 h−→ Cβ
123 = C231 h−→

β Cβ2

123 = C312 hβ2

−→ Cβ3

123 = C123

f ↓ ↓ fβ ↓ fβ2 ↓ fβ3

Ck id−→ Ck id−→ Ck id−→ Ck.

We now introduce the following

Notation 8. For a given isomorphism ϕ : C123 → Cβ
123 = C231, we will denote by {ϕ}

the automorphism of C123 given by {ϕ} = ϕββ ◦ ϕβ ◦ ϕ.
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Note that with this notation (fβ3
)−1 ◦ f = {h}, with h = (fβ)−1 ◦ f .

In Proposition 4 we gave a candidate for ϕ : C123 → Cβ
123, namely ϕ = φ, with

φ(x, y) =

(
i− x

i+ x
, 22g−1c231

y

(x+ i)2(2g−1)

)
.

Lemma 9. We have the following identities

I) ψ ◦ φ = φ ◦ ψ ◦ τ, ψ ◦ φβ = φβ ◦ ψ ◦ τ.
II) τ ◦ φ = φ ◦ ψ, τ ◦ φβ = φβ ◦ ψ.
III) J ◦ φ = φ ◦ J, J ◦ φβ = φβ ◦ J.
IV) ψ ◦ τ ◦ φ = φ ◦ τ, ψ ◦ τ ◦ φβ = φβ ◦ τ.

Here ψ, τ and J are defined by the expressions given in Proposition 4 regardless whether
they operate on C123 or on Cβ

123.

Proof. The identities on the right hand side are deduced by applying β to the identities
of the left hand side as the action of β does not alter the expressions defining ψ, τ and
J . Those are easily checked by hand

I) φ ◦ ψ ◦ τ(x, y) = φ
(−1

x ,
y

x2(2g−1)

)
=
(

i+ 1
x

i− 1
x

, 22g−1c231
y

x2(2g−1)

(− 1
x +i)2(2g−1)

)
=

=
(

xi+1
xi−1 , 22g−1c231

y

(−1+xi)2(2g−1)

)
=
(

i−x
−i−x , 22g−1c231

y

−(x+i)2(2g−1)

)
=

= −
(

i−x
i+x , 22g−1c231

y

(x+i)2(2g−1)

)
= ψ ◦ φ(x, y).

II) τ ◦ φ(x, y) = τ
(

i−x
i+x , 22g−1c231

y

(x+i)2(2g−1)

)
=
(

i+x
i−x ,−22g−1c231

y

(i−x)2(2g−1)

)
=

=
(

i−(−x)
i+(−x) , 22g−1c231

−y

(−x+i)2(2g−1)

)
= φ ◦ ψ(x, y).

III) is obvious and IV) follows from combination of I) and II). �

Now Proposition 7 is a consequence of the following lemma.

Lemma 10. For any isomorphism ϕ : C → Cβ, we have either {ϕ} = ψ ◦ τ or {ϕ} =
ψ ◦ τ ◦ J .

Proof. We first note that, while the action of β does not alter the expressions defining
ψ, τ and J , it transforms c2231 into (c2231)

β = c2312 which implies that c231β = ±c312, etc.
Hence, it transforms φ(x, y) =

(
i−x
i+x , 22g−1c231

y

(x+i)2(2g−1)

)
into

φβ(x, y) =

(
−i− x

−i+ x
, ±22g−1c312

y

(x− i)2(2g−1)

)
and φβ into

φββ(x, y) =

(
i− x

i+ x
, ±22g−1c123

y

(x+ i)2(2g−1)

)
.

Since the full automorphism group of C has order 8, there are 8 possibilities for ϕ. We
now check the statement for each of them, using the identities in Lemma 9.
1) For any Weierstrass point (x, 0) of C, we have
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{φ}(x, 0) = φββ ◦ φβ ◦ φ(x, 0) = φββ ◦ φβ
(

i−x
i+x , 0

)
= φββ

(
−i− i−x

i+x

−i+ i−x
i+x

, 0
)

=

= φββ
(
−i 1+x

1−x , 0
)

=
(

i+i 1+x
1−x

i−i 1+x
1−x

, 0
)

=
(−1

x , 0
)

= ψ ◦ τ(x, 0).

In other words {φ} and ψ ◦ τ coincide on the Weierstrass points of C. Therefore, we
must have either {φ} = ψ ◦ τ or {φ} = ψ ◦ τ ◦ J (see [3] or [4]).

2) {φ ◦ J} = φββ ◦ J ◦ φβ ◦ J ◦ φ ◦ J = {φ} ◦ J.

3) {φ ◦ ψ} = φββ ◦ ψ ◦ φβ ◦ ψ ◦ φ ◦ ψ = φββ ◦ φβ ◦ ψ ◦ τ ◦ ψ ◦ φ ◦ ψ =

= φββ ◦ φβ ◦ τ ◦ φ ◦ ψ = φββ ◦ φβ ◦ φ ◦ ψ ◦ ψ = φββ ◦ φβ ◦ φ = {φ}.

4) {φ ◦ τ} = φββ ◦ τ ◦ φβ ◦ τ ◦ φ ◦ τ = φββ ◦ φβ ◦ ψ ◦ τ ◦ φ ◦ τ =

= φββ ◦ φβ ◦ φ ◦ τ ◦ τ = {φ}.

5) {φ ◦ ψ ◦ J} = {φ ◦ ψ} ◦ J = {φ} ◦ J.

6) {φ ◦ τ ◦ J} = {φ ◦ τ} ◦ J = {φ} ◦ J.

7) {φ ◦ ψ ◦ τ} = φββ ◦ ψ ◦ τ ◦ φβ ◦ ψ ◦ τ ◦ φ ◦ ψ ◦ τ =

= φββ ◦ φβ ◦ τ ◦ φ ◦ τ ◦ ψ ◦ τ = φββ ◦ φβ ◦ φ ◦ ψ ◦ τ ◦ ψ ◦ τ = {φ}.

8) {φ ◦ ψ ◦ τ ◦ J} = {φ ◦ ψ ◦ τ} ◦ J = {φ} ◦ J. �

3.2. On the field of definition of C. Let us now assume that C is hyperelliptically
defined over a number field k. Thus, from now on, f : C → Ck denotes a birational
isomorphism between our curve C and a curve Ck of the form

Ck: y2 = q(x), with q(x) ∈ k [x] without multiple roots.

Let (x, y) ∈ Ck with x ∈ Q and let (a, b) ∈ C such that f(a, b) = (x, y) hence, by the
uniqueness of the hyperelliptic involution, f(a,−b) = (x,−y).

We now analyze the effect of applying a Galois element γ ∈ Gal
(
Q/k(r1)

)
to the point

(a, b).

We have fγ(aγ , bγ) = (f(a, b))γ = (x, y)γ = (x,±y) = f(a,±b) = fγ ◦ h(a,±b), where
h := (fγ)−1 ◦ f ∈ Aut(C) as Cγ = C and Cγ

k = Ck. It follows that (aγ , bγ) = h(a,±b).
Now by Proposition 4, we explicitly know the (eight) possibilities for h. Therefore, we
can equate the first coordinates in the last identity to find that aγ = ±a, ±a−1(resp.
γ(a2) = a±2). From here we draw the following consequences

a) k (r1, a) (resp. k
(
r1, a

2
)
) is a Galois extension of k (r1) of degree 1, 2 or 4 (resp.

1 or 2).
b) If γ = β3, for some β as in Proposition 7, then aγ = β3(a) = −1/a, since in that

case h equals either ψ ◦ τ or ψ ◦ τ ◦ J .
c) If k ⊂ R and we take γ = complex conjugation, we see that γ(a) = a = a, −a, a−1,

as a = −a−1 cannot occur.
d) If r1 /∈ k then k (r1, a, i) is a Galois extension of k of degree 3, 6, 12 or 24.

Remark 11. In the above discussion we have tacitly used the fact that the isomorphisms
f and f−1, hence the point (a, b), are defined over Q (see [7]).
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We shall need the following elementary observation in Galois theory.

Lemma 12. Let k be a number field admitting a Galois extension L of k of degree 3n,
with n prime to 3, such that r1 ∈ L \ k. Then, there exists γ ∈ Gal(L/k) of order three
such that γ(r1) = r2.

Proof. By Cauchy’s theorem there is γ ∈ Gal(L/k) of order 3. Moreover it cannot occur
γ(r1) = r1 for in that case γ would induce an element of Gal(L/k(r1)) but the degree of
L/k(r1) is not a multiple of 3. Thus, by replacing, if necessary, γ by γ2 we can assume
that γ(r1) = r2. �

Next we construct a Galois element β as required in Proposition 7.

Proposition 13. Let us assume that r1 /∈ k ⊂ R and let L be the field L = k (r1, a, i).
Then, there exist β ∈ Gal(L/k) such that β(r1) = r2, β(i) = −i and β3(a) 6= −1/a.

Proof. i) Suppose first that a ∈ k (r1, i) .
We apply Lemma 12 to obtain γ ∈ Gal(L/k) such that γ(r1) = r2 and ord(γ) = 3, hence
γ(i) = i. Next we let β be defined by β(x) = γ(x). It is clear that β(r1) = r2, β(i) = −i
and β3(a) = a 6= −1/a.
ii) Assume now that a /∈ k (r1, i).
We split this case into two subcases according to whether or not a2 ∈ k (r1, i) .
ii.a) If a2 ∈ k (r1, i) we argue as above to find β′ ∈ Gal(L′/k) with L′ = k

(
r1, a

2, i
)

=
k (r1, i) such that β′(r1) = r2, β′(i) = −i and β′3(a2) = a2. We claim that there is an
extension β ∈ Gal(L/k) of β′ satisfying β3(a) = a, as in the previous case.
Towards proving our claim, we first observe that, since a /∈ L′, the group Gal(L/k) has
order 12 and that the minimum polynomial of a over L′ is X2 − a2. It follows that β′

admits two distinct extensions to L, say β1, β2 ∈ Gal(L/k), both satisfying β3
d(a) = ±a,

hence both of order 6. Moreover, β1 and β2 generate different subgroups isomorphic to
Z6, because, β2 6= β5

1 , as can be seen by applying both elements to r1. This, in turn,
implies that our group Gal(L/k) is isomorphic to Z2 × Z6, as the latter is the unique
group of order 12 with more than one subgroup isomorphic to Z6 (see, e.g., [9] pp. 98-99).
Now, direct inspection inside Z2 × Z6 shows that β3

2 6= β3
1 . Therefore one of these two

elements must satisfy β3
d(a) = a as claimed.

ii.b) If a2 /∈ k (r1, i) then i /∈ L′ := k
(
r1, a

2
)
, for i ∈ L′ would imply k (r1, i) = k

(
r1, a

2
)

as both are extensions of degree 2 of k (r1). We can now extend the element γ ∈ Gal(L′/k)
with γ(r1) = r2 and ord(γ) = 3 given in Lemma 12 to an element β ∈ Gal(L/k) by setting
β(i) = −i. We will have β3(a2) = γ3(a2) = a2 6= 1/a2 since, by condition ii), a2 6= ±1.
This obviously implies that β3(a) 6= −1/a. �

Theorem 14. Q(r1) is the minimum subfield of R over which the curve C = C123

admits a hyperelliptic model. In particular C does not have a hyperelliptic model over Q.

Proof. If β ∈ Gal(Q) is any element satisfying the properties required in Proposition 7
then, as observed in point b) of the above discussion, β3(a) = −1/a. But in Proposition
13 such an element satisfying β3(a) 6= −1/a has been constructed. The contradiction
must come from our assumption that r1 /∈ k ⊂ R. �
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