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Abstract. Belyi’s theorem states that a compact Riemann surface C can be defined over a number
field if and only if there is on it a meromorphic function f with three critical values. Such functions
(resp. Riemann surfaces) are called Belyi functions (resp. Belyi surfaces). Alternatively Belyi surfaces
can be characterized as those which contain a proper Zariski open subset uniformised by a torsion
free subgroup of the classical modular group PSL2(Z). In this article we establish a result analogous
to Belyi’s theorem in complex dimension two. It turns out that the role of Belyi functions is now
played by (composed) Lefschetz pencils with three critical values while the analogous to torsion free
subgroups of the modular group will be certain extensions of them acting on a Bergmann domain of
C2. These groups were first introduced by Bers and Griffiths.

1. Introduction. Let C be a compact Riemann surface, that is a complex
algebraic curve. The (by now) well-known theorem of Belyi states that C can be
defined over a number field if and only if there is a meromorphic function f : C →
P1 with three critical values [Bel]. Such functions (resp. Riemann surfaces) are
often called Belyi functions (resp. Belyi surfaces). Belyi’s theorem has attracted
much attention ever since Grothendieck noticed in his Esquisse d’un Programme
[Groth] that it implies amazing interrelations between algebraic curves defined
over number fields and a certain class of graphs embedded in a topological surface
which he named dessins d’enfants. (See for instance the survey article [JS] or the
conference proceedings [SL]). From the point of view of uniformization theory,
Belyi surfaces can be characterized as those algebraic curves which contain a
proper Zariski open subset which can be uniformized by a torsion free subgroup
of the classical modular group PSL2(Z). The goal of this article is to establish a
result analogous to Belyi’s theorem in dimension 2, that is for complex surfaces.
It will turn out that in this case the role of Belyi functions is going to be played
by composed Lefschetz pencils or, as we shall call them, Lefschetz functions with
three critical values (Theorems 1, 2 and 3). As for the second point of view, the
corresponding uniformizing groups will arise as extensions of a genus zero torsion
free subgroup of the classical modular group PSL2(Z) by a (punctured) surface
group acting on a Bergmann domain of C2 in the manner introduced by Bers and
Griffiths (Theorem 4).
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2. A criterion for a variety to be defined over Q. Let X ⊂ Pn(C) be an
irreducible projective variety. We shall say that X is defined over a field K ⊂ C if
there is a finite collection of homogeneous polynomials with coefficients in K

{
Pα(X0, . . . , Xn) =

∑
ανXν0

0 · · ·Xνn
n

}
α

whose zero set Z (Pα) is X. We shall say that X can be defined over K if it is
isomorphic to a variety defined over K.

Likewise, we shall say that a morphism f : X → Y between irreducible
varieties X ⊂ Pn(C) and Y ⊂ Pr(C) is defined over K if X and Y are defined
over K and there is an open cover {Uj} of X such that f|Uj

≡ (Fj,0, . . . , Fj,r)
for some homogeneous polynomials Fj,k = Fj,k(X0, . . . , Xn) with coefficients in
K. We will say that f : X → Y can be defined over K if it is equivalent to a
morphism f0: X → Y defined over K. Here f and f0 being equivalent means
that there are automorphisms h1: X � X and h2: Y � Y such that the following
diagram commutes

X
f

−−−→ Y�h1

�h2

X
f0

−−−→ Y .

We are interested in the question of whether a given variety X can be defined
over a number field, or equivalently, over Q, the field of algebraic numbers. Let
Gal(C) = Gal(C/Q) denote the group of all field automorphisms of C. For given
σ ∈ Gal(C) and a ∈ C, we shall write aσ instead of σ(a). We shall employ same
rule to denote the obvious action induced by σ on the projective space Pn(C), the
ring of polynomials C [X0, . . . , Xn], etc. Namely, for a point x = (x0, . . . , xn) ∈
Pn(C) we put xσ = (xσ0 , . . . , xσn ), for a polynomial P =

∑
aνXν0

0 · · ·Xνn
n we write

Pσ =
∑

aσνXν0
0 · · ·Xνn

n , for a morphism f : X → Y given by a collection of local
expressions{(Fj,0, . . . , Fj,r)} we let f σ: Xσ → Yσ be the morphism given by
{(Fσj,0, . . . , Fσj,r)}, etc. Note that we have Xσ = Z(Pσα).

Of course, the chief criterion to detect if X can be defined over a given
number field K is Weil’s criterion for rationality [We]. However if, as in our
case, we only intend to know whether or not X can be defined over Q then the
following weaker characterization will be much easier to handle.

Criterion 1. [Gon] The following conditions relative to an irreducible variety
X ⊂ Pn(C) (resp. a morphism f : X → Y between irreducible projective varieties
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defined over a number field) are equivalent:
(i) X (resp. f : X → Y) can be defined over a number field.
(ii) The family {Xσ}σ∈Gal(C) (resp. {f σ: Xσ → Yσ}σ∈Gal(C)) contains only

finitely many isomorphism classes of complex projective varieties (resp. of mor-
phisms).

(iii) The family {Xσ}σ∈Gal(C) (resp. {f σ: Xσ → Yσ}σ∈Gal(C)) contains only
countably many isomorphism classes of complex projective varieties (resp. of
morphisms).

3. Belyi’s theorem. Let now S be a complex surface, that is a compact
holomorphic manifold of complex dimension 2. Naturally, we shall say that S
can be defined over a number field, if it is biholomorphic to a projective surface
defined over Q. Note that a complex surface need not be algebraic, that is need
not be isomorphic to a projective surface.

Recall that S is termed minimal when it does not contain genus zero Riemann
surfaces with self-intersection −1. These are called exceptional or (−1)-curves.
A (−1)-curve E can always be contracted (or blown down) to a point in the sense
that there is a complex surface S1 and a holomorphic map π: S→ S1 which maps
E to a point π(E) ∈ S1 and is biholomorphic off E. The map π: S → S1 is the
blow-up of S1 at x = π(E). Given an arbitrary complex surface S, a minimal
surface Smin can be obtained by a sequence of contractions

S = S0 → S1 → · · · → Sn = Smin.

A minimal surface obtained in this way is called a minimal model of S.
Suppose that S is defined over Q and let E ⊂ S be an exceptional curve, then

E is also defined over Q [Gon]. Now, since blowing down an exceptional curve
is an operation in Algebraic Geometry that works over any algebraic closed field,
there can be no doubt that the contracted surface S1 and the point x1 = π(E) ∈ S1

are both defined over Q. As same argument can be applied at every next step,
we see that the following result holds:

PROPOSITION 1. If a complex surface S is defined over a number field then so is
any minimal model of S.

We thus see that a complex surface S can be defined over a number field if
and only if it can be obtained out of a minimal surface Smin defined over Q by
a finite sequence of blow-ups centered at points also defined over Q. Therefore
in our search for a Belyi criterion for complex surfaces we can restrict ourselves
to minimal ones.

Recall that by classical results of Bertini given a surface S ⊂ Pn there is a
pencil of hyperplanes {Hλ = λ0H0 + λ1H1}λ with λ = (λ0,λ1) ∈ P1, so that the
hyperplane sections Sλ = S∩Hλ are generically nonsingular connected algebraic
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curves and S = ∪λ∈P1Sλ. Moreover, the rule “ f (x) = λ ∈ P1 if and only if
x ∈ Sλ” defines a meromorphic function f ∈ M(S) with nonempty base locus
B = ∩λ∈P1Hλ = Z(H0, H1). By results of Lefschetz f : S ��� P1 can be chosen so
as to satisfy the following requirements (see [Lam]):

(i) f : S \ B→ P1 is a holomorphic submersion outside a finite set of critical
points {x1, . . . , xd}, no two of them in a same fibre, which therefore correspond
bijectively to the critical values q1 = f (x1), . . . , qd = f (xd),

(ii) at each critical point xi, f is locally of the form (z1, z2)→ z2
1 + z2

2, and
(iii) at each base point bk, f is locally of the form (z1, z2)→ z1/z2.

Definition 1. A Lefschetz pencil on a complex surface S is a meromorphic
function f ∈ M(S) which has a nonempty base locus B = {b1, . . . , br} and
satisfies conditions (i) to (iii) above.

The closures of the (open) fibres of f : S \B→ P1 are given by including the
points {b1, . . . , br}. By condition (iii) each base point bk is nonsingular in every
completed fibre f−1(t)∪B ⊂ S. If π: S̃→ S is the blow-up of S at b1, . . . , br then
f induces a well-defined morphism f̃ : S̃ → P1 called the associated Lefschetz
fibration. For each t ∈ P1, π induces an isomorphism between f̃−1(t) and f−1(t)∪
B. It follows that the fibration f̃ : S̃ → P1 comes equipped with r sections, one
for each base point. It is also known that all nonsingular fibres f̃−1(t) (resp.
f−1(t)) with t = qi are connected compact (resp. r times punctured) Riemann
surfaces of a same genus g called the genus of the pencil (see e.g. [GS], 8.1).
We note that S̃ will never be minimal as it has at least r exceptional curves. If
none of the exceptional curves of S̃ lies in a fibre, f̃ : S̃→ P1 is called relatively
minimal. When this is not the case, a relatively minimal fibration can be achieved
by blowing down all (−1)-curves contained in some fibre. We shall denote by
π̂: S̃→ Ŝ this contraction map and by f̂ : Ŝ→ P1 the relatively minimal fibration
so obtained. One has the following commutative diagram

S̃ → Ŝ
↘ ↓

P1,

that is, f̃ = π̂ ◦ f̂ .
We also recall that S is called rational (resp. ruled) if it is bimeromorphically

equivalent to P2 (resp. C × P1, for some Riemann surface C). Rational and
ruled surfaces are always algebraic, so above we can replace bimeromorphic by
birational equivalence. A ruled surface is rational if and only if C ≡ P1. A
surface S is called geometrically ruled if there is a smooth surjective morphism
p: S → C onto a curve C whose fibres are all isomorphic to P1. Geometrically
ruled surfaces are always minimal and, with the single exception of P1 × P1,
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admit exactly one ruling. Conversely, apart from P2, any minimal ruled surface
is geometrically ruled.

3.1. Lefschetz pencils on minimal surfaces. Throughout this section we
will employ the following notation. For each base point bi ∈ S of the a Lefschetz
pencil f : S ��� P1 we shall write Ẽi = π−1(bi) to refer to the exceptional divisors
of the corresponding blow up morphism π: S̃ → S. For a given curve F ⊂ S
we shall denote by π∗F ⊂ S̃ (resp. π−1F ⊂ S̃) the full (resp. strict) transform
of F.

PROPOSITION 2. Let f : S ��� P1 be a Lefschetz pencil of genus g ≥ 1 on a
minimal surface S which is not rational or ruled. Then the associated Lefschetz
fibration f̃ : S̃→ P1 is relatively minimal.

Proof. Suppose we have a (−1)-curve L̃ ⊆ f̃−1(q) ⊂ S̃ and set L = π(L̃) ⊆
f−1(q)∪B ⊂ S, hence L is also a genus zero Riemann surface such that π−1L = L̃.
Now if L contains m base points so that L̃ meets m exceptional divisors Ẽ1, . . . , Ẽm

we have π∗(L) = L̃+
∑

Ẽi and intersection theory gives L2 = π∗(L)2 = (L̃+
∑

Ẽi) ·
(L̃ +

∑
Ẽi) = L̃2 + 2m − m = m − 1. Since S is minimal we must have m = 0,

hence L2 ≥ 0. It follows that S is rational or ruled (see [BPV] V,4.3).

As for Lefschetz pencils on ruled surfaces the situation is as follows

PROPOSITION 3. Let f : S ��� P1 be a Lefschetz pencil of genus g ≥ 1 over
a minimal nonrational ruled surface p: S → C. Then the associated Lefschetz
fibration f̃ : S̃ → P1 is either relatively minimal or else all its singular fibres
contain a (−1)-curve.

Assume we are in the second case, then the ruling morphism p restricts to
bijections of the sets {xi} of critical points and {bi} of base points onto its common
image {p(xi)} = {p(bi)}. Moreover we have:

(i) Any such triple (S, p, f ) arises in the following way. Blowing up C × P1 at
the points (ci, qi) = (p(xi), f (xi)) and then contracting in the surface S̃ so obtained
the strict transforms of the lines Li = {ci} × P1 yields a surface isomorphic to S.
Under this isomorphism the ruling and Lefschetz pencil structures p: S → C and
f : S ��� P1 correspond to projection of C×P1 onto the first and the second factor
respectively.

(ii) Conversely for any given finite subset {(ci, qi)} ⊂ C × P1 with ci = cj and
qi = qj for i = j, the procedure above yields a minimal surface S endowed with a
non relatively minimal Lefschetz pencil structure f : S ��� P1 and a ruled structure
p: S → C induced by projection of C × P1 onto the second and the first factor
respectively.

Proof. Let p: S→ C be a minimal ruled surface with C of positive genus and
f ∈M(S) a nonrelatively minimal Lefschetz pencil. The situation is summarized
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in the following diagram

S̃
π

−−−→ S
p

−−−→ C

π̂

� �f

Ŝ
f̂

−−−→ P1,

where f̃ = f̂ ◦ π̂ and f̂ : Ŝ→ P1 is relatively minimal.
We proceed as in the proof of Proposition 2. Suppose we have a (−1)-curve

L̃ ⊆ f̃−1(q) and set L = π(L̃) ⊂ S, a nonsingular rational curve such that π−1L = L̃.
If L contains m base points bi ∈ S we have seen that L2 = π∗(L)2 = m−1. As we
are assuming that S is not rational we conclude that L must contain only one base
point b1 ∈ B, for L2 > 0 can only occur in a rational surface (see [BPV] V,4.3).
Moreover L has to be a line of the ruling for otherwise L would be surjectively
mapped onto C.

Now if Fλ ⊂ S is a generic fibre of the pencil and π−1Fλ ⊂ S̃ is its strict
transform, we have:

L · Fλ = π∗(L) · π∗(Fλ) = (L̃ + Ẽ1) ·
(
π−1Fλ +

∑
Ẽi

)

= L̃ · (π−1Fλ +
∑

Ẽi) + Ẽ1 ·
(
π−1Fλ +

∑
Ẽi

)

= L̃ · Ẽ1 + Ẽ1 · (π−1Fλ + Ẽ1) = 1 + 0 = 1.

Since all lines are homology equivalent, we have Lc · Fλ = 1 for any line Lc =
p−1(c). This implies that the morphism p induces an isomorphism between the
generic fibre and C. In particular C has also genus g.

Now suppose f̃−1(q) is a singular fibre not containing (−1)-curves and let T
be an irreducible component. If g > 1, its genus γ must satisfy 1 ≤ γ ≤ g − 1
while if g = 1, our component T must equal the total fibre f̃−1(q) which can only
be a rational curve with one node. In any case we see that on the one hand T is
not a line of the ruling whereas on the other it can not be surjectively mapped
onto C which has genus g. We conclude that such a fibre cannot exist.

Now we claim that the correspondence L̃ � L = π(L̃) (resp. L̃ � L ∩ B)
provides a bijection between the set of singular fibres of f̃ : S̃ → P1 and the set
of lines of p: S → C intersecting B (resp. the set B). So, suppose that Lc is a
line of the ruling with Lc ∩ B = ∅. We want to show that its strict transform
π−1Lc ⊂ S̃ is a (−1)-curve inside some fibre. Now, as Fλ passes through any
base point, another implication of the identity Lc · Fλ = 1 obtained above is that
Lc intersects B in exactly one point bk. Moreover, a computation similar to the
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one carried out before shows that

1 = π∗(Lc) · π∗(Fλ) = (π−1Lc + Ẽk) ·
(
π−1Fλ +

∑
Ẽi

)

= π−1Lc · π−1Fλ + π−1Lc · Ẽk + Ẽk · π−1Fλ + Ẽk · Ẽk

= π−1Lc · π−1Fλ + 1 + 1− 1.

This implies that π−1Lc · π−1Fλ = 0 which means that π−1Lc is contained in
some fibre. The remaining statement that π−1Lc is a (−1)-curve follows from the
identity 0 = L2

c = (π−1Lc + Ẽk)2. This settles the first statement in our proposition.
(i) We observe first that Ŝ is a geometrically ruled surface, hence minimal,

by means of the morphism p̂ = p ◦ π ◦ π̂−1: Ŝ → C whose fibres p̂−1(c) are
π̂(Ẽk) if c = p(bk) and π̂(π−1Lc) if B ∩ Lc = ∅. Now we claim that, in fact, Ŝ
is isomorphic to C × P1, the isomorphism being given by Φ(x̂) = (p̂(x̂), f̂ (x̂)).
Since Ŝ is minimal this is tantamount to showing that Φ has degree 1. Now, for
generic (c,λ) ∈ C × P1, Φ−1(c,λ) is nothing but the intersection of π̂(π−1Lc)
and π̂(π−1Fλ) whose intersection number is

π̂(π−1Lc) · π̂(π−1Fλ) = π−1Lc · π−1Fλ

= π−1Lc · (π−1Fλ +
∑

Ẽi) = Lc · Fλ = 1.

(ii) For the proof of this part we only need to reverse the arguments used
above. If π̂: S̃→ C × P1 is the surface obtained by blowing up at {(ci, qi)} and
we denote now by F̃λ and L̃i the strict transform of C×{λ} and the exceptional
divisor π̂−1(ci, qi) respectively, then the fibration f̃ : S̃→ P1 obtained as f̃ = p2◦π̂,
with pk equals projection onto the k-th factor, has fibres f̃−1(λ) equal to F̃λ if
λ = qi and to F̃qi ∪ L̃i otherwise. It is also true that the strict transform Ẽi of Ei =
{ci}×P1 is a (−1)-curve as can be deduced from the identity 0 = E2

i = (Ẽi + L̃i)2,
so these curves can be blown down to obtain a contracting map π: S̃ → S. On
the surface S the rational map f = f̃ ◦ π−1 determines a Lefschetz pencil whose
associated Lefschetz fibration is, of course, f̃ : S̃ → P1. Similarly the morphism
p = p1 ◦ π̂ ◦ π−1: S → C makes of S a geometrically ruled surface with fibres
p−1(c) equals π ◦ π̂−1({c} × P1) if c = ci and π(L̃i) if c = ci. This concludes the
proof.

We now recall the following definition (see [HM]):

Definition 2. A curve C (resp. a r-pointed curve (C; c1, . . . , cr)) is called
stable if it has only nodes as singularities and every rational component of the
normalization of C has at least 3 points lying over singular (resp. singular and/or
marked) points of C.

COROLLARY 1. Let f ∈M(S) be a Lefschetz pencil of genus g ≥ 1 on a minimal
surface different from P2 or a ruled surface. If g > 1 (resp. g = 1) then f̃ : S̃→ P1
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(resp. f : S \ B → P1) is a stable family of curves of genus g (resp. of r pointed
curves of genus 1).

Proof. By Proposition 2 the only chance for a singular fibre Fqi to be non-
stable is to be isomorphic to a rational curve with one node, hence with Euler
characteristic χ(Fqi) = 1. But, on the other hand, topologically, Fqi is obtained
from the generic fiber by contracting a simple loop so χ(Fqi) = 2− 2g + 1. These
equalities only match if g = 1. Now, since r > 0 such fibre is also stable in this
case.

3.2. Characterization of surfaces defined over Q.

Definition 3. By a Lefschetz function we shall refer to a meromorphic func-
tion h ∈ M(S) obtained as composition of a Lefschetz pencil f : S ��� P1 with
a rational function β: P1 → P1.

In classical terms, if h = β ◦ f is a Lefschetz function, then the morphism
β ◦ f̃ : S̃→ P1 is composed with a Lefschetz fibration. The following results state
that Lefschetz functions with three critical points play in the theory of complex
surfaces a role analogous to that of Belyi functions in the theory of complex
curves.

THEOREM 1. The following statements relative to a minimal complex surface S
different from any nonrational ruled surface are equivalent.

(a) S can be defined over a number field.
(b) S admits a Lefschetz pencil f ∈ M(S) with critical values q1, . . . , qd in

P1(Q).
(c) S admits a Lefschetz function h ∈ M(S) with three critical values, say

0, 1,∞.

Proof. Let us prove first the equivalence between (b) and (c). Given a finite set
of points q1, . . . , qd ∈ P1(Q), Belyi([Bel]) has produced a very simple algorithm
to construct a function β: P1 → P1 which sends them, as well as all its critical
points, to {0, 1,∞}.

Conversely, let h = β ◦ f ∈ M(S) be a function with three critical values,
where f is a Lefschetz pencil and β a rational function. We have to show that f can
be assumed to have critical values in P1(Q). If β is a Möbius transformation there
is nothing to prove. If, on the contrary, β has degree n ≥ 2 then the Riemann-
Hurwitz formula implies that it has at least two critical values and that when it
has exactly two, say 0 and ∞, they correspond to precisely two critical points
of maximum branching order n. In this case pre-composing β with a suitable
Möbius transformation M we get the rational function β0(z) = zn. Now M−1 ◦ f is
a Lefschetz pencil with critical values qi in Q since each qi is a n-th root of either
0, 1 or ∞. Finally, if β has three critical values Criterion 1 easily implies that it
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is equivalent to a rational function β0: P1 → P1 defined over Q (see [Gon]). We
thus have a commutative diagram as follows

S \ B
f

−−−→ P1
β

−−−→ P1

�h1

�h2

P1
β0−−−→ P1,

where h1 and h2 are isomorphisms. We claim that replacing f by h1 ◦ f solves the
problem. To see this, we observe that if qi is a critical value of f then we have
β(qi) = β(c) ∈ {0, 1,∞} for some critical point c of β. Now by the commutativity
of the diagram we have β0(h1(qi)) = β0(h1(c)). On the other hand, since h1(c) is
a critical point of β0, both h1(c) and β0(h1(c)) lie in Q. This, in turn, implies that
h1(qi) ∈ Q as wanted.

The implication (a) ⇒ (b) is trivial. As we have recalled above Bertini’s
theory provides S with a Lefschetz pencil structure. Moreover if S is defined over
Q and we take our pencil of hyperplanes {Hλ}λ defined also over Q, then the
corresponding Lefschetz pencil will have critical points xi and critical values qi

defined over Q too.
The proof of the remaining implication (b)⇒ (a) consists of two parts, first

proving that S is actually an algebraic surface and then that it can be defined
over Q.

The first part is easy. In dimension two the property of being algebraic is
a birational invariant; so it is enough to show that S̃, the surface obtained by
blowing up S at the base points of the Lefschetz pencil f , is an algebraic surface.
Now, according to the results of Kodaira on complex surfaces (see e.g. [BPV] VI,
4.1), a surface which fibres over P1 such as S̃ is algebraic unless the associated
Lefschetz fibration f̃ : S̃→ P1 is a fibration of genus g = 1 with no sections, but
Lefschetz fibrations do have sections, namely one for each point of the (nonempty)
base locus of the Lefschetz pencil.

As for the second part, we may assume from the start that f̃ : S̃ → P1 is
relatively minimal, for, according to Proposition 2, exceptions may only occur if
S is either a nonrational ruled surface (excluded case) or a rational surface. Now,
a rational surface S is either P2 or one of the countably many ruled surfaces of
Hirzebruch Fn (see [BPV] or [Bea]) which are known to be defined over Q (or
else, apply again Criterion 1).

We now study separately the cases when the fibre genus is g > 1 and when
g = 1.

g > 1). We claim that the restriction of the associated Lefschetz fibration
f̃ : S̃→ P1 to the set of regular values P1 \ {qi} gives a nonlocally trivial family.
If it were locally trivial, then the classifying map φ: P1\{qi} →Mg which sends



68 GABINO GONZÁLEZ-DIEZ

each s ∈ P1 \ {qi} to the point in moduli space representing the curve f̃−1(s)
would be a constant map. By Corollary 1 the map φ extends to a map P1 →Mg

from P1 to the stable (or Deligne-Mumford) compactification of moduli space
(see e.g. [HM]). Of course, this extension can only be the constant map. In other
words, we would deduce that the entire family f̃ : S̃→ P1 is locally trivial. On the
other hand, since the automorphism group of a Riemann surface of genus greater
than 1 is finite and because here the base of the family is simply connected, our
fibration must be isomorphic to a trivial fibration P1 × F (cf. [BPV] III 18.4.b).
The contradiction now follows from the fact that P1 × F is a minimal surface
whereas S̃ can never be so as it contains one exceptional curve for each base
point bi of the pencil f .

Now if q1, . . . , qd are defined over a number field, letting Gal(C) act on
f̃ : S̃ \ f̃−1{qi} → P1 \ {qi} gives a collection of nonlocally trivial families with
only finitely many distinct base spaces. We are therefore now in position to apply
Parshin-Arakelov’s theorem ([Arak]) as stated e.g. in Caporaso’s article [Cap], to
infer that in the collection f̃ σ: {S̃σ → P1}σ∈Gal(C) there are only finitely many

isomorphism classes of fibrations. Hence Criterion 1 implies that S̃, and thus S,
can be defined over Q.

g = 1). Let us consider the family f : S \ B→ P1 provided by our Lefschetz
pencil. By Corollary 1 this is a stable family of r-times punctured elliptic curves.
Therefore same argument as in the case g > 1 above, with the only difference that
Mg should be replaced by the moduli space of r-punctured (or, equivalently, r-
pointed) elliptic curvesM1,r (see e.g. [HM] or [Nag]), shows that for this family
too local triviality implies global triviality. But here again it is not possible for
f : S\B→ P1 to be a product fibration because this would violate the requirement
(iii) in Definition 1.

Therefore, if q1, . . . , qd are defined over a number field, we may invoke again
Arakelov’s theorem (now in the transcendental form given by Imayoshi and Shiga
in [IS]) to conclude that as σ ranges in Gal(C) the families f σ: Sσ\Bσ → P1\{qσi }
give rise to only finitely many biholomorphism classes. This means that if for each
σ ∈ Gal(C) we denote by Jσ the j-invariant of the elliptic fibration f̃ σ: S̃σ → P1

defined by sending s ∈ P1 \ {qσi } to the Jacobi modular invariant of the elliptic
curve (f̃ σ)−1(s), then, up to equivalence, we only get a finite number of rational
functions. Now according to Kodaira (see e.g. [BPV]) a relatively minimal elliptic
fibration without multiple fibres such as ours is determined, up to finitely many
choices, by its j-invariant. We, therefore, may apply again Criterion 1 to conclude
the proof of the theorem.

For nonrational ruled surfaces Theorem 1 takes the following form:

THEOREM 2. Let p: S → C be a minimal ruled surface which is not rational.
The following statements are equivalent.

(a) S can be defined over a number field.
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(b) The curve C can be defined over Q and S admits a Lefschetz pencil
f ∈ M(S) with critical points x1, . . . , xd ∈ S so that the critical values f (x1), . . . ,
f (xd) ∈ P1 and the points p(x1), . . . , p(xd) ∈ C are also defined over Q.

(c) The curve C can be defined over Q and S admits a Lefschetz function with
three critical values of the form h = β ◦ f for some Lefschetz pencil f ∈ M(S) as
in (b).

Proof. The proof of the equivalence between (b) and (c) is the same as in
Theorem 1.

The implication (a) ⇒ (b) is easy. As in the proof of Theorem 1 Bertini’s
theory provides S with a Lefschetz pencil with critical points xi and critical values
qi = f (xi) defined over Q. Moreover, the fact that the ruling morphism p: S→ C
is unique up to an automorphism of the base C (see e.g. [Bea]) allows us to apply
again Criterion 1 to the collection of morphisms {pσ: Sσ → Cσ}σ∈Gal(C) to infer
that the base curve C must also be defined over Q. It remains to be shown that
so must be the points p(xi) ∈ C. Suppose p(x1) were not defined over Q. Then
there would be plenty of elements σ ∈ Gal(C) leaving invariant S, the points xi

and the curve C but not the point p(x1). This way we would have infinitely many
rulings pσ: S → C of the surface S. This is impossible if C has genus greater
than one, in which case it only has finitely many automorphisms. If the genus
of C is one, then we can chose p(x1) to be defined over a number field, say the
origin of the elliptic curve C. Now if p(x2) were not defined over Q we could
use a similar argument to prove the existence of infinitely many automorphisms
of the pointed curve (C, p(x1)). This is again impossible.

As for the proof of (b) ⇒ (a), we first note the the argument given in
Theorem 1 to prove that S is an algebraic surface is still valid in this case. Thus,
what remains to be seen is that S can be defined over Q. But here again the
argument given in Theorem 1 to prove this same fact remains valid as long as
our pencil f ∈ M(S) is a relatively minimal pencil of genus g > 0. If this
were not the case then f ∈ M(S) would be either a genus zero pencil in which
case S would be a rational surface, hence defined over Q, or a pencil of the
form described in part (i) of Proposition 3 in which case the arithmeticity of the
surface S would follow from that of the curve C and the points qi = f (xi) ∈ P1

and p(xi) ∈ C.

In view of Proposition 1 and the comments that follow it the above results
can be re-formulated as follows:

THEOREM 3. A complex surface S can be defined over a number field if and only
if it is either a minimal surface admitting a Lefschetz function h = β ◦ f with only
three critical values or it is obtained from one such by a finite sequence of blow-ups
centered at points with coordinates in Q. In the case of ruled surfaces p: S → C
we must in addition require the curve C and the image on it of the critical points of
the Lefschetz pencil f to be defined over a number field too.
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4. Belyi’s theorem via Griffiths uniformization. If β: C → P1 is a Belyi
function on a complex curve C, then the restriction β: C \ Σ → P1 \ {0, 1,∞},
with Σ = β−1({0, 1,∞}), is a smooth cover isomorphic to one of the form
H/Γ → H/Γ(2), where H is the upper half plane, Γ(2) is the level 2 principal
congruence subgroup of the classical modular group PSL2(Z) and Γ is a finite
index subgroup of Γ(2). This simple fact readily leads to the following formulation
of Belyi’s theorem in terms of uniformization.

PROPOSITION 4. A compact Riemann surface C is a Belyi surface if and only if
there is a finite set Σ ⊂ C such that C \ Σ is isomorphic to a quotient of the form
H/Γ where Γ is a torsion free finite index subgroup of PSL2(Z).

This idea of looking at algebraic curves defined over Q through their par-
ticular uniformizing Fuchsian groups goes back to Shabat-Voevodsky and to
Grothendieck himself. Proposition 4 and other results of this kind (see e.g. [CIW],
[Gon], [JS] and [SV]) may be regarded as a manifestation of how the arithmetic
nature of an algebraic curve is reflected in that of its (nonnecessarily torsion free
or co-compact) uniformizing groups. This phenomenon can be also paralleled in
the 2-dimensional case. Now the role of Fuchsian uniformization of algebraic
curves is going to be played by Griffiths uniformization of algebraic surfaces.

4.1. Uniformization of certain Zariski open sets of an algebraic surface.
A domain B in C2 is called a Bergman domain if it is the set of pairs (t, z) such
that t ∈ H, and z ∈ Dt where Dt is a bounded Jordan domain whose boundary
curve admits a parametric representation

z = W(t, eiθ), 0 ≤ θ ≤ 2π,

W being, for each fixed θ, a holomorphic function of t (see [Bers]). It is clear
that by choosing an isomorphism between the upper half plane and the unit disc
D we can obtain an equivalent domain B1 in which H is replaced by D. We shall
say that B is bounded if B1 is.

By a Bers transformation of a Bergman domain B ⊂ H× C we shall mean
a holomorphic isomorphism g(t, z) = (ĝ(t), gt(z)) where ĝ ∈ PSL2(R) is a real
Möbius transformation and gt: Dt → Dĝ(t) is a biholomorphic map. If G is a
group of Bers transformations acting freely on B, there is an obvious short exact
sequence

1 ↪→ K → G
ρ→Γ→ 1,

where the epimorphism ρ is defined by ρ(g) = ĝ. We see that while Γ is a
Fuchsian group, the group K acts freely on each simply connected region Dt as
a group Kt of biholomorphic transformations whose quotient space Dt 	 Kt is
a Riemann surface. We will say that G is a Griffiths extension of Γ if for each
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t ∈ H the surface Dt 	 Kt is of finite hyperbolic type, that is, a Riemann surface
of genus p with r punctures subject to the restriction 2p− 2 + r > 0.

It is clear that G gives rise to a holomorphic fibration f : B 	 G → H 	 Γ
whose fibre over a coset [t] ∈ H 	 Γ, t ∈ H, is the Riemann surface Dt 	 Kt.
We shall be interested in the case in which Γ is a Fuchsian group of finite type
or, as they are also called, of finite volume.

Definition 4. We shall say that a 2-dimensional complex manifold U admits a
Griffiths uniformization if its holomorphic universal cover Ũ → U is isomorphic
to a bounded Bergman domain of C2 and its covering transformations group G
is a Griffiths extension of some finite volume Fuchsian group.

Griffiths uniformization theorem for algebraic surfaces states that every alge-
braic surface contains a Zariski open set which admits a Griffiths uniformization
([Gri], see also [Bers]).

4.2. Characterization of surfaces defined over Q via Griffiths uniformiza-
tion.

THEOREM 4. A minimal nonruled surface S ⊂ Pn(C) can be defined over a
number field if and only if it contains a Zariski open set U admitting a Griffiths
uniformization such that the uniformizing group G is a Griffiths extension of a finite
index torsion free subgroup of PSL2(Z) of genus zero.

Proof. Let S be a nonsingular surface defined over Q and f : S ��� P1 a
Lefschetz pencil with base locus B = {b1, . . . , br}, critical points {x1, . . . , xd}
and critical values {q1, . . . , qd} in Q. Then, by restriction to the regular values,
one obtains a a family of r-punctured nonsingular curves f : U → P1 
 {qi},
where U ⊂ S is the Zariski open set U = (S 
 B) 
 f−1 {qi}. Moreover the
genus p of the fibres must be strictly positive, for otherwise the surface would
be ruled.

Let Γ ⊂ PSL2(R) be the Fuchsian group uniformizing P1 
 {qi}. Then
the results in [Gri] imply that U admits a Griffiths uniformization such that the
covering transformations group G is a Griffiths extension of Γ by a group K
of type (p, r). We would like to have Γ ⊂ PSL2(Z). To achieve this we recall
that thanks to Belyi ([Bel]), we can construct a rational function β: P1 → P1

which sends {qi}, as well as all its critical points, to {0, 1,∞}, thereby inducing
the following smooth cover of pointed Riemann surfaces P1 
 β−1{0, 1,∞} →
P1 
 {0, 1,∞}. It follows that the group Γ1 uniformizing P1 
 β−1({0, 1,∞})
is a subgroup of the group uniformizing P1 
 {0, 1,∞} which is the principal
congruence subgroup Γ(2) ⊂ PSL2(Z). Now to settle the “only if” part of the
theorem we merely have to replace U by the Zariski open set U1 = (S 
 B) 

f−1(β−1{0, 1,∞}) ⊂ U and Γ by the group Γ1.

Conversely, let us assume that our surface S contains a Zariski open set
U ⊂ S admitting a Griffiths uniformization U � Ũ 	 G, where G is a Griffiths
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extension of a finite index torsion free subgroup Γ ⊂ PSL2(Z) of genus zero by
a group of type (p, r) with 2p − 2 + r > 0. Then, as noted above, the action of
G induces a holomorphic fibration of Riemann surfaces of finite hyperbolic type
f : U → P1 
 {qi} with P1 
 {qi} isomorphic to H 	 Γ. We claim that, after
applying a suitable Möbius transformation, the values {qi} lie in Q. To see this,
we note that the natural projection H 	 Γ → H 	 PSL2(Z) extends to a Belyi
function β: P1 → P1 which sends {qi} to {0, 1,∞}. Now, as an easy application
of Criterion 1 (see [Gon]), one can see that β is equivalent to a rational function
β0 defined over Q, therefore the values {qi} ⊂ β−1

0

(
{0, 1,∞}

)
must also lie in

Q as claimed.
Now, by the results of Imayoshi on holomorphic families of Riemann surfaces

([Ima2], see also [Ima1] and [Ima3]), f : U → P1 
 {qi} extends to a holomor-
phic map f̂ : Û → P1, where Û is a compact normal surface bimeromorphic to S
such that U = Û 
 Z, for certain analytic subspace Z.

Let now π: Y → Û be a resolution of singularities of Û (see e.g. [BPV]
III.6.1). Then Y is a surface bimeromorphic to Û, hence to the algebraic surface
S. Therefore Y is a projective surface birationally equivalent to S. By Chow’s
theorem π−1(Z) is a Zariski closed subset of Y , and hence V := π−1(U) is a
Zariski open subset of Y . Moreover, since U does not contain singular points, π
induces a holomorphic isomorphism between U and V .

Next we apply the GAGA principle to infer that the map f1 = f̂ ◦ π: Y → P1

is a regular map. It then follows that for any σ ∈ Gal(C) we have a well defined
family of pointed algebraic curves f σ1 : Vσ → P1 \ {qσi }.

Now, since S is nonruled, so must be Y , and hence all the surfaces Yσ,
σ ∈ Gal(C). Therefore none of the families f σ1 : Vσ → P1 \ {qσi } can be locally
trivial. We can thus apply Arakelov’s theorem as given in [IS] to conclude that
as σ ranges in Gal(C) the families f σ1 : Vσ → P1 \ {qσi } give rise to only finitely
many biholomorphism classes.

Now, again by the results of Imayoshi, if f σ1 : Vσ → P1 \ {qσi } is biholomor-
phically equivalent to another fibration f τ1 : Vτ → P1\{qτi }, for some τ ∈ Gal(C),
then any pair of compactifications of Vσ and Vτ , and in particular Yσ and Yτ ,
must be bimeromorphically equivalent ([Ima2], Theorem 5). Moreover, since Yσ

and Yτ are algebraic surfaces, they must also be birationally equivalent. We thus
see that in the collection {Yσ}σ∈Gal(C) there are only finitely many birational
classes of surfaces. Furthermore, Yσ being nonruled, Sσ is the unique minimal
model of Yσ. It then follows that the collection of minimal surfaces {Sσ}σ∈Gal(C)
gives rise to only finitely many biregular classes. By Criterion 1 we then conclude
that S can be defined over Q as was to be proved.

Remark 1. Il should be noted that the condition imposed in Theorem 4 alone
is not a sufficient condition for a minimal ruled surface p: S→ C to be defined
over a number field, even if the base curve C is. This is because, on the one
hand, any such surface contains a Zariski open set V � (C 
 Σ) × P1, with
Σ a finite subset of C, therefore, it surely contains a smaller one of the form
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U � (C 
 Σ)×(P1 
 {0, 1,∞}). The latter admits a Griffiths uniformization with
uniformising group G � K × Γ(2), where K is the Fuchsian group uniformising
(C 
 Σ) and the action of G is the obvious product action on H × D. But, on
the other hand, the moduli space of minimal ruled surfaces over a given curve
C of genus g is known to depend on 3g− 3 complex parameters, thus, for mere
cardinality reasons, not all of them can be defined over Q.

UNIVERSIDAD AUTÓNOMA DE MADRID, DEPARTAMENTO DE MATEMÁTICAS, CANTO-
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