
GALOIS ACTION ON UNIVERSAL COVERS OF
KODAIRA FIBRATIONS

GABINO GONZÁLEZ-DIEZ

Abstract. F. Catanese has recently asked if there exists an ele-
ment of the absolute Galois group σ ∈ Gal(Q) for which there is
a Kodaira fibration f : S → B defined over a number field such
that the universal covers of S and its Galois conjugate surface Sσ

are not isomorphic. The main result of this article is that every
element σ 6= Id. has this property.

1. Introduction and statement of results

A Kodaira fibration (of genus g) consists of a non-singular compact
complex surface S, a compact Riemann surface (or, equivalently, a
complex algebraic curve) B of genus q and a surjective holomorphic
map f : S → B everywhere of maximal rank such that the fibers
Fb, b ∈ B are connected and not mutually isomorphic Riemann surfaces
of genus g. It is known that necessarily g ≥ 3 and q ≥ 2. It is also
known that such a surface S must be a minimal algebraic surface of
general type and that its Euler characteristic (or Euler number) is

e(S) = e(F )e(B) = (2− 2g)(2− 2q).

With the term Kodaira surface we will refer to the total space S of
a Kodaira fibration (although we warn the reader that this expression
is sometimes used to refer to a different kind of surfaces, see e.g. [4]).

Kodaira fibrations were introduced by Kodaira in [24] and studied
from different points of view by several authors including Atiyah [2],
Hirzebruch [22] Catanese [7] and Catanese–Rollenske [8].

Due to results of Griffiths [20] and Bers [5] it is known that the
(holomorphic) universal cover of any Kodaira surface is a bounded
contractible domain B ⊂ C2. In [18] S. Reyes-Carocca and the author
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proved the following result relative to universal covers and fields of
definition of Kodaira surfaces.

Theorem (GD-RC, [18]) Kodaira surfaces with isomorphic uni-
versal covers can be defined over exactly the same set of algebraically
closed subfields of C.

Note that in particular this implies that the arithmeticity of a Ko-
daira surface S, that is the property of being definible over the field of
complex algebraic numbers Q, depends only on its universal cover.

One may wonder if the converse holds (i.e. one can ask if all arith-
metic Kodaira surfaces share a same universal cover). This looks at first
sight (and indeed it will be shown here to be) too strong to be true.
However F. Catanese has posed the following more subtle question

Question 33 (Catanese, [7]): Does there exist a Kodaira surface
S defined over Q and an automorphism σ ∈ Gal(Q) such that the uni-
versal coverings of S and (its Galois conjugate) Sσ are not isomorphic?

The main result of this paper is that there are such Kodaira surfaces
for all σ 6= Id. More precisely, we will prove the following results

Theorem 19. The absolute Galois group Gal(Q) acts faithfully on
the set of biholomorphy classes of bounded contractible domains of C2

that arise as universal covers of Kodaira surfaces defined over Q.
In fact this will be a particular case of the following more general

result. Let k be an algebraically closed subfield of C. Let us denote
by UBG(k) the set of biholomorphy classes of bounded contractible
domains of C2 which arise as universal covers of Kodaira surfaces de-
finable over k. (Here the subindex BG stands for Bers-Griffiths). We
will prove the following

Theorem 18. The Galois group Gal(k/Q) acts faithfully on UBG(k).

Theorem 18 hints to the abundance of bounded contractible domains
in C2. This is in contrast with the situation in the 1-dimensional case
in which the unit disc serves as universal cover of all compact Riemann
surfaces of negative Euler characteristic. Concerning this issue we will
prove the following

Corollary 5. A bounded contractible domain B ⊂ C2 can be the
universal cover of only finitely many Kodaira surfaces of given Euler
number e.

This result implies that the number of isomorphy classes of bounded
contractible domains of C2 is uncountable. In addition, it may be
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worth mentioning that not all such domains arise as universal covers
of Kodaira surfaces (see [19], Example 11).

The results in this article depend heavily on the following important
result by G. Shabat

Theorem (Shabat, [29], [30]) Let B be the holomorphic universal
cover of a Kodaira surface S. Then the covering group G ∼= π1(S) has
finite index in Aut(B) (hence, Aut(B) is a discrete group).

A key result towards the proof of our main Theorem 18 will be the
following improvement of Shabat’s theorem

Theorem 3. The index [Aut(B) : π1(S)] is bounded by a constant
that depends only on the Euler number of the Kodaira surface S (and
not on its universal cover B).

The paper is organized as follows:
In Section 2 we describe the universal cover of a Kodaira surface

following the work of Griffiths and Bers. We also make the useful ob-
servation that finite index subgroups of groups that uniformise Kodaira
surfaces do uniformise Kodaira surfaces themselves (Remark 1).

In Section 3 we focus on the fact that, due to Shabat’s theorem,
Kodaira surfaces with the same universal cover are commensurable. We
use this result together with the Bogomolov-Miyaoka-Yau inequality
and a theorem of Xiao on the automorphism groups of complex surfaces
of general type to prove Theorem 3 and Corollary 5 mentioned above.

In Section 4 we produce the Kodaira fibrations fµ : Sµ → Bµ whose
universal covers Bµ will be our candidates to get non-trivially trans-

formed by elements of Gal(k) := Gal(k/Q), as required in Theorem 18.
These will be explicit in the following sense:

(i) There is one for each genus 2 curve Dµ : y2 =
∏6

d=1(x− µd).
(ii) The base curve Bµ will be an unramified cover of the genus 3

curve Cµ : y2 =
∏6

k=3(x
2− µk−µ2

µk−µ1
) which itself is the unramified

double cover of Dµ defined as the quotient map by the fixed
point free involution α(x, y) = (−x,−y).

(iii) The fibre Fb over a point b ∈ Bµ mapping into a point (xb, yb) ∈
Cµ will be a double cover of Cµ ramified over the points (xb, yb)
and (−xb,−yb). Hence they will be genus 6 Kodaira fibrations.

The construction of these fibrations will be carried out within the
framework of Teichmüller and moduli theories.

In Section 5 we define the action of Gal(k) on UBG(k) and prove our
main Theorem 18. A key point will be the construction of a Kodaira
surface S = Sµ enjoying the following properties:
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(i) S covers Sµ (hence it carries a surjective morphism onto Dµ).

(ii) Sσ ∼= S whenever σ ∈ Gal(k)Bµ , the stabiliser of Gal(k) at Bµ.

Therefore conjugation by any σ ∈ Gal(k)Bµ (say of infinite order) will
yield a collection of maps F σn : Sσ

n
= S → Dσn

µ from a fixed com-

plex surface S onto a collection of curves Dσn

µ . Then the idea will be
that if Dµ is suitably chosen (with respect to σ) the number of mutu-
ally non-isomorphic curves Dµσn will exceed Howard-Sommese’s bound
[23] for the number of Riemann surfaces that can arise as targets of
a fixed complex surface such as S, thus contradicting the fact that
σ ∈ Gal(k)Bµ , in other words Bσ

µ must be different from Bµ.

2. Uniformisation of Kodaira fibrations

Thanks to the work of Bers [5] and Griffiths [20] on uniformization
of algebraic varieties it is possible to describe the universal cover of a
Kodaira fibration f : S → B in a very explicit way.

As usual, we shall denote by H the upper-half plane of the complex
plane. Let π : H → B be the universal covering map of B and let
Γ < PSL(2,R) be the corresponding covering group, so that B ∼=
H/Γ. By considering the pull-back of f by π we obtain a new fibration

f̂ : π∗S → H over H. For each t ∈ H, the fiber (f̂)−1(t) agrees with
the Riemann surface f−1(π(t)). The results of Bers and Griffiths show

that one can choose uniformizations (f̂)−1(t) = Dt/Kt possessing the
following properties:

(a) Kt is a Kleinian group acting on a bounded domain Dt of C
which is biholomorphically equivalent to a disc (in fact a qua-
sidisc).

(b) The union of all these (disjoint) discs B := ∪t∈HDt is a bounded
contractible domain of C2 biholomorphy equivalent to S̃, the
universal cover of S, so that S ∼= B/G, where G < Aut(B) is
the covering group.

(c) The group G is endowed with an epimorphism ρ : G → Γ
defined by ρ(ϕ) = γ if and only if ϕ(Dt) = Dγ(t). This induces
an exact sequence of groups

1 // K // G
ρ
// Γ // 1 (2.1)

where the group K = Kerρ happens to be isomorphic to its
restriction to each quasidisc Dt. This restriction is precisely the
group Kt mentioned above [19].

Bounded contractible domains of C2 obtained in this way shall be re-
ferred to as Bers-Griffiths domains and the set of biholomorphy classes
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of them will be denoted by UBG = UBG(C). We note that a Bers-

Griffiths domain B carries itself a fibration structure f̃ : B → H whose
fiber over t ∈ H is Dt. The situation is summarized in the following
commutative diagram

Dt ⊂ B S ∼= B/G

t ∈ H B ∼= H/Γπ
ff̃

The following observation will be used repeatedly throughout the paper

Remark 1. Let G1 be a finite index subgroup of G. Then the re-
striction of the sequence (2.1) to G1 defines a new Kodaira fibration
f1 : S1 → B1, where S1 = B/G1, B1 = H/Γ1, with Γ1 := ρ(G1), and

f1 is induced by f̃ in the obvious way. Clearly S1 is a smooth cover of

S of degree [G : G1] = e(S1)
e(S2)

.

3. The automorphism groups of Bers-Griffiths domains

By Shabat’s theorem, there is a canonical complex surface associated
to any Bers-Griffiths domain B, namely SB = B/Aut(B). This may
be a singular surface but, by Cartan’s theorem, it will always be normal.

Let S be any Kodaira surface with universal cover S̃ ∼= B and uni-
formising group G ∼= π1(S). Let us denote by N(G) the normaliser
of G in Aut(B) so that B/G ∼= S and B/N(G) ∼= S/Aut(S). The
inclusions G < N(G) < Aut(B) give rise to the following commutative
diagram of (possibly ramified) covers.

S

S/Aut(S) SB

πS

pS πS

(3.1)

3.1. Commensurability. We recall that two non-singular compact
complex surfaces X1, X2 are said to be commensurable if they admit a
common finite smooth cover, that is, if there is a non-singular com-
pact complex surface Y admitting surjective morphisms πi : Y →
Xi. Clearly, commensurable surfaces have isomorphic universal cov-
ers. For Kodaira surfaces the converse statement holds because if
Si = B/Gi (i = 1, 2) are two Kodaira surfaces, Shabat’s theorem
shows that the surface S12 := B/G1 ∩ G2 is a smooth finite cover of
both of them. Moreover, one has
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Lemma 2. (1) Let S1, S2 be two commensurable Kodaira surfaces
with universal cover B and uniformising groups G1 and G2.
Then

e(S2)

e(S1)
=

[Aut(B) : G2]

[Aut(B) : G1]

In particular two subgroups of Aut(B) uniformise Kodaira sur-
faces with the same Euler number if and only if they have the
same index.

(2) The uniformising group G of a Kodaira surface S with uni-
versal cover B is a normal subgroup of Aut(B) if and only if
|Aut(S)| = [Aut(B) : G]. In that case the subgroup G /Aut(B)
is uniquely determined by S and the map πS : S/Aut(S)→ SB

is an isomorphism.

Proof. The proof will easily follow from consideration of the following
commutative diagram:

S12 := B/G1 ∩G2

S1 = B/G1 B/G2 = S2

SB = B/Aut(B)

(1) follows from the observation that e(S12)
e(Si)

= [Gi : G1 ∩ G2] and the

multiplicativity of degrees.
(2) Since Aut(S) ≡ N(G)/G the equality N(G) = Aut(B) holds if
and only if |Aut(S)| = [Aut(B) : G]. Clearly πS is an isomorphism in
this case. The uniqueness of G when G /Aut(B) follows from the fact
that subgroups of Aut(B) uniformising isomorphic Kodaira surfaces
are conjugate. �

3.2. Universal bounds. The following result which can be seen as an
improvement of Shabat’s theorem (in the compact case) will be crucial
in this paper.

Theorem 3. Let e be a given positive integer. There is a constant
Me such that, for any Kodaira surface S with Euler number e(S) = e,
the index [Aut(B) : π1(S)] is bounded by Me, where B denotes the
universal cover of S and the fundamental group π1(S) is identified with
the corresponding covering group G < Aut(B).

Proof. Let us denote by Snor the normalisation of the natural projection
πS : S → SB. By this we mean the Kodaira surface Snor = B/Gcor,
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where Gcor is the core normal subgroup defined by

Gcor =
⋂

ϕ∈Aut(B)

ϕGϕ−1. (3.2)

Notice that Gcor can also be obtained by intersecting only the conju-
gates of G by a set of representatives of Aut(B)/G so, by Shabat’s
theorem, Gcor is a finite index subgroup of G. Therefore correspond-
ing to the inclusions Gcor < G < Aut(B) there are obvious surjective
morphisms of compact complex surfaces

Snor −→ S
πS−→ SB

∼= Snor/Aut(Snor),

were the isomorphism SB
∼= Snor/Aut(Snor) holds by the second part

of Lemma 2.
Note that what we want to prove is that the degree of πS is bounded

by a constant depending only on e(S). Our first ingredient is a theorem
by Xiao [31] according to which there is a universal constant c such that
the order of the automorphism group of a minimal surface of general
type X satisfies the inequality |Aut(X)| ≤ cK2

X , where as usual K2
X

stands for the self-intersection of the canonical divisor KX . This applied
to our surface Snor gives

deg(πS) =
e(S)

e(Snor)
|Aut(Snor)| ≤ e(S)cK2

Snor

e(Snor)

Now, by the Bogomolov-Miyaoka-Yau inequality (see [32]) the slope
K2
X/e(X) of a complex surface of general type X is bounded by 3

(in fact, for the particular case of Kodaira surfaces we are dealing with
here, the surfaces with largest slope have been constructed by Catanese
and Rollenske [8] and attain the value 2 + 2/3). Letting X be Snor we
conclude that deg(πS) ≤ 3ce, as desired. �

Corollary 4. Let B a Bers-Griffiths domain and e the Euler number
of any Kodaira surface which has B as universal cover. Then the
following statements hold:

(1) Aut(B) can be generated by a set of cardinality 16eMe.
(2) The number of subgroups of index n of Aut(B) is bounded by

(16eMe)
n!

Proof. Let S = B/G be a Kodaira surface with e(S) = e, which exists
by hypothesis. To prove our two claims we argue as follows.

(1) The group G fits in the middle of a short exact sequence (2.1)
whose kernel is a surface group of genus g (the genus of the fiber) and its
image is a surface group of genus q (the genus of the base). Therefore
G can be generated by 4gq elements. From here, using Theorem 3,
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we infer that Aut(B) can be generated by 4gqMe elements. Since
e = e(S) = 4(g − 1)(q − 1), the result follows.

(2) It is well-known that index n subgroups of a group G arise as
point stabilisers of transitive representations of G in the symmetric
group Sn. But, by part (1), the number of repesentations of Aut(B) in
Sn is bound by (16eMe)

n!. �

Corollary 5. The number of Kodaira surfaces with given universal
cover B and Euler number e is finite.

Proof. By the part (1) of Lemma 2 fixing the Euler number of a Ko-
daira surface is tantamount to fixing the index of its covering group in
Aut(B). Therefore the result follows from part (2) of Corollary 4. �

Remark 6. Theorem 3 and its corollaries extend to surfaces S with
ample canonical bundle and slope K2

S/e(S) 6= 2, 3. This is because by

a theorem of Nadel [27] the index [Aut(S̃) : π1(S)] is finite unless S̃
is biholomorphic to the bi-disc H×H or the 2-ball B2. But it is well-
known that in these cases the slope equals 2 and 3 respectively (see
e.g. [7], 2.1.2).

4. Construction of the Kodaira fibrations

We will start by considering unramified double covers of Riemann
surfaces of genus 2.

Any algebraic curve of genus 2 is isomorphic to one of the form

Dµ : y2 =
6∏
d=1

(x− µd)

with µ = (µ1, · · · , µ6) ∈ C6 \ ∆, where ∆ is the multidiagonal set of
sextuples satisfying µi = µj for some i 6= j. We recall that any curve
Dµ admits 15 such double covers (necessarily) of genus 3. Here, for the
sake of explicitness, we will choose one them, namely

Cµ : y2 =
6∏

k=3

(x2 − µk − µ2

µk − µ1

);

the covering map G : Cµ → Dµ being defined by the formula

G(x, y) =

µ2 − µ1x
2

1− x2
, xy(µ1 − µ2)

√∏d=6
d=3(µd − µ1)

(1− x2)3
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which (see [10]) is nothing but the quotient map corresponding to the
fixed point free involution

α = αµ : (x, y)→ (−x,−y).

As a first attempt to construct explicit Kodaira fibrations one can
consider the family of Riemann surfaces obtained by associating to
each point x ∈ Cµ a double cover F µ

x of Cµ ramified over the (distinct!)
points x and α(x). Unfortunately, this procedure does not provide a
well-defined Kodaira fibration with base curve Cµ because the Riemann
surface F µ

x is not uniquely determined. However, it will be possible to
take a further unramified cover pµ : Bµ → Cµ such that for each point
b ∈ Bµ a double cover F µ

b of Cµ ramified over pµ(b) and αpµ(b) can be
coherently chosen so as to produce a Kodaira fibration with base Bµ

and fibers F µ
b . We will work within the framework of Teichmüller and

moduli theories. Some of the ideas we use go back to the articles [14],
[15] and [16] by Harvey and the author.

4.1. The (Teichmüller theoretical) construction of our Kodaira
fibrations. This will be done in six steps of which the first two sum-
marize well-known facts of Teichmüller and moduli theories.

1) Let R be a Riemann surface with n distinguished points and let us
denote by T (R) the corresponding Teichmüller space. We recall that
points in T (R) are (Teichmüller) classes of pairs [ψ,D] where ψ : R→
D is a homeomorphism of n-pointed Riemann surfaces; the point [Id,R]
is called the base point. If R′ is another such Riemann surface and θ :
R → R′ is a homeomorphism of n-pointed Riemann surfaces then the
rule [ψ,D]→ [ψθ−1, D] identifies T (R′) with T (R), so the Teichmüller
space is independent of the base point and one usually writes Tg,n,
or simply Tg when n = 0. The moduli space of compact Riemann
sufaces of genus g with n distinguished points, usually denoted Mg,n,
can be presented as the quotient Mg,n = Tg,n/Modg,n, where Modg,n =
Mod(R) is the modular (or mapping class) group consisting of mapping
classes (of R) that preserve the set of distinguished points and the
action is defined by the same rule as that of the homeomorphism θ
above. Its points represent isomorphy classes [F ] of Riemann surfaces
F of genus g with n distinguished points. Again when n = 0 one simply
writes Mg and Modg respectively. (For all this see e.g. [5] and [28]).

2) The moduli space Mg possesses the property that for any Kodaira
fibration f : S → B of genus g the map Φf : B → Mg defined by
sending each point b ∈ B to the point in Mg representing the Riemann
surface f−1(b) is a holomorphic map (called the classifying map). And
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the converse almost holds, for Mg comes equipped with a fibration
Cg →Mg (called the universal curve), whose fiber above a point [F ] ∈
Mg is a Riemann surface isomorphic to F/Aut(F ). Thus, for any non-
constant holomorphic map Φ : B → Mg the pullback Φ∗(Cg) is a
family of Riemann surfaces parametrised by B. When Φ = Φf this
family coincides with the initial fibration f : S → B except at the
exceptional points b ∈ B for which Aut(f−1(b)) is not trivial.

The way to deal with these inconvenient exceptions is to consider the
moduli space with level-3 structure Mg[3] = Tg/Modg[3] where, denot-
ing by F0 the base point of moduli space, Modg[3] can be regarded as
the subgroup of Modg = Mod(F0) consisting of those mapping classes
θ : F0 → F0 whose action on the homology is trivial (mod 3). Its
points correspond to isomorphism classes [F, {λi}] of pairs (F, {λi}) in
which {λi}i=2g

i=1 is a basis of the homology group H1(F,Z/3Z). Now,
since no non-trivial automorphism of a compact Riemann surface can
leave invariant the homology (mod 3), the corresponding (level 3) uni-
versal curve Cg[3]→Mg[3] has the property that the fiber over a point
[F, {λi}] is exactly isomorphic to F. And the analogous statement holds
for the general moduli spaces Mg,n with respect to fibrations endowed
with n disjoint sections. (For all this we refer to [1], [16] and [28]).

3) From what has gone above it follows that in order to construct
a Kodaira fibration it is enough to define a non-constant holomorphic
map Φ : B →Mg[3], where B is a compact Riemann surface, for then
the pull-back Φ∗Cg[3] will provide a genus g Kodaira fibration with
base B.

Moreover, as Modg[3] acts freely on Tg, covering space theory shows

that this is equivalent to define a holomorphic map Φ̃ : H→ Tg (the lift
of Φ) equivariant with respect to the actions of a Fuchsian surface group
Γ (the uniformising group of B) on H and the group Modg[3] on Tg,
thereby inducing a group homomorphism Φ∗ : Γ→ Modg[3] < Modg.

Our Kodaira surfaces Sµ will arise from maps Φµ : H → T6 such as

Φ̃. The construction will be achieved in next three steps. In Step 4 we
construct a map Φµ : H → T3,2. In Step 5 we show that T3,2 can be
embedded in T6, thus allowing us to regard Φµ as a map Φµ : H→ T6.
Finally in Step 6 we identify a Fuchsian group Γµ with respect to which
Φµ is equivariant, hence obtaining a map Φµ : Bµ →M6[3].

4) (The map H→ T3,2). The obvious projection Cµ×Cµ → Cµ of the
surface Cµ×Cµ into the first coordinate has constant fibres isomorphic
to Cµ, hence it is not a Kodaira fibration. But endowed with the
disjoint sections s1(x) = (x, x) and s2(x) = (x, α(x)) this projection



GALOIS ACTION ON KODAIRA FIBRATIONS 11

becomes a non isotrivial family of 2-pointed curves of genus 3, the fiber
over x being the pointed curve Fx = (Cµ, {x, αx}). Therefore there is
a corresponding classifying map defined as

Φµ : Cµ → M3,2

x → [Cµ, {x, αx}]

Let us denote by πµ : H→ Cµ the universal cover of Cµ and by Gµ its
covering group so that Cµ ∼= H/Gµ. Let us choose a base point xµ in

Cµ - e.g. xµ =
(

0,
√∏6

k=3
µk−µ2
µk−µ1

)
- and set T µ3,2 := T (Cµ; {xµ, αxµ}).

In this case the group Mod3,2 may have torsion but Grothendieck-
Teichmüller’s universal property still implies that Φµ lifts to a map

Φµ : H → T µ3,2
t → Φµ(t)

(4.1)

defined up to composition with an element of Mod (Cµ; {xµ, αxµ}) .
This is the map announced at the beginning of this point.

By construction Φµ gives rise to a group homomorphism

Φµ
∗ : Gµ → Modµ3,2 := Mod (Cµ; {xµ, αxµ}) (4.2)

(the monodromy homomorphism) characterised by the identity

Φµ
∗(γ) ◦ Φµ = Φµ ◦ γ for every γ ∈ Gµ.

(For this point see [9], [14] and [28]).

5) (The embedding T3,2 ⊂ T6). Let C0 be a Riemann surface of genus
g′ = 3 with two distinguished points x and y and suppose that F0 is
a double cover of C0 ramified over those points. This is equivalent to
saying that F0 admits an involution τ0 with two fixed points such that
F0/ 〈τ0〉 ∼= C0 in such a way that the two fixed points map to x and y.
Note that the genera g of F0 and g′ of C0 will be related by the formula
g = 2g′, hence g = 6 in our case.

In the above situation one can consider the relative moduli space
Mg(τ0) whose points are isomorphy classes [F, τ ] of pairs (F, τ) where
F is a Riemann surface of genus g and τ an automorphism topologi-
cally conjugate to τ0. This moduli space can be realised as a quotient
Mg(τ0) = Tg(τ0)/N 〈τ0〉 where Tg(τ0) is the fixed locus of τ0 in Tg,
seen as an element of Modg = Modg(F0), and N 〈τ0〉 stands for the
normaliser of 〈τ0〉 in Modg. What is relevant for us is that the natural
map

Mg(τ0) → Mg′,2

[F, τ ] →
[
F ,Fix(τ)

]
,
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where F stands for the quotient F/ 〈τ〉 and Fix(τ) for the image on it
of the two fixed points of τ , is induced by a holomorphic isomorphism
between Tg(τ0) and Tg′,2. The corresponding inclusion Tg′,2 ∼= Tg(τ0) ⊂
Tg together with the map Φµ : H→ T3,2 defined in (4.1) of the previous
step gives the desired holomorphic map to T6 which we still denote
Φµ : H → T6. Now, the isomorphism Tg(τ0) ∼= Tg′,2 is equivariant
with respect to the actions of N 〈τ0〉 on Tg(τ0) and Modg′,2 on Tg′,2
and the corresponding group homomorphism N 〈τ0〉 → Modg′,2 has
kernel 〈τ0〉 and finite index image ([11], Proposition 1). Furthermore,
since τ0 does not lie in Modg[3], the above homomorphism restricts
to a monomorphism on N 〈τ0〉 ∩ Modg[3] allowing us to identify this

subgroup of Modg with its image N 〈τ0〉 ∩Modg[3] in Modg′,2. (For all
this, see [15], [11], [21] and [25]).

6) (The map Φµ : Bµ → M6[3]). In the preceeding Step 5 let us
consider the particular case in which (C0, {x, y}) is the 2-pointed curve
(Cµ, {xµ, αxµ}) introduced in Step 4) as the base point of T3,2 and
F0 = Fµ is a double cover of Cµ induced by an involution τµ that fixes
two points which project onto xµ and αxµ. Thus now g′ = 3 and g = 6.

We define a subgroup Γµ of Gµ, the uniformising group of Cµ, by

Γµ := (Φµ
∗)
−1(N 〈τµ〉 ∩Mod6[3]) (4.3)

with Φµ
∗ : Gµ → Mod3,2 as in (4.2).

This is a finite index subgroup of Γµ (a more precise statement is
made within the proof of Lemma 8 below) and therefore there is a
tower of unramified covers of compact Riemann surfaces as follows

Bµ := H/Γµ → Cµ = H/Gµ → Dµ (4.4)

By the definition of Γµ the map Φµ : H→ T6 is equivariant with respect
to the action of the groups Γµ and Mod6[3] and induces a map

Φµ : Bµ →M6[3]

resulting as the following composition of maps

Bµ →
T3,2

N 〈τµ〉 ∩Mod6[3]
≡ T6(τµ)

N 〈τµ〉 ∩Mod6[3]
−→ T6/Mod[3] = M6[3]

As mentioned in 3) we can now define a Kodaira fibration by setting

fµ : Sµ := Φ∗µ(C6[3])→ Bµ

By construction this will be a genus 6 Kodaira fibration. We will denote
by Bµ and Gµ the universal cover and the uniformising group of Sµ.
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Remark 7. In the above construction we could have started with any
algebraic curve D of arbitrary genus p ≥ 2 and any unramified double
cover C of genus g′ = 2p− 1 to obtain Kodaira fibrations of genus 2g′.

4.2. Some properties of the Kodaira fibrations fµ : Sµ → Bµ.
Let us denote by Sp(g, q) the symplectic group of genus g over the finite
field Fq. We recall that Sp(g, q) ∼= Modg/Modg [q] and that explicit
formulas for the order of these classical groups are available. In the
following proposition we will be interested in the particular case g = 6
and q = 3 for which we have |Sp(6, 3)| =

∏6
i=1 (32i − 1)32i−1.

Lemma 8. −e(Bµ) ≤ 28 |Sp(6, 3)|, for every µ ∈ C6 \∆.

Proof. Clearly, e(Bµ) = [Gµ : Γµ] e(Cµ) = −4 [Gµ : Γµ]
In order to compute the index [Gµ : Γµ] let us represent the ramified

double cover Fµ → Cµ as the projection H/Kµ → H/G◦µ induced by
an index 2 inclusion Kµ < G◦µ where Kµ is a torsion free Fuchshian
group uniformising Fµ and G◦µ is a Fuchshian group of type (3, 2) which
uniformises the 2-pointed genus 3 Riemann surface (Cµ, {xµ, αxµ}). We
recall that G◦µ has a standard presentation consisting of six hyperbolic
generators a1, a2, a3; b1, b2, b3 and two order 2 elliptic generators γ1, γ2
subject to the single relation [a1b1][a2b2][a3b3]γ1, γ2 = 1. The Möbius
transformations γ1, γ2 account for the distinguished points xµ, αxµ and
there is an isomorphism G◦µ/Kµ

∼= 〈τµ〉 under which γ1 and γ2 map to
the involution τµ.

In these terms the elements of Mod3,2 can be described as map-
ping classes of H/G◦µ induced by homeomorphisms u : H → H such

that uG◦µu
−1 = G◦µ. Such elements belongs to the image N 〈τµ〉 of

N 〈τµ〉 exactly when uKµu
−1 = Kµ (see e.g. [15], [25]). Therefore the

index of N 〈τµ〉 in Mod3,2 is bounded by the number of torsion free
index 2 subgroups of G◦µ. Now, this number is the same as the number
of epimorphisms from G◦µ to Z/2Z with torsion free kernel which, in

view of the given prsentation, is equal to 26. Thus, we conclude that[
Mod3,2 : N 〈τµ〉

]
≤ 26 (cf. [11], Proposition 1). From here we infer:

∣∣∣∣Gµ

Γµ

∣∣∣∣ ≤
∣∣∣∣∣ Mod3,2

Mod6 [3] ∩N 〈τµ〉

∣∣∣∣∣ ≤ 26

∣∣∣∣∣ N 〈τµ〉
Mod6 [3] ∩N 〈τµ〉

∣∣∣∣∣
≤ 26

∣∣∣∣ N 〈τµ〉
Mod6 [3] ∩N 〈τµ〉

∣∣∣∣ ≤ 26

∣∣∣∣ Mod6

Mod6 [3]

∣∣∣∣
= 26 |Sp(6, 3)| .



14 GABINO GONZÁLEZ-DIEZ

The proof follows. �

Proposition 9. Let fµ : Sµ → Bµ the genus 6 Kodaira fibration in-
troduced above, Bµ its universal cover, Gµ its covering group and Gcor

µ

the core subgroup of Gµ, as defined by the formula (3.2). Then

(1) The Euler characteristic e(Sµ) is bounded by 5 · 29 |Sp(6, 3)|.
(2) The number of subgroups of Aut(Bµ) of given index n is bounded

by a constant independent of µ.
(3) There is a constant M such that [Aut(Bµ) : Gµ] ≤ M and[

Aut(Bµ) : Gcor
µ

]
≤MM , for every µ.

(4) Sµ is defined over a number field if and only if Dµ is.

Proof. (1) e(Sµ) = e(Fµ)e(Bµ) = −10e(Bµ). Now, apply Lemma 8.
(2) By Corollary 4, part 2, the number of subgroups of Aut(Bµ) of

given index n is bounded by by a constant of the form (16eMe)
n! where

e is the Euler number of any Kodaira surface S with S̃ = Bµ and Me

is a constant depending only on e. Making S = Sµ and applying the
previous part (1) the result follows.

(3) The first bound is a consequence of part (1) and Theorem 3. The
second one follows by considering the obvious injection

Aut(B)/Gcor
µ 7−→

∏
ϕ∈Aut(B)/Gµ

Aut(B)/ϕGµϕ
−1.

(4) It will be sufficient to invoke the fact that a Kodaira fibration is
defined over Q if and only if the base is (see [18]) and that Bµ is defined

over Q if and only if Dµ is (see [13]). �

5. Galois action on Bers-Griffiths domains

Throughout this section k will denote an algebraically closed subfield
of C. Recall that UBG(k) denotes the set of biholomorphy classes of
bounded contractible domains of C2 which arise as universal covers of
the Kodaira surfaces definable over k. We will write B ∈ UBG(k) to
mean that the biholomorphy class of the domain B lies in UBG(k).

5.1. Definition of the action. Given B ∈ UBG(k) and σ ∈ Gal(k) :=
Gal(k/Q) we define Bσ ∈ UBG(k) in the following manner. Choose a
Kodaira surface S with universal cover S̃ ∼= B so that S = B/G. Then
Sσ will be another Kodaira surface and we set

Sσ = Bσ/Gσ

that is, Bσ is going to denote the universal cover of Sσ and Gσ its
uniformising group.
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Proposition 10. The isomorphy class of Bσ is independent of the
choice of S.

Proof. Let S1 = B/G1 and S2 = B/G2 be two Kodaira surfaces with
the same universal cover B, then S12 = B/G1 ∩G2 is a smooth cover
of both S1 and S2 and consequently the universal covers of Sσ1 and Sσ2
agree (with the universal cover of Sσ12) �

Corollary 11. For any algebraically closed subfield k ⊂ C, the rule

Gal(k) × UBG(k) → UBG(k)
(σ , B) → Bσ

defines an action of Gal(k) on UBG(k).

In order to state our next result we need to introduce two pieces
of notation. One is Gal(k)B, the stabiliser of Gal(k) at a given point
B ∈ UBG(k). The second one is N (B) (resp. Nn(B)) which will
stand for the set of normal subgroups (resp. index n normal subgroups)
of Aut(B) that uniformise Kodaira surfaces.

Proposition 12. For any Bers-Griffiths domain B ∈ UBG(k) the rule

Gal(k)B × N (B) −→ N (B)
(σ , G) −→ Gσ

induces an action of Gal(k)B on the set N (B) that permutes the el-
ements of each subset Nn(B). Moreover, this action is inclusion and
intersection preserving.

Proof. Let S be a Kodaira surface with universal cover S̃ = B and
uniformising group G / Aut(B) and let σ be an element of Gal(k)B.
Then, as e(Sσ) = e(S), Lemma 2 shows that [Aut(B) : G] = [Aut(B) :
Gσ]. Therefore we can write

|Aut(Sσ)| = |Aut(S)| = [Aut(B) : G] = [Aut(B) : Gσ]

By the second part of Lemma 2 we conclude that Gσ is a uniquely
defined normal subgroup of Aut(B) and our first claim follows.

Now, let G1,G2 ∈ N (B) be such that G1 < G2. Then, setting Si =
B/Gi, this inclusion induces an obvious smooth covering map S1 →
S2. Transforming this covering by σ we get a new smooth covering of
Kodaira surfaces Sσ1 → Sσ2 . Therefore the uniformising group Gσ

1 of Sσ1
is a subgroup of the uniformising group Gσ

2 of Sσ2 , as claimed.
It remains to see that this action preserves intersections. Let G1,G2 ∈

N (B) and set Si = B/Gi and S12 = G1 ∩ G2 as in Lemma 2. We
have just shown that our action preserves inclusions, hence

(G1 ∩G2)
σ ≤ Gσ

1 ∩Gσ
2 (5.1)
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Transforming this inclusion by σ−1 we obtain G1∩G2 ≤ (Gσ
1 ∩Gσ

2 )σ
−1
.

Now, using the relation (5.1) with σ−1 instead of σ and Gσ
i instead of

Gi we can further write

G1 ∩G2 ≤ (Gσ
1 ∩Gσ

2 )σ
−1 ≤ (Gσ

1 )σ
−1 ∩ (Gσ

2 )σ
−1

= G1 ∩G2

From here we infer that G1 ∩ G2 = (Gσ
1 ∩ Gσ

2 )σ
−1

or equivalently that
(G1 ∩G2)

σ = Gσ
1 ∩Gσ

2 , as claimed. �

5.2. Faithfulness. For any n ∈ N we shall consider the group

GB
n =

⋂
G∈Nn(B)

G (5.2)

More specifically, for any µ = (µ1, · · · , µ6) ∈ C6 \∆, we shall write

Gµ = GB
n , where B = Bµ and n = MM are as in Proposition 9.

These are finite index normal subgroups of Aut(B) (see Corollary 4,
part 2). We shall consider the Kodaira surfaces

SB
n = B/GB

n and, more specifically, Sµ = Bµ/Gµ (5.3)

Clearly, Gµ = Gν , and therefore Sµ = Sν , whenever Bµ = Bν .

Proposition 13. (1) For any Bers-Griffiths domain B ∈ UBG(k)
and any σ ∈ Gal(k)B one has (SB

n )σ ∼= SB
n .

(2) For any µ and any algebraically closed field k ⊂ C containing
Q(µ), the surface Sµ is invariant under the action of Gal(k)Bµ.
Moreover, Sµ is a smooth cover of Sµ.

Proof. (1) By definition SB
n and (SB

n )σ are uniformised by the groups

GB
n =

⋂
G∈Nn(B) G and (GB

n )σ =
(⋂

G∈Nn(B) G
)σ
. But, by Proposition

12, these two groups are the same.
(2) From Proposition 9, part (4), we infer that Sµ can be defined

over such field k or, in other words, that Bµ ∈ UBG(k). The fact that
Sµ is a smooth cover of Sµ is clear by construction. �

Proposition 14. There is a constant L such that for every µ ∈ C6 \∆
the inequality e(Sµ) < L holds.

Proof. Clearly e(Sµ)
e(Sµ)

= [Gµ : Gµ], hence e(Sµ) ≤ e(Sµ) [Aut(Bµ) : Gµ].

Now the result follows from parts (1) and (3) of Proposition 9. �

Corollary 15. There is a constant H such that for every µ the number
of Riemann surfaces of genus ≥ 2 which arise as targets of surjective
holomorphic maps from Sµ is bounded by H.
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Proof. By a theorem by Howard and Sommese ([23], Theorem 2) the
number of surjective holomorphic maps whose domain is a complex
projective non-singular surface S with ample canonical bundle (such
as Kodaira surfaces, see e.g. [18], 3.1) and whose image is a Riemann
surface of genus ≥ 2 is bounded by a finite number depending only on
the Chern numbers e(S) and K2

S.
Now, the Bogomolov-Miyaoka-Yau inequality mentioned already in

the proof of Theorem 3 tells us that that K2
Sµ ≤ 3e(Sµ). Since, by

Proposition 14, the Euler numbers e(Sµ) are simultaneously bounded
there are only finitely many possibilities for the integers e(Sµ) and K2

Sµ .
The result follows. �

The following two lemmas will be useful (cf. Proposition 2.1 in [3]
and Theorem 1 in [12])

Lemma 16. For any a ∈ C \Q let us denote by Da the genus 2 curve

Da : y2 = (x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− a) (5.4)

Let b another non-rational complex number. Then Db is isomorphic to
Da if and only if b = a.

Proof. We have two show that if a 6= b there is no Möbius transforma-
tion M ∈ PSL2(C) such that M ({1, 2, 3, 4, 5, a}) = {1, 2, 3, 4, 5, b}.

Such an M would have to satisfy the following conditions:

(1) M ∈ PSL2(Q), since it must map three rational points to three
rational points.

(2) M ({1, 2, 3, 4, 5}) = {1, 2, 3, 4, 5} and M(a) = b since a, b /∈ Q.
(3) M induces an orientation preserving diffeomorphism of the cir-

cle P1(R), since M ′(x) > 0, for every x ∈ R.
(4) Therefore, (M(1),M(2),M(3),M(4),M(5)) must be a positively

ordered cycle in P1(R)

Let M =
(

s t
u v

)
, then for i = 1, · · · , 5, one has the identities

si+ t = M(i)ui+M(i)v with M(i) ∈ {1, 2, 3, 4, 5}
By (4) there must be some i such that M(i),M(i+1) and M(i+2) are
consecutive integers, that is M(i+ 2) = M(i+ 1) + 1 = M(i) + 2. Now
subtracting s(i+ 1) + t from si+ t and s(i+ 2) + t from s(i+ 1) + t one

finds that u = 0 and s = v, hence M is of the form M = ±
(

1 t
0 1

)
which contradicts (2) unless M = Id. �

Lemma 17. Let N be a given positive integer and let σ ∈ Gal(k/Q) be
an element of infinite order. Then there is an element a ∈ k such that
the genus 2 algebraic curve Da defined by the equation (5.4) enjoys the
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property that among all the Galois conjugate curves Dσn

a = Dσn(a), n ∈
N, there are al least N mutually non-isomorphic curves.

Proof. Choose a ∈ k such that σN !(a) 6= a. Then the elements

a, σ(a), σ2(a), · · · , σN(a)

are mutually distinct, for otherwise we would have σN !(a) = a. Now
the result follows from Lemma 16. �

Theorem 18. Gal(k/Q) acts faithfully on UBG(k).

Proof. 1) Let first σ ∈ Gal(k/Q) have infinite order.
Let N equal the constant H occurring in Corollary 15 and choose

a ∈ k satisfying Lemma 17. Set

µa = (1, 2, 3, 4, 5, a).

Since Da is defined over k, Proposition 9, part (4), implies that the
universal cover Bµa of the corresponding Kodaira fibration fa : Sµa →
Bµa lies in UBG(k). We claim that Bσ

µa is not isomorphic to Bµa .
Suppose that Bσ

µa
∼= Bµa . Let πa : Sµa → Sµa be a smooth covering

map (Proposition 13). Let us denote by pa : Bµa → Da the composition
of the unramified covers Bµa → Cµa and Cµa → Da (see Section 4) and
let us set F = pa◦fa◦πa : Sµa → Dµa . Since (Sµa)σ ∼= Sµa (Proposition
13), transforming this morphism by the powers of σ yields a collection of
morphisms F σn : Sµa → Dσn(a) such that the number of non-isomorphic
targets exceeds N = H. This contradicts Corollary 15.

2) Now let σ 6= Id. have finite order.
In this case we use the following argument taken from [17]. By the

Artin-Schreier theorem (see e.g. [26]) all non-trivial finite subgroups
of Gal(k) have order 2. In particular σ is an involution. Therefore for
any ω ∈ k not fixed by σ this automorphism restricts to a non-trivial
involution of the algebraically closed field Q(ω, σ(ω)) ⊂ k. Moreover,
since this is an algebraically closed extension of finite transcendental
degree the centralizer of σ in Gal(Q(ω, σ(ω))/Q) is a countable group.
(See [6], VI, §2, Exercise 32). Therefore there are plenty of non-trivial

elements β ∈ Gal(Q(ω, σ(ω))/Q) such that βσβ−1 6= σ. Moreover, by
extending β to k we see that the same statement holds in Gal(k/Q).

Now if σ acted trivially on UBG(k) then so would do its conjugate
βσβ−1 and the product of them τ := (βσβ−1)σ. Then, by the first
part, τ must be an element of finite order, hence of order 2. It would
then follow that the subgroup 〈βσβ−1, σ〉 is the Klein 4-group, thereby
contradicting Artin-Schreier’s theorem. This contradiction brings the
proof to an end. �
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The most interesting instance occurs when k = Q, so we state this
case separately.

Theorem 19. Gal(Q) acts faithfully on UBG(Q).

We end the paper with the following observation.

Corollary 20. The converse of Theorem (G-R, [18]) stated in Section
1 does not hold.
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[10] Y. Fuertes and G. González-Diez, Smooth double coverings of hyperelliptic

curves. The geometry of Riemann surfaces and abelian varieties, 73-77, Con-
temp. Math., 397, Amer. Math. Soc., Providence, RI, (2006).

[11] J. Gilman, On the moduli of compact Riemann surfaces with a finite number
of punctures. Discontinuous groups and Riemann surfaces, 181-205. Ann. of
Math. Studies, No. 79, Princeton Univ. Press, (1974).
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Departamento de Matemáticas, Universidad Autónoma de Madrid.
Email address: gabino.gonzalez@uam.es


