THE ARITHMETICITY OF A KODAIRA FIBRATION IS DETERMINED BY ITS UNIVERSAL COVER

GABINO GONZÁLEZ-DIEZ AND SEBASTIÁN REYES-CAROCCA

Abstract. Let $S \to C$ be a Kodaira fibration. We show that whether or not the algebraic surface S is defined over a number field depends only on the biholomorphic class of its universal cover.

1. Introduction and statement of results

Let $X \subset \mathbb{P}^n$ be a complex projective variety and k a subfield of the field of the complex numbers \mathbb{C}. We shall say that X is defined over k or that k is a field of definition for X if there exists a collection of homogenous polynomials f_0, \ldots, f_m with coefficients in k so that the variety they define is isomorphic to X. We will say that X is arithmetic if it is defined over \mathbb{Q} or equivalently over a number field.

While it is classically known that there are only three simply connected Riemann surfaces, there is a huge amount of possibilities for the holomorphic universal cover of a complex surface S. It would be interesting to understand the extent to which the arithmeticity of a projective surface can be read off from its holomorphic universal cover. In this short note we study this question for a very important class of complex surfaces known in the literature as Kodaira fibrations.

A Kodaira fibration consists of a non-singular compact complex surface S, a compact Riemann surface C and a surjective holomorphic map $S \to C$ everywhere of maximal rank such that the fibers are connected and not mutually isomorphic Riemann surfaces. The genera g of the fibre and b of C are called the genus of the fibration and of the base respectively. It is known that such a surface S must be an algebraic surface of general type and that necessarily $g \geq 3$ and $b \geq 2$. We notice that an important theorem by Arakelov [1] implies that, up to isomorphism, there are only finitely many Kodaira fibrations over a given algebraic curve C.

In 1967, Kodaira [13] used fibrations of this kind to show that the signature of a differentiable fiber bundle need not be multiplicative. Soon after Kas [12] studied the deformation space of the surfaces constructed by Kodaira, and two years later Atiyah [2] and Hirzebruch [10] studied further
properties concerning the signature of Kodaira fibrations in a volume dedicated to Kodaira himself.

Explicit constructions of Kodaira surfaces have been made by González-Diez and Harvey [8], Bryan and Donagi [4], Zaal [16] and Catanese and Rollenske [6]. We now state the main results of the paper

\textbf{Theorem 1.} Let k be an algebraically closed subfield of the complex numbers and $S_1 \to C_1$ and $S_2 \to C_2$ two Kodaira fibrations so that their respective holomorphic universal covers are biholomorphically equivalent. Then S_1 is defined over k if and only if S_2 is defined over k. In particular, S_1 is arithmetic if and only if S_2 is arithmetic.

To prove this theorem we will have to show first the following result which is interesting in its own right

\textbf{Theorem 2.} Let k be an algebraically closed subfield of the complex numbers and $S \to C$ a Kodaira fibration. Then S is defined over k if and only if C is defined over k. In particular, S is an arithmetic surface if and only if C is an arithmetic curve.

Theorem 1 states that the arithmeticity of a Kodaira fibration can be recognized in its holomorphic universal cover. We anticipate that the holomorphic universal cover of S is a contractible bounded domain $B \subset \mathbb{C}^2$ (see Section 2). Clearly, Theorem 1 implies that the biholomorphism class of B varies together with the variation of S in moduli space. We note that in general Kodaira surfaces are not rigid ([12], [6]).

\section{Uniformization of Kodaira Surfaces}

It is well-known that the universal cover of a Riemann surface is biholomorphically equivalent to the projective line \mathbb{P}^1, the complex plane \mathbb{C} or the upper half-plane \mathbb{H}. Understanding universal covers of complex manifolds of higher dimension seems to be a very complicated task. However, thanks to the work of Bers [3] and Griffiths [9] on uniformization of algebraic varieties, it is possible to describe the universal cover of a Kodaira fibration $f : S \to C$ in a very explicit way.

Let $\pi : \mathbb{H} \to C$ be the universal covering map of C and Γ the covering group so that $C \cong \mathbb{H}/\Gamma$. By considering the pull-back $h : \pi^*S \to \mathbb{H}$ of f by π, we obtain a new fibration in which, for each $t \in \mathbb{H}$, the fiber $h^{-1}(t)$ agrees with the Riemann surface $f^{-1}(\pi(t))$. Teichmüller theory enables us to choose uniformizations $h^{-1}(t) = D_t/K_t$ possessing the following properties:

(a) K_t is a Kleinian group acting on a bounded domain D_t of \mathbb{C} which is biholomorphically equivalent to a disk.

(b) The union of all these disks $\mathcal{B} := \bigcup_{t \in \mathbb{H}} D_t$ is a contractible bounded domain of \mathbb{C}^2 which is biholomorphic to the universal cover of S, that is, $S \cong \mathcal{B}/\mathbb{G}$, where $\mathbb{G} < \text{Aut}(\mathcal{B})$ is the covering group.
(c) The group G is endowed with a surjective homomorphism of groups $\Theta : G \to \Gamma$ which induces an exact sequence of groups

\[
1 \longrightarrow K \longrightarrow G \xrightarrow{\Theta} \Gamma \longrightarrow 1
\]

where, for each $t \in \mathbb{H}$, the subgroup K preserves D_t and acts on it as the Kleinian group K_t.

We note that \mathcal{B} carries itself a fibration structure $\mathcal{B} \to \mathbb{H}$ whose fiber over $t \in \mathbb{H}$ is D_t (i.e. \mathcal{B} is a Bergman domain in Bers’ terminology).

In [14] and [15] Shabat studied the automorphism groups of universal covers of families of Riemann surfaces and proved a deep result which in the case of Kodaira fibrations amounts to the following theorem.

Theorem (Shabat) Let $f : S \to C$ be a Kodaira fibration and \mathcal{B} the holomorphic universal cover of S. Then:

(a) the covering group G of S has finite index in $\text{Aut}(\mathcal{B})$.

(b) $\text{Aut}(\mathcal{B})$ is a discrete group.

3. **Proof of Theorems 1 and 2**

We denote by $\text{Gal}(\mathbb{C})$ the group of field automorphisms of \mathbb{C}. The natural action of $\text{Gal}(\mathbb{C})$ on the ring of polynomials $\mathbb{C}[x_0, \ldots, x_n]$ induces a well-defined action $(\sigma, X) \to X^\sigma$ on the set of isomorphism classes of algebraic varieties. From now on k will denote an algebraically closed subfield of \mathbb{C} and $\text{Gal}(\mathbb{C}/k)$ the subgroup of $\text{Gal}(\mathbb{C})$ consisting of all automorphisms σ fixing the elements of k.

3.1. **Proof of Theorem 2.** Let $f : S \to C$ be a Kodaira fibration. Let us assume that the curve C is defined over k. Then $C^\sigma = C$ for all $\sigma \in \text{Gal}(\mathbb{C}/k)$, and so, by Arakelov’s finiteness Theorem, there are only finitely many pairwise non-isomorphic Kodaira fibrations $f^\sigma : S^\sigma \to C^\sigma$ with $\sigma \in \text{Gal}(\mathbb{C}/k)$. This implies that S is defined over k [7, Crit. 2.1].

In order to prove the converse, we begin by recalling that a complex manifold X is named *hyperbolic* if every holomorphic map $\mathbb{C} \to X$ is a constant map. We claim that Kodaira fibrations are hyperbolic. In fact, let $f : S \to C$ be a Kodaira fibration and $\varphi : \mathbb{C} \to S$ a non-constant holomorphic map. As C has genus greater than one, the map $f \circ \varphi : \mathbb{C} \to C$ must be constant and therefore the image of φ has to be contained in a fiber $f^{-1}(t)$ for some $t \in C$. Since the fibers are also hyperbolic, φ must be constant too.

Let us now assume that S is defined over k, so that $S^\sigma = S$ for any $\sigma \in \text{Gal}(\mathbb{C}/k)$. Now as S is a Kähler hyperbolic manifold, the canonical divisor K_S is ample [5] and this implies that only finitely many curves R of genus greater than one can arise as the image of a surjective morphism $S \to R$ [11]. In particular the family $\{C^\sigma : \sigma \in \text{Gal}(\mathbb{C}/k)\}$ itself contains
only finitely many isomorphism classes of curves. It then follows that C is defined over k [7, Crit. 2.1], as required.

3.2. Proof of Theorem 1. Let $f_2 : S_2 \rightarrow C_2$ be a Kodaira fibration and S_1 an arbitrary non-singular complex surface. Let us denote by B_i the universal cover of S_i and suppose that there exists an isomorphism $\alpha : B_1 \rightarrow B_2$ between them. Let G_i be the uniformizing group of S_i so that $B_i/G_i \cong S_i$. By Shabat’s Theorem G_2 has finite index in $\text{Aut}(B_2)$. We claim that G_1 has finite index in $\text{Aut}(B_1)$ too. In fact, as $B_1/\text{Aut}(B_1) \cong B_2/\text{Aut}(B_2)$ and as $\text{Aut}(B_2)$ is a discrete group, the projection map $S_1 = B_1/G_1 \rightarrow B_1/\text{Aut}(B_1)$ is a holomorphic map between (normal) compact complex surfaces; from here the claim follows.

By replacing G_1 by $\alpha G_1 \alpha^{-1}$ we can assume that $B_1 = B_2$, so we denote B_i simply by B. As both G_1 and G_2 have finite index in $\text{Aut}(B)$, so must do their intersection $G_{12} = G_1 \cap G_2$. The complex surface $S_{12} := B/G_{12}$ is endowed with two finite degree covers $\pi_i' : S_{12} \rightarrow S_i$ with $i = 1, 2$; in particular, S_{12} is also a projective surface. Moreover, if we denote by Θ_{12} the restriction of the epimorphism $\Theta : G_2 \rightarrow \Gamma_2$ introduced in the previous section to G_{12}, then we obtain an exact sequence of groups

$$1 \longrightarrow K_{12} \longrightarrow G_{12} \xrightarrow{\Theta_{12}} \Gamma_{12} \longrightarrow 1$$

where $\Gamma_{12} = \Theta_{12}(G_{12})$ and $K_{12} = \ker(\Theta_{12}) = K \cap G_{12}$. As in Section 2, this sequence defines a Kodaira fibration $f_{12} : S_{12} \rightarrow C_{12} := H/\Gamma_{12}$ whose fiber over $[t]_{\Gamma_{12}}$ is isomorphic to the Riemann surface D_1/K_{12}^1 where K_{12}^1 is the Kleinian group that realizes the action of K_{12} on D_1. We have the following commutative diagram

$$\begin{array}{ccc}
S_{12} & \xrightarrow{\pi_2'} & S_2 \\
\downarrow f_{12} & & \downarrow f \\
C_{12} & \xrightarrow{p} & C_2
\end{array}$$

where p is the projection induced by the finite index inclusion $\Gamma_{12} < \Gamma_2$.

Let us now assume that S_2 is defined over k. Then Theorem 2 ensures that C_2 is also defined over k. Furthermore, being an unbranched cover of C_2, the curve C_{12} must also be defined over k [7, Th. 4.1]. Again, by Theorem 2 we conclude that S_{12} is defined over k. Now, as S_1 is a surface of general type arising as the image (by π_1') of a surface defined over k, it must be defined over k as well [7, Prop. 3.2]. This proves Theorem 1.

References

Departamento de Matemáticas, Universidad Autónoma de Madrid.
E-mail address: gabino.gonzalez@uam.es, sereyesc@gmail.com