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a b s t r a c t

The determination of the full group of automorphisms of a closed Riemann surface
is in general a very complicated task. For hyperelliptic curves, the uniqueness of the
hyperelliptic involution permits one to compute these groups in a very simple manner.
Similarly, as classical Fermat curves of degree k admit a unique subgroup of automorphisms
isomorphic to Z2

k , the determination of the group of automorphisms is not difficult.
In this paper we consider a family of non-hyperelliptic Riemann surfaces, obtained

as the fibre product of two classical Fermat curves of the same degree k, which exhibit
behaviors of both elliptic and hyperelliptic curves. These curves, called generalized Fermat
curves of type (k, 3), are the highest regular abelian branched covers of orbifolds of genus
zero with four cone points, all of the same order k. More precisely, a generalized Fermat
curve of type (k, 3) is a closed Riemann surface S admitting a group H < Aut(S), called
a generalized Fermat group of type (k, 3), so that H ∼= Z3

k and S/H is an orbifold with
signature (0, 4; k, k, k, k). In this paper we prove the uniqueness of generalized Fermat
groups of type (k, 3). In particular, this allows the explicit computation of the full group of
automorphisms of S.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and main result

If S is a Riemann surface, then we denote by Aut(S) its group of conformal automorphisms and byAut(S) its group of
conformal/anticonformal automorphisms. If K < Aut(S), then we denote by AutK (S) the normalizer of K in Aut(S). If S
is a closed Riemann surface of genus g ≥ 2, then H.A. Schwarz [22] proved that Aut(S) is finite and A. Hurwitz [13] that
|Aut(S)| ≤ 84(g − 1), so |Aut(S)| ≤ 168(g − 1). W. Baily [1] showed that in genus g ≥ 2 closed Riemann surfaces
with non-trivial group of conformal automorphisms are very special. Breuer [3] provided a classification of all finite groups
which can act as the group of conformal automorphisms up to genus 48. Natural problems are (i) to describe those groups
which occur as the full group of conformal automorphisms of a genus g Riemann surface and (ii) to determine the group of
automorphisms of a given Riemann surface. Closed Riemann surfaces can be represented as algebraic curves in projective
space in many ways, the most important one being the canonical curve which, in the case of non-hyperelliptic Riemann
surfaces, is determined by the choice of a basis of holomorphic 1-forms [8]. Although sometimes the use of a concrete curve
description of the Riemann surface permits the construction of explicit examples of automorphisms, determining whether
these automorphisms constitute the full automorphism group is usually intractable. In the literature there are few examples
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of Riemann surfaces whose defining algebraic equations and full automorphism groups are completely determined (see, for
instance, [11,16–18,28,30]).

If S is a hyperelliptic Riemann surface and H is the cyclic group generated by the hyperelliptic involution, then H is
unique in Aut(S) [4]. Also, if S is a classical Fermat curve of degree k (which is not hyperelliptic for k ≥ 4), that is,
S = {xk1 + xk2 + xk3 = 0} ⊂ P2, then the group H < Aut(S) obtained by multiplying the coordinates by k-th roots of unity
is the unique subgroup K < Aut(S) with the properties that K ∼= Z2

k and S/K is an orbifold with signature (0, 3; k, k, k).
In these two cases, the uniqueness of the corresponding group H permits one to obtain explicitly the groups Aut(S) andAut(S) [24,29].

A closed Riemann surface S is called a generalized Fermat curve of type (k, n), where k ≥ 2 and n ≥ 1 are integers,
if it admits a group Zn

k
∼= H < Aut(S), called a generalized Fermat group of type (k, n), so that S/H is an orbifold with

signature (0, n + 1; k, . . . , k) (that is, S/H is the Riemann sphereC together with n + 1 conical points, each one of order
k); the pair (S,H) is called a generalized Fermat pair of type (k, n). By the Riemann–Hurwitz formula, the genus of S is
gk,n = (2 + kn−1((n − 1)(k − 1) − 2))/2 and, in particular, gk,n > 1 except for the pairs (k, n) ∈ {(k, 1), (2, 2), (2, 3)}.
A generalized Fermat curve of type (k, 1) (respectively, of type (2, 2)) is just the Riemann sphere, with H being the cycle
group generated by a Möbius transformation of order k (respectively, H ∼= Z2

2). A generalized Fermat curve of type (k, 2) is
a classical Fermat curve and every genus one Riemann surface is a generalized Fermat curve of type (2, 3).

If gk,n > 1, then it was noticed in [10] that if Γ is a Fuchsian group so that H2/Γ = S/H , then S = H2/Γ ′, where
Γ ′ is the commutator subgroup of Γ . In particular, if M is the subgroup of Möbius transformations that keep invariant the
conical points of S/H , then there is a natural epimorphism ρ : AutH(S) → M , whose kernel is H . Another consequence
is that if (S1,H1) and (S2,H2) are both generalized Fermat pairs of the same type, then there is an orientation-preserving
homeomorphism F : S1 → S2 so that F1H1F−1

1 = H2.
In [10] itwas proven that every generalized Fermat curve of type (k, n), where n ≥ 2, can be described as the fibre product

of (n − 1) classical Fermat curves so that the corresponding generalized Fermat group (and its normalizer in the group of
conformal automorphisms) is linear. That description is as follows. Assume (S,H) is a generalized Fermat pair of type (k, n)
and let π : S → C be a branched regular covering with H as group of covering transformations. Up to composition with
a Möbius transformation, we may assume that the branched values are given by the points {∞, 0, 1, λ1, . . . , λn−2}. Then
(S,H) is conformally equivalent to (Skλ1,...,λn−2

,H0), where

Skλ1,...,λn−2
=


xk1 + xk2 + xk3 = 0
λ1xk1 + xk2 + xk4 = 0
λ2xk1 + xk2 + xk5 = 0

...
...

...

λn−2xk1 + xk2 + xkn+1 = 0

 ⊂ Pn (1)

and H0 = ⟨a1, . . . ., an⟩, where

aj([x1 : · · · : xn+1]) = [x1 : · · · : xj−1 : ωkxj : xj+1 : · · · : xn+1], j = 1, . . . , n, (2)

with ωk = e2π i/k, and the covering map is given by

π([x1 : · · · : xn+1]) = −


x2
x1

k

(3)

whose branch values certainly are

∞, 0, 1, λ1, . . . , λn−2. (4)

Observe that the above smooth projective algebraic curve is of degree kn−1. As the degree of the canonical curve is
2(gk − 1) = kn−1((k − 1)(n − 1) − 2), the above algebraic representation has lower degree than the canonical curve
representation. If gk,n > 1, then equality only holds for (k, n) ∈ {(2, 4), (4, 2)}. The case (k, n) = (2, 4) corresponds to
the so-called Humbert curves [6,7], in which case the generalized Fermat group of type (2, 4) is unique and therefore the
computation of Aut(S) can be easily done [6]. The case (k, n) = (4, 2) corresponds to the classical Fermat curve of genus 3,
given by C = {x41 + x42 + x43 = 0} ⊂ P2, for which Aut(S) ∼= Z2

4 o S3 [24,29].
If S is a generalized Fermat curve of type (p, n), where p is a prime and gp,n > 1, then it was proved in [10] that any two

generalized Fermat groups of same type (p, n)must be conjugate in Aut(S). Moreover, if the prime p is sufficiently large in
comparison with n, then, as a consequence of results in [12], the generalized Fermat group of type (p, n)must be unique; in
particular, Aut(S) = AutH(S) can be explicitly computed. This leads us to conjecture the following.

Conjecture 1. A generalized Fermat curve of type (k, n), where k is any integer greater than or equal to 2, has a unique generalized
Fermat group of type (k, n), up to conjugation.
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In this paper we provide a positive answer to the above conjecture in the case of generalized Fermat curves of type (k, 3),
that is, closed Riemann surfaces described by curves of the form

Skλ =


xk1 + xk2 + xk3 = 0
λxk1 + xk2 + xk4 = 0


⊂ P3 (5)

Theorem 2. A generalized Fermat curve S of type (k, 3), where k ≥ 3 is an integer, admits a unique generalized Fermat group H
of type (k, 3). In particular, H is a normal subgroup of Aut(S), and Aut(S) andAut(S) can be explicitly computed.

In order to prove Theorem2,we first prove thatH is a normal subgroup and thenwe use this fact to prove the uniqueness.
The proof make uses of Singerman’s results [26,25].

Some of the consequences of Theorem 2 (see Section 2) are the following.

(1) Fuchsian groups of signature (0, 4; k, k, k, k) are uniquely determined by their commutator subgroups (Corollary 3).
(2) Explicit descriptions of the groups Aut(S) andAut(S) of each generalized Fermat curve S of type (k, 3) are obtained.

This article is organized as follows. In Section 2 we provide some consequences of Theorem 2. In Section 3 we recall
some basic facts about orbifolds and Fuchsian groups. We will especially need Singerman’s results in [26,25]. In Section 5
we describe the group AutH(S) for an arbitrary generalized Fermat pair of type (k, 3). In Section 6 we prove that every
generalized Fermat group of type (k, 3), k ≥ 3, is necessarily a normal subgroup. In Section 6.2 we prove Theorem 2. In
Section 7 we provide the proof of a key proposition needed in the proof of Theorem 2 whose proof we postponed for the
reader’s convenience.

2. Consequences of Theorem 2

In this section we provide some consequences of Theorem 2.

2.1. A commutator rigidity

In [10] it was noted that if (S,H) is a generalized Fermat pair of type (k, n), k ≥ 3, andΓ is a Fuchsian group acting on the
hyperbolic plane H2 so that H2/Γ = S/H , then S = H2/Γ ′ and H = Γ /Γ ′, where Γ ′ denotes the commutator subgroup of
Γ . In the case n = 3, as a direct consequence of Theorem 2, we obtain the following commutator rigidity.

Corollary 3. For j = 1, 2, let Γj be Fuchsian groups acting on the hyperbolic plane H2 so that H2/Γj is an orbifold of signature
(0, 4; k, k, k, k) (hence necessarily k ≥ 3). If Γ ′

1 = Γ ′

2 , then Γ1 = Γ2.

Remark 4. Corollary 3 may be seen as a kind of Kleinian version of Torelli’s theorem for orbifolds of type (0, 4; k, k, k, k),
where k ≥ 3.

2.2. Equivalence of generalized Fermat curves

As already noted, from the results in [10], every generalized Fermat curve S of type (k, 3), where k ≥ 3, is conformally
equivalent to one of the form Skλ, as in (5), for some λ ∈ C − {0, 1}.

Consider the group G ∼= S3 defined by

G = ⟨u(λ) = λ/(λ− 1), v(λ) = 1/λ⟩ = Aut(C − {0, 1}).

We observe that G is precisely the covering group of the classical elliptic modular function

j(λ) =
(1 − λ+ λ2)3

λ2(λ− 1)2
.

Every orbifold of genus zero with exactly four conical points (all of them with the same order) is conformally equivalent
to one whose conical points are ∞, 0, 1 and some λ ∈ C − {0, 1}. Now, if O1 and O2 are two such orbifolds, say with
conical points {0, 1,∞, λ1} and {0, 1,∞, λ2} respectively, then O1 and O2 are isomorphic if and only if there is a Möbius
transformation T sending the set {∞, 0, 1, λ1} onto the set {∞, 0, 1, λ2}. It is not difficult to see that this is equivalent to
the existence of some t ∈ G such that λ2 = t(λ1), that is, to have that j(λ1) = j(λ2). When k = 2 this amounts to saying
that j classifies elliptic curves, a classical fact from which the function takes its name.

By the uniqueness of generalized Fermat groups of type (k, 3) established in Theorem 2, we may show (see Section 3
in [10]) that the equivalence of generalized Fermat curves of type (k, 3) is equivalent to the equivalence of orbifolds of
genus zero with four points of equal multiplicity. More precisely, the following fact holds.

Corollary 5. Two generalized Fermat curves of type (k, 3), k ≥ 3, say Skλ1 and Skλ2 , are conformally equivalent if and only if there
is some t ∈ G so that λ2 = t(λ1), or equivalently, if and only if j(λ1) = j(λ2). In particular, the moduli space of generalized
Fermat curves of type (k, 3), k ≥ 3, is isomorphic to the moduli space of orbifolds of signature (0, 4; k, k, k, k), which is also
known to be isomorphic to the moduli space of genus one Riemann surfaces, this being the orbifold whose underlying Riemann
surface is the complex plane C with two conical points, one of order 2 and the other of order 3.



Author's personal copy

1794 Y. Fuertes et al. / Journal of Pure and Applied Algebra 217 (2013) 1791–1806

2.3. Group of conformal and anticonformal automorphisms

In Section 5 we compute the groups AutH(Skλ). Once this is done, Theorem 2 allows us to compute the full group of
automorphisms of Skλ.

Corollary 6. Let Skλ be a generalized Fermat curve of type (k, 3), where k ≥ 3, and λ ∈ C − {0, 1}. Set

(−1)1/k =


eπ i/k, if k is even
−1, if k is odd

21/k
∈ R, (−2)1/k = (−1)1/k21/k,

α([x1 : x2 : x3 : x4]) = [x2 : λ1/kx1 : x4 : λ1/kx3]

β([x1 : x2 : x3 : x4]) = [(−1)1/kx3 : x4 : (λ− 1)1/kx1 : (−1)1/k(λ− 1)1/kx2]

γ ([x1 : x2 : x3 : x4]) = [x4 : 21/kx1 : x2 : (−2)1/kx3], λ = 2γ ([x1 : x2 : x3 : x4]) = [x3 : x4 : 21/kx2 : (−2)1/kx1], λ = −1γ ([x1 : x2 : x3 : x4]) = [21/kx3 : x1 : (−2)1/kx4 : x2], λ = 1/2

δ([x1 : x2 : x3 : x4]) = [((1 + i
√
3)/2)1/kx1 : (−1)1/kx4 : x2 : x3], λ = (1 + i

√
3)/2δ([x1 : x2 : x3 : x4]) = [((1 − i

√
3)/2)1/kx1 : x4 : x2 : (−1)1/kx3], λ = (1 − i

√
3)/2

(6)

and L = ⟨α,β⟩. Note thatγ 4
= 1,δ3 = 1, and that (i) for k even, L ∼= D2k, where Dn denotes the dihedral group of order 2n, and

that (ii) for k odd, L ∼= Z2
2.

Then

(i) If λ /∈ G({2, (1 + i
√
3)/2}), then Aut(Skλ)/H ∼= Z2

2, Aut(S
k
λ) = H o L and the signature of Skλ/Aut(S

k
λ) is (0, 4; 2, 2, 2, k);

(ii) if λ ∈ G(2) = {−1, 1/2, 2}, then Aut(Skλ)/H ∼= D4, Aut(Skλ) = H o ⟨α,β,γ ⟩ and the signature of Skλ/Aut(S
k
λ) is

(0, 3; 2, 4, 2k);
(iii) if λ ∈ G((1+ i

√
3)/2) = {(1+ i

√
3)/2, (1− i

√
3)/2}, then Aut(Skλ)/H ∼= A4, Aut(Skλ) = H o ⟨α,β,δ⟩ and the signature

of Skλ/Aut(S
k
λ) is (0, 3; 2, 3, 3k).

The proof of Corollary 6 will be provided in Section 5.
A symmetry of a closed Riemann surface S is an anticonformal involution τ : S → S. As a consequence of Harnack’s

theorem [5,15,21], the locus of fixed points of a symmetry on a closed Riemann surface of genus g is either empty or it
consists of N ≤ (g + 1) pairwise disjoint simple loops (the mirrors or ovals of the symmetry).

Corollary 7. Let Skλ be a generalized Fermat curve of type (k, 3), where k ≥ 3, admitting a symmetry.

(1) If τ : Skλ → Skλ is a symmetry and t ∈ G, then the generalized Fermat curve Skt(λ) admits a symmetry analytically equivalent
to τ .

(2) Up to the action of G, the values of λ belong to

(R − (−1, 1]) ∪ (S1
+

− {1})

where S1
+

= {z ∈ C : |z| = 1, Im(z) ≥ 0}.
(3) If λ ∈ R − (−1, 1], then Skλ admits the following two symmetries

τ([x1 : x2 : x3 : x4]) = [x1 : x2 : x3 : x4]
ρ([x1 : x2 : x3 : x4]) = [x2 : λ1/kx1 : x4 : λ1/kx3]

In this case, Skλ/⟨H, τ ⟩ is a closed disc with 4 conical points in its border, all of them of order k.
(a) If 1 < λ, then Skλ/⟨H, ρ⟩ is a closed disc with two conical points in its interior, both of order k.
(b) If λ ≤ −1, then Skλ/⟨H, ρ⟩ is the real projective plane with two conical points, both of order k.

(4) If λ ∈ S1
+
, then Skλ admits the symmetry

τ([x1 : x2 : x3 : x4]) = [x2 : x1 : x3 : λ1/kx4].

In this case, Skλ/⟨H, τ ⟩ is a closed disc with two conical points in its border and one in its interior, all of them of order k.

Proof. Let us assume that Skλ admits a symmetry τ .
As the generalized Fermat group H is unique in Aut(Skλ), by Theorem 2, the symmetry τ descends to an anticonformal

involution, say η, of the Riemann sphere keeping invariant the set of conical points {∞, 0, 1, λ}. Now, if t ∈ G, then there is
a Möbius transformation T sending the set {∞, 0, 1, λ} onto the set {∞, 0, 1, t(λ)}. It follows (see Corollary 5) that there is
an isomorphismT : Skλ → Skt(λ) so that π ◦ T =T ◦ π [10], where π([x1 : x2 : x3 : x4]) = −(x2/x1)k. This proves (1).
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In order to obtain (2), observe that η is either a reflection (it has a circle of fixed points; so it is conjugate to z → z) or
an imaginary reflection (it has no fixed points; so it is conjugate to z → −1/z). If η is a reflection and C is its circle of fixed
points, then either (i) the four conical points belong to C or (ii) two of them belong to C and the other two are permuted
by η or (iii) none of them belong to C and they are permuted in pairs by η. In case (i), it is clear that C = R ∪ {∞}, so
λ ∈ R − {0, 1}. As t(λ) = 1/λ belongs to G, we may assume λ ∈ R − (−1, 1]. In case (ii), up to some element of G, we may
assume that 1, λ ∈ C and that 0 and ∞ are permuted by η. In this case, the only possibility is to have η(z) = 1/z, so C is
the unit circle S1, and it follows that λ ∈ S1. Again, using t(λ) = 1/λ, we may assume that λ ∈ S1

+
. In case (iii), again, up to

some element of G, we may assume that η(∞) = 0 and that η(1) = λ. As η permutes 0 with ∞, it follows that η(z) = R/z,
for some R > 0. Now, as η(1) = λ, necessarily R = λ. As before, using t(λ) = 1/λ, we may also assume λ > 1. Now, let
us assume η to be an imaginary reflection. Up to the action of G, we may assume that η(∞) = 0 and that η(1) = λ. In this
case, as η permutes 0 with ∞, one has that η(z) = R/z, where R /∈ [0,+∞). The equality η(λ) = 1 asserts that R = λ
and the equality η(1) = λ asserts that R = λ, from which we see that λ ∈ R. Proceeding as in the previous cases, we may
assume λ ≤ −1.

Parts (3) and (4) now follow easily. �

Corollary 8. Let Skλ be a generalized Fermat curve of type (k, 3), where k ≥ 3. If Skλ admits an anticonformal automorphism, then
it admits an anticonformal involution. In particular,Aut(Skλ) is completely determined from Corollaries 6 and 7.

Proof. Let Skλ be a generalized Fermat curve of type (k, 3), where k ≥ 3, admitting some anticonformal automorphism,
say η. One has thatAut(Skλ) = ⟨Aut(Skλ), η⟩. By the uniqueness of the generalized Fermat group H < Aut(S), η induces an
anticonformal automorphism θ of the orbifold Skλ/H . There are two possibilities, either θ has order 2 or 4. In the case that θ
has order 2, using the action of G on the parameter space of λ, one obtains that λ ∈ (R − (−1, 1]) ∪ (S1

+
− {1}). It follows

from Corollary 7 that Skλ admits an anticonformal involution. If θ has order 4, then, up to the action of G, we may assume
that

θ(∞) = 0, θ(0) = 1, θ(1) = λ, θ(λ) = ∞

and it follows that

θ(z) =
λ

λ− z
, λ+ λ = |λ|2, λ ∈ C − {0, 1}

in which case ηmay be taken as

η([x1 : x2 : x3 : x4]) = [x4 : λ
1/k

x1 : x2 : (−λ)1/kx3].

Then, we note that ρ(z) = (1− λ)z + λ is a reflection so that ρ(∞) = ∞, ρ(1) = 1 and ρ(0) = λ. We now can see that

τ([x1 : x2 : x3 : x4]) = [(1 − λ)1/kx1 : (−1)1/kx4 : x3 : (−1)1/kx2]

defines an anticonformal involution on Skλ, since each of the coefficients has modulus one. �

3. Orbifolds and Singerman’s conditions

3.1. Orbifolds

An orbifoldO with signature σ = (g, r; n1, . . . , nr), where g ≥ 0, r ≥ 0, nj ≥ 2 are integers, is a closed Riemann surface
of genus g together a collection of r conical points of orders n1, . . . , nr ; these orders are called the periods of the signature.
Its orbifold fundamental group is

π orb
1 (O) =


a1, . . . , ag , b1, . . . , bg , c1, . . . , cr :

g
j=1

[aj, bj]
r

s=1

cj = 1 = cn11 = · · · = cnrr


(7)

where [a, b] = aba−1b−1. If S is a closed Riemann surface and H < Aut(S) a finite group, then S/H is an example of an
orbifold. Generalities on orbifolds can be found in [23,27].

Two orbifolds are conformally equivalent if there is a conformal homeomorphism between the respective underlying
Riemann surfaces preserving conical points and conical orders. The set M(g,r;n1,...,nr ) of conformally equivalent classes of
orbifolds of signature (g, r; n1, . . . , nr) is called the moduli space of orbifolds of such signature. Details on Teichmüller
theory and moduli spaces can be found in [20] and the references therein.

An orbifold with signature (g, r; n1, . . . , nr) is called hyperbolic if

2g − 2 +

r
j=1


1 −

1
nj


> 0. (8)
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If O is a hyperbolic orbifold with hyperbolic signature (g, r; n1, . . . , nr), then there is a Fuchsian group Γ acting on the
hyperbolic plane H2 with presentation

Γ =


α1, . . . , αg , β1, . . . , βg , δ1, . . . ., δr :

g
j=1

[αj, βj]

r
s=1

δj = 1 = δ
n1
1 = · · · = δnrr


(9)

such that H2/Γ is an orbifold conformally equivalent to O. We also say that Γ as above has signature (g, r; n1, . . . , nr). It
is well known [2,19] that each finite order element of a Fuchsian group Γ , with presentation as in (9), is conjugate in Γ to
some power of one of the generators δj (this is part of the Poincaré polygon theorem).

We say that a signature σ1 is of index D in a signature σ2 if there are Fuchsian groups Γj with signature σj, for j = 1, 2, so
that Γ1 is contained in Γ2 with index D. If moreover, Γ1 ▹Γ2, then we say that the signature σ1 is normal in the signature σ2.

By the hyperbolic area of a Fuchsian group (respectively, an orbifold) of signature (g, r; n1, . . . , nr) we refer to the
hyperbolic area of any of its fundamental polygon domains. This is given by

A(g, r; n1, . . . , nr) = 2π


2g − 2 +

r
j=1


1 −

1
nj


. (10)

If a signature σ1 is of index D in a signature σ2, then

A(σ1) = DA(σ2) (11)

3.2. Singerman’s conditions

Let us recall the following result due to D. Singerman [25] which provides necessary and sufficient conditions for possible
inclusions among Fuchsian groups of finite type in terms of their signatures.

Proposition 9 ([25]). Let Γ be a Fuchsian group with signature (g, r; n1, . . . , nr). Then Γ contains a subgroup Γ1 of index D
with signature

(γ , ρ1 + ρ2 + · · · + ρr;m11, . . . .,m1ρ1 , . . . ,mr1, . . . .,mrρr )

if and only if the following conditions hold

(a) there exists a finite permutation group J transitive on D points, and an epimorphism θ : Γ → J satisfying that each
permutation θ(δj) has precisely ρj cycles of lengths less than nj, the lengths of these cycles being

nj/mj1, . . . , nj/mjρj;

(b) A(Γ1)/A(Γ ) = D.

Remark 10. (i) In Proposition 9 the subgroup Γ1 is (up to conjugation in Γ ) equal to θ−1(J1), where J1 = {h ∈ J : h(1) = 1}.
It follows from the transitivity of J that if, for some x ∈ Γ , θ(x) fixes a point, then there is a conjugate y ∈ Γ of x so that θ(y)
fixes 1, that is, y ∈ J1. This fact will be used frequently in the applications of Singerman’s result. (ii) In the same proposition
it may occur that some of the values ρj = 0.

4. Key propositions

In this sectionwe state the key propositionswewill need to prove Theorem 2. The proof of one of themwill be postponed
to the last section.

Proposition 11. Let K be a Fuchsian group of signature (0, 3; t, s, r), where 2 ≤ r ≤ s ≤ t, containing as a subgroup of index 2
a Fuchsian group U of signature (0, 4; 2, 2, 2, k), where k ≥ 3. Then r = 2, s = 4 and t = 2k.

Proof. As U is a normal subgroup of index two, it follows that the orbifold O = H2/U admits a conformal involution
ρ : O → O (permuting the conical points and keeping invariant their orders) so that O/⟨ρ⟩ = H2/K . Then necessarily
ρ must fix the conical point of order k and one of the conical points of order 2, permuting the other two conical points. It
follows that O/⟨ρ⟩ must be an orbifold of signature (0, 3; 2k, 4, 2). �

Proposition 12. Let (S,H) be a generalized Fermat pair of type (k, 3), k ≥ 3. Let K be a Fuchsian group acting on the hyperbolic
plane H2 so that H2/K = S/Aut(S). If Γ < K is so that H2/Γ = S/H, then Γ ′ ▹ K .

Proof. This is consequence of the fact that H2/Γ ′
= S [10]. �
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2

Fig. 1. Fundamental domains for U and Γ .

Proposition 13. Any Fuchsian group U, of signature (0, 4; 2, 2, 2, k), where k ≥ 3, contains a unique normal subgroup Γ of
index 4 and signature (0, 4; k, k, k, k). Moreover, U/Γ ∼= Z2

2 and, if

U = ⟨w1, w2, w3, w4 : w2
1 = w2

2 = w2
3 = wk

4 = w4w3w2w1 = 1⟩,

then

Γ = ⟨x1, x2, x3 : xk1 = xk2 = xk3 = (x3x2x1)k = 1⟩

wherex1 = w3w2w1,
x2 = w2w1w3,
x3 = w1w3w2.

(12)

Proof. Let us consider a presentation of U as follows

U = ⟨w1, w2, w3, w4 : w2
1 = w2

2 = w2
3 = wk

4 = w4w3w2w1 = 1⟩.

It is clear that the group Γ as defined in the proposition is a normal subgroup so that U/Γ ∼= Z2
2 and of signature

(0, 4; k, k, k, k) (see Fig. 1). We claim that Γ is unique with such a property. In fact, if Γ ∗ is a normal subgroup of U of index
4, then there is a homomorphism η : U → S4 so that η(U) is a transitive subgroup and Γ ∗

= ker(η). As the signature
of Γ ∗ is required to be (0, 4; k, k, k, k), according to Proposition 9, we must have that η(w4) = (1)(2)(3)(4) and, for each
j = 1, 2, 3, that η(wj) consists of two 2-cycles. Up to an automorphism of S4, we may assume that η(w1) = (12)(34) and
η(w2) = (13)(24). As η(w1w2w3) = η(w1w2w3w4) = 1, then η(w3) = (14)(23). As for each automorphism τ of S4 one
has that ker(τη) = ker(η), then we obtain that Γ ∗

= Γ . �

Proposition 14. Let K be a Fuchsian group with signature (0, 3; t, s, r), where 2 ≤ r ≤ s ≤ t, containing with finite index D a
Fuchsian group U < K of signature (0, 4; 2, 2, 2, k) for some k ≥ 3. Let Γ be the unique Fuchsian normal subgroup of U of index
4 and of signature (0, 4; k, k, k, k). If U is a normal subgroup of K , then Γ ′ is also a normal subgroup of K .

Proof. Let us assume U is a normal subgroup of K . As Γ is the unique normal subgroup of U of index 4 and signature
(0, 4; k, k, k, k), it follows that Γ is also a normal subgroup of K . As Γ ′ is a characteristic subgroup of Γ , it also follows that
Γ ′ is a normal subgroup of K . �

The following will be proved in Section 7.

Proposition 15. Let K be a Fuchsian group with signature (0, 3; t, s, r), where 2 ≤ r ≤ s ≤ t.

(1) The group K does not contain a Fuchsian group of index D and signature (0, 4; 2, 2, 2, k) in the following cases.

r s t k D
2 3 12 6 4
2 4 8 8 3
2 5 5 5 3
3 3 4 4 3
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(2) Assume K contains a Fuchsian group U < K of signature (0, 4; 2, 2, 2, k), for some k ≥ 3, as a finite index D subgroup. Let
Γ be the unique Fuchsian normal subgroup of U of index 4 and of signature (0, 4; k, k, k, k). Then, Γ ′ is not normal in K in
the following cases. In particular, U cannot be normal either.

r s t k D
2 3 7 3 7
2 3 7 7 15
2 3 8 3 4
2 3 8 4 6
2 3 8 8 9
2 3 10 10 6
2 4 5 5 6
2 4 5 4 5
2 4 6 4 3
2 4 6 6 4

5. AutH (S) for a generalized Fermat pair (S,H) of type (k, 3)

As already noted in the Introduction, a generalized Fermat curve of type (k, 3), where k ≥ 3, can be described as an
algebraic curve of the form [10]

Skλ =


xk1 + xk2 + xk3 = 0
λxk1 + xk2 + xk4 = 0


⊂ P3 (13)

where λ ∈ C − {0, 1} and the generators of the generalized Fermat group Z3
k

∼= H = ⟨a1, a2, a3⟩ < Aut(Skλ), asa1([x1 : x2 : x3 : x4]) = [wkx1 : x2 : x3 : x4]
a2([x1 : x2 : x3 : x4]) = [x1 : wkx2 : x3 : x4]
a3([x1 : x2 : x3 : x4]) = [x1 : x2 : wkx3 : x4].

(14)

The orbifold Skλ/H is precisely Oλ, the Riemann sphere with conical points ∞, 0, 1 and λ, the four of them of order k. The
corresponding degree k3 holomorphic branched covering map with H as covering group is

π : Skλ → C : [x1 : x2 : x3 : x4] → −


x2
x1

k

,

whose branch values are the points

π(Fix(a1)) = ∞, π(Fix(a2)) = 0, π(Fix(a3)) = 1, π(Fix(a4)) = λ, (15)

where a4 = a1a2a3. It is not difficult to see that if b ∈ H − {I} has fixed points, then b ∈ ⟨aj⟩, for some j = 1, 2, 3, 4.
We say that a1, a2, a3 and a4 are the standard generators of H . This permits us to speak of the 4 standard generators of any
generalized Fermat group of type (k, 3) [10].

5.1. Generic automorphisms

We observe in passing the fact that any Riemann surface Skλ possesses a larger group of automorphisms, say G, so that
H ▹ G, G/H ∼= Z2

2 and Skλ/G is of signature (0, 4; 2, 2, 2, k). In fact, the orbifold Skλ/H always admits Z2
2 as group of orbifold

automorphisms, generated by the transformations

α(z) = λ/z and β(z) = (z − λ)/(z − 1). (16)

If we choose values for λ1/k, (−1)1/k, (λ− 1)1/k, then the transformationsα([x1 : x2 : x3 : x4]) = [x2 : λ1/kx1 : x4 : λ1/kx3]β([x1 : x2 : x3 : x4]) = [(−1)1/kx3 : x4 : (λ− 1)1/kx1 : (−1)1/k(λ− 1)1/kx2]


∈ Aut(Skλ) (17)

satisfy the properties that απ = πα and βπ = πβ , therefore G = ⟨H,α,β⟩ < AutH(Skλ). Note thatα2
= β2

= 1, butαβ
has order 2 only if k is odd and (−1)1/k = −1, in which case, Z2

2 = ⟨α,β⟩ < AutH(Skλ).
The above only reflects the fact that the pair of signatures (0, 4; k, k, k, k) and (0, 4; 2, 2, 2, k) is one of the few that

occur in Singerman’s list of pairs of signatures representing strict inclusions between Fuchsian groups having the same
Teichmüller space [26].
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5.2. Extra automorphisms

For generic values of λ, there are no more orbifold automorphisms of Oλ = Skλ/H , that is, generically, AutH(Skλ) = G =

⟨H,α,β⟩ (∼= H o Z2
2, for k odd). For some particular values of λ ∈ C − {0, 1} it happens that G ≠ AutH(Skλ). These cases

occur when the orbifold Oλ admits extra automorphisms.
Note that the set of orbifolds O of genus zero with exactly four conical points (all of them of a same order k) can be

identified to the space C4 of unordered quadruples of distinct points ofC, which itself can be viewed as the quotient spaceC4/S4, whereC4 is the space of ordered quadruples of distinct points ofC andS4 is the symmetric group in four letters. The
group PGL(2,C) acts by Möbius transformations on both C4 and C4. The quotient C4/PGL(2,C) is the moduli space of such
orbifolds and the stabilizer of a given orbifold O is isomorphic to its automorphism group Aut(O). For any such a orbifold
O, the group Aut(O) is usually identified to a subgroup of S4 via its action on its conical points z1, z2, z3, z4. This subgroup
contains always Klein’s four group V = ⟨(1, 2)(3, 4), (1, 3)(2, 4)⟩ < S4, which corresponds to the group Z2

2 generated
by the transformations α and β introduced above. Therefore, there is a natural action of S3 ∼= S4/V on the intermediate
covering C(4) := C4/V such that the orbifolds with extra automorphisms, that is, the orbifolds O such that Aut(O)/V is not
trivial, correspond to the points fixed by this action.

On the other hand, there is a classical function on C(4), called the cross ratio, defined by the formula

[z1, z2, z3, z4] =
(z4 − z2)(z3 − z1)
(z4 − z1)(z3 − z2))

that is invariant under the action of PGL(2,C) and that in fact produces an isomorphism between the Galois covers
C(4)/PGL(2,C) → C4/PGL(2,C) with deck group S3 and j : C{0, 1} → C with deck group G ∼= S3 (see 2.2) defined
by associating to the orbifold with conical points z1, z2, z3 and z4 the orbifold Oλ with conical points 0, 1,∞ and λ =

[z1, z2, z3, z4]. It follows that the orbifoldsOλwith extra automorphisms correspond to the values ofλwhich are ramification
points of the modular function j. These values are {1 ±

√
3/2} which constitute the G-orbit that maps over 0 together with

{−1, 1/2, 2} which constitute the G-orbit that maps over 1 (see Remark 4.61 of [9]). Thus, up to the action of the group G,
wemay assume these values to be λ ∈ {2, (1+ i

√
3)/2}. For instance, for λ = 2we have the extraMöbius transformation of

order 4 given by T (z) = 2/(2− z) that permutes the set of points {∞, 0, 1, 2}. Similarly, for λ = (1+ i
√
3)/2 we have that

the extraMöbius transformation of order 3 given by S(z) = 1/(1−z) (for details, see Chapter II of Part I in Klein’s book [14]).
If λ1 = 2 (and for values of λ in its orbit under the action of G), then Skλ1/H admits an extra automorphism of order

4 given by γ (z) = 2/(2 − z). In this case Skλ1/H has a dihedral group D4 as group of automorphisms and (Skλ1/H)/D4 has
signature (0, 3; 2, 4, 2k). As such a signature is a maximal one [26], then Skλ1/Aut(S

k
λ1
) = (Skλ1/H)/D4 and Aut(Skλ1)/H = D4.

Since γ ([x1 : x2 : x3 : x4]) = [x4 : 21/kx1 : x2 : (−2)1/kx3] (γ 4
= 1)

is a lifting of γ to Skλ1 , then Aut(Skλ1) = ⟨G,γ ⟩.
Similarly, if λ2 = (1 + i

√
3)/2 (and for values of λ in its orbit under the action of G), then Skλ2/H admits an extra

automorphism of order 3 given by δ(z) = (1 + i
√
3 − 2z)/(1 + i

√
3). In this case Skλ2/H has the alternating group A4 as

group of automorphisms, (Skλ2/H)/A4 has signature (0, 3; 2, 3, 3k) and Aut(Skλ2)/H = A4. As such a signature is a maximal
one [26], then Skλ2/Aut(S

k
λ2
) = (Skλ2/H)/A4 and Aut(Skλ2)/H = A4. Sinceδ([x1 : x2 : x3 : x4]) = [((1 + i

√
3)/2)1/kx1 : (−1)1/kx4 : x2 : x3] (δ3 = 1)

is a lifting of δ to Skλ2 , then Aut(Skλ2) = ⟨G,δ⟩.
All the above determines AutH(Skλ), for generic λ, and Aut(Skλ), for λ ∈ {−1, 1/2, 2, (1 ± i

√
3)/2}.

The above, together with Theorem 2, provides a proof of Corollary 6.

6. Proof of Theorem 2

6.1. Normality property

In this section, we prove that, if (S,H) is a generalized Fermat pair of type (k, 3), with k ≥ 3, thenH is a normal subgroup
of Aut(S), that is, Aut(S) = AutH(S). In the previous sectionwe have already obtained this for λ ∈ {−1, 1/2, 2, (1±i

√
3)/2}.

Let (S,H) be a generalized Fermat pair of type (k, 3), where k ≥ 3 and choose λ ∈ C − {0, 1} so that S = Skλ, and, as in
the previous section, let G = ⟨H,α,β⟩ < Aut(S). We denote by D the index of G in Aut(S).

As S/H has signature (0, 4; k, k, k, k), it follows from Hurwitz’s formula [8] that the genus of S is g = 1− 2k2 + k3 ≥ 10
(as k ≥ 3). Since the orbifold S/G has signature (0, 4; 2, 2, 2, k), it follows that the signature of the orbifold S/Aut(S) is
either of the form (i) (0, 4; r, s, t, u) (2 ≤ r, s, t, u) or (ii) (0, 3; r, s, t) (2 ≤ r, s, t).



Author's personal copy

1800 Y. Fuertes et al. / Journal of Pure and Applied Algebra 217 (2013) 1791–1806

Case (i)

If S/Aut(S) has signature (0, 4; r, s, t, u), then it follows from [26] that the only possibility is to have r = s = t = 2 and
u = k, that is, G = AutH(S) = Aut(S).

Case (ii)

Let S/Aut(S) be of signature (0, 3; r, s, t), where r−1
+ s−1

+ t−1 < 1. As G ≠ Aut(S), there is a natural branched
covering of degree D ≥ 2, say P : S/G → S/Aut(S), induced by the inclusion G < Aut(S). Proposition 11, together with the
computations done in Section 5, asserts that the index D = 2 corresponds to the value λ = 2 (up to the action of G) and the
explicit determination of Aut(Sk2) shows that Aut(S) = AutH(S) as required.

So, from now on we assume D ≥ 3.
We consider co-compact Fuchsian groups U and K so that S/G = H2/U and S/Aut(S) = H2/K . Moreover, these groups

have presentations as follows:

U = ⟨w1, w2, w3, w4 : w2
1 = w2

2 = w2
3 = wk

4 = w1w2w3w4 = 1⟩
K = ⟨x, y, z : xr = ys = zt = xyz = 1⟩

By Proposition 9, there is a homomorphism θ : K → SD, so that θ(K) is transitive and θ−1(J1) = U , where J1 is the
stabilizer of 1 in θ(U).

Lemma 16. If D = 3 and {r, s, t} ≠ {2, 4, 6}, then U is a normal subgroup of K , that is, G is normal in Aut(S).

Proof. In this case, there is a homomorphism θ : K → S3 as in Proposition 9 with x = δ1, y = δ2 and z = δ3. J = θ(K) is a
transitive subgroup of S3 and the only transitive subgroups of S3 are ⟨(1, 2, 3)⟩ and S3.

If J = ⟨(1, 2, 3)⟩, then J1 = {(1)(2)(3)}, and U is a normal subgroup of K .
If J = S3, as δ1δ2δ3 = 1, then at least two of the permutations θ(δ1), θ(δ2) and θ(δ3)must be permutations of order two

and different from each other. We may assume, without loss of generality, that θ(δ1) = (1)(2, 3) and θ(δ2) = (2)(1, 3).
So, in this case θ(δ3) = (1, 3, 2). As the signature of K is hyperbolic, at least two of the values r , s and t must be at least 3.
Without loss of generality, we may assume r ≥ 3. In this way, ρ1 = 2 and we must have that

1 =
r

m11
, 2 =

r
m12

.

It follows that m11 = r,m12 = r/2 ∈ {2, k}. The only possibility is to have k = r = 4. Now, ρ2 ∈ {1, 2}. But ρ2 = 2 will
assert thatm21 = s,m22 = s/2 ∈ {2}, a contradiction. It follows that ρ2 = 1, from which we must have that s = 2,m21 = 2
and ρ3 = 1 (as ρ1 + ρ2 + ρ3 = 4). As we must have that {m11,m12,m21,m31} = {2, 2, 2, 4}, one has that m31 = 2 and, in
particular, that

3 =
t

m31
=

t
2

that is t = 6. �

Lemma 17. At least of one the integers r, s, t, must be divisible by k.

Proof. This is consequence of the facts: (i) each finite order element of a Fuchsian group Γ , with presentation as in (9), is
conjugate in Γ to some power of one of the generators δj, and (ii) G < Aut(S). �

As a consequence of the previous lemma, from now on in this section can assume t = Tk. We also assume that 2 ≤ r ≤ s
(if r = 2, then s ≥ 3). By comparison of hyperbolic area, one has

1
2

−
1
k

= D

1 −

1
r

−
1
s

−
1
t


= D


1 −

1
r

−
1
s

−
1
Tk


(18)

In particular,
1
r

+
1
s

+
1
t

≥
3
4

+
1
2k

(19)

Proposition 18. If D ≥ 3, then T ∈ {1, 2, 3}. Furthermore the value T = 3 corresponds to D = 3, signature (0, 3; 2, 3, 3k) and
λ =

1+i
√
3

2 (up to the action of G).

Proof. As D ≥ 3, it follows from (18) that 1/r + 1/s + 1/t ≥ 5/6 + 1/(3k). As r ≥ 2 and s ≥ 3, we obtain that
5/6 + 1/t ≥ 5/6 + 1/(3k), from which t ≤ 3k, that is T ∈ {1, 2, 3}. Equality t = 3k (that is, T = 3) asserts equality
in the above, so r = 2 and s = 3 and, by (18), that D = 3. Therefore, in this case, the signature of our triangular group is
(0, 3; 2, 3, 3k)which, by Lemma 16, corresponds (see Section 5) to the case λ =

1+i
√
3

2 . �

By Proposition 18 the only cases we need to consider are T ∈ {1, 2} which we proceed to analyze below.
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6.1.1. Case T = 1
In this case, t = k and, since we are assuming that D ≥ 3, relation (18) yields

1
2

−
1
k

≥ 3

1 −

1
r

−
1
s

−
1
k


⇒


1
r

+
1
s


≥

5
6

−
2
3k

≥
11
18
. (20)

The above inequality, together with the fact that 1 > r−1
+ s−1

+ k−1, asserts that

(r, s, k) =


(2, 3, k), k ≥ 7
(2, 4, k), k = 5, 6, 7, 8
(2, 5, k), k = 3, 4, 5
(2, 6, 4), (2, 7, 3), (2, 8, 3), (2, 9, 3), (3, 3, 4).

The case (2, 9, 3) produces D = 3 and, by Lemma 16 and Section 5, it corresponds to λ = (1 + i
√
3)/2, in which case,

the explicit determination of the automorphism group shows that AutH(S) = Aut(S).
We claim that the rest of the cases do not occur.
(i) The cases (r, s, k) = (2, 6, 4) (D = 3), (r, s, k) = (2, 7, 3) (D = 7), (r, s, k) = (2, 8, 3) (D = 4) and (r, s, t) = (3, 3, 4)

(D = 3) are not possible by Proposition 15.
(ii) In the case (r, s, k) = (2, 3, k), with k ≥ 7, we have D =

3(k−2)
k−6 . We now claim that D is divisible by 3. Clearly any

pre-image in S of the conical point q ∈ S/Aut(S) of order 3 is a point with ramification order 3, and, since no cone point
of S/G has this order, it follows that the fibre of q in the intermediate orbifold S/G must also consist of, say, d points, all of
them with ramification order 3 and each of them different from the fourth conical point of S/G. Therefore, D = 3d where
d =

k−2
k−6 . It follows that k ∈ {7, 8, 10}. Thus we are left with the following three cases

(r, s, k;D) ∈ {(2, 3, 7; 15), (2, 3, 8; 9), (2, 3, 10; 6)}

which are not possible by Proposition 15.
(iii) Let us consider the case (r, s, k) = (2, 4, k), where k ∈ {5, 6, 7, 8}, in which case D =

2(k−2)
k−4 . As D is an integer, it

follows that k ∈ {5, 6, 8}. Thus we are left with the cases

(r, s, k;D) = {(2, 4, 5; 6), (2, 4, 6; 4), (2, 4, 8; 3)}

which are again not possible by Proposition 15.
(iv) Let us consider the case (r, s, k) = (2, 5, k), where k ∈ {3, 4, 5}. In this case D =

5(k−2)
3k−10 . Again, as D is an integer, it

follows that k ∈ {4, 5}. Thus we are left with the cases

(r, s, k;D) = {2, 5, 4; 5), (2, 5, 5; 3)}

which are again not possible by Proposition 15.

6.1.2. Case T = 2
In this case, t = 2k and relation (19) now yields

1
r

+
1
s

+
1
2k

≥
3
4

+
1
2k

⇒
1
r

+
1
s

≥
3
4
. (21)

It follows that (r, s) ∈ {(2, 3), (2, 4)}. So we are left with only the following possible signatures:

(1) (0, 3; 2, 4, 2k). In this case D = 2 and this signature occurs for λ = 2 (see Section 5). Then we know that Aut(S) =

AutH(S) as required.
(2) (0, 3; 2, 3, 2k). In this case D = 3+ 3/(k− 3) and, in particular, k ∈ {4, 6}. For k = 4 we obtain signature (0, 3; 2, 3, 8)

and degree D = 6, which is not possible by Proposition 15. The value k = 6 gives signature is (0, 3; 2, 3, 12) and degree
D = 4. This case is again impossible by Proposition 15.

6.2. Uniqueness property

In the previous section we have proved that every generalized Fermat group of type (k, 3), with k ≥ 3, is a normal
subgroup of the full group of conformal automorphisms. We use this property to show that the generalized Fermat group is
unique; which is the content of Theorem 2.

Lemma 19. Let S be a generalized Fermat curve of type (k, 3), k ≥ 3, and let H1 and H2 be generalized Fermat groups for S, both
of type (k, 3). If both of them have in common an element b ≠ I acting with fixed points, then H1 = H2.
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Proof. Let b ∈ H1 ∩ H2 − {I} be a common element acting with fixed points. Let p ∈ S be a fixed point of b. We know that
there is a standard generator bj ∈ Hj, for j = 1, 2, so that b ∈ ⟨bj⟩ ∼= Zk. Moreover, the point pmust be also a fixed point of bj
[10]. As the stabilizer in Aut(S) of p is a cyclic group, it must follow that ⟨b1⟩ = ⟨b2⟩, in particular, H1 and H2 have a common
standard generator. Let a ∈ H1 ∩H2 be a common standard generator. Let R be the underlying Riemann surface associated to
the orbifold S/⟨a⟩. Then R is a classical Fermat curve of degree kwith Fermat group Kj = Hj/⟨a⟩ ∼= Z2

k < Aut(R), for j = 1, 2.
Therefore K1 = K2 [24,29] so in particular, H1 = H2. �

Let (S,H) be a generalized Fermat pair of type (k, 3). Assume there is another different generalized Fermat groupH <
Aut(S) of type (k, 3). Leta ∈ H be a standard generator ofH . It follows from Lemma 19 thatam /∈ H form = {1, . . . , k− 1}.
It follows, from the normality of H in Aut(S) (proved previously), thata induces a conformal automorphism a of order k of
the orbifold S/H . As the signature of S/H is (0, 4; k, k, k, k) and k ≥ 3, it follows from Section 5.2 that k ∈ {3, 4}; so up to
G-equivalence

S =


S3
(1+i

√
3)/2

for k = 3
S42 for k = 4.

We already know the full group of conformal automorphisms of S in those cases and the uniqueness of H can be
checked directly. We may assume (because k ≥ 3 and the non-trivial elements of L = ⟨α,β⟩ (Section 5.1) induce order
2 automorphisms on S/H) that

a =

δ if k = 3 (of order 3)γ if k = 4 (of order 4)

Case k = 4

In this case the conformal automorphism (of order 4)γ ([x1 : x2 : x3 : x4]) = [x4 : 21/4x1 : x2 : (−2)1/4x3] (22)

(where we have fixed choices for 21/4 and (−2)1/4) has exactly 8 fixed points on S. In fact, the fixed points ofγ in P3 are the
points of the form

Fix(γ ) = {[1 : 21/4/ρ : 21/4/ρ2
: ρ] : ρ4

=
√
2(−1)1/4} ⊂ P3, (23)

and Fix(γ ) ∩ S corresponds to the case (−1)1/4 = (−1 ± i)/
√
2. As the number of fixed points of a standard generator in

this case is 42
= 16, this case is not possible.

Case k = 3

In this case the conformal automorphism (of order 3)δ([x1 : x2 : x3 : x4]) = [((1 + i
√
3)/2)1/3x1 : (−1)1/3x4 : x2 : x3] (24)

(where we have fixed choices for ((1 + i
√
3)/2)1/3 and (−1)1/3) has no fixed points on S. In fact, the fixed points ofδ in P3

are the points of the form

Fix(δ) = {[0 : 1 : 1/ρ : 1/ρ2
], [1 : x2 : x2/ρ : x2/ρ2

] : ρ3
= (−1)1/3} ⊂ P3, (25)

and so Fix(δ) ∩ S = ∅. As a standard generator must have fixed points, this case is not possible.

7. Proof of Proposition 15

Let K be a Fuchsian group of signature (0, 3; t, s, r), where 2 ≤ r ≤ s ≤ t , say

K = ⟨x1, x2 : xt1 = xr2 = (x2x1)s = 1⟩.

In this section, if A < K , then we will use the notation ⟨⟨A⟩⟩ to denote the smallest normal subgroup of K containing A. If
A < C < K , then we use the notation ⟨⟨A⟩⟩C to denote the smallest normal subgroup of C containing A.

Assume that K contains a Fuchsian subgroup U of signature (0, 4; 2, 2, 2, k), k ≥ 3, of index D. By Proposition 13, U
contains a unique index 4 normal subgroup Γ of signature (0, 4; k, k, k, k). Moreover, if we write

U = ⟨w1, w2, w3, w4 : w2
1 = w2

2 = w2
3 = wk

4 = w4w3w2w1 = 1⟩,

then

Γ = ⟨y1, y2, y3 : yk1 = yk2 = yk3 = (y3y2y1)k = 1⟩,
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wherey1 = w3w2w1,
y2 = w2w1w3,
y3 = w1w3w2.

(26)

A set of generators of U as above will be called a nice set of generators of U . Note that

Γ ′
= ⟨⟨[yi, yj]; i, j ∈ {1, 2, 3}⟩⟩Γ

and

⟨⟨Γ ′
⟩⟩ = ⟨⟨[yi, yj]; i, j ∈ {1, 2, 3}⟩⟩.

As U < K is of index D and signature (0, 4; 2, 2, 2, k), it follows from Proposition 9 the existence of an epimorphism

θ : K → J < SD,

with J acting transitively, U = θ−1(J1), where J1 = {h ∈ J : h(1) = 1}, and non-negative integer values ρ1, ρ2 and ρ3
satisfying ρ1 + ρ2 + ρ3 = 4, such that

(1) θ(x1) has precisely ρ1 cycles of lengths less that t; these lengths being divisors of t and each of the short cycles, say of
length α, produces a conical point of H2/U of order t/α ∈ {2, k};

(2) θ(x2) has precisely ρ2 cycles of lengths less that r; these lengths being divisors of r and each of the short cycles, say of
length β , produces a conical point of H2/U of order r/β ∈ {2, k};

(3) θ(x2x1) has precisely ρ3 cycles of lengths less that s; these lengths being divisors of s and each of the short cycles, say of
length γ , produces a conical point of H2/U of order s/γ ∈ {2, k}.

Now, if T ∈ Aut(SD), then we may also consider the homomorphism

ψ = T ◦ θ : K → T (J) < SD.

The subgroup U = ψ−1(J1) is conjugate to U in K . Moreover, if Γ is the unique normal subgroup of index 4 of signature
(0, 4; k, k, k, k) of U , then Γ ′ is a normal subgroup of K if and only if Γ ′ is a normal subgroup of K (since U and U are
conjugate in K ). This observation permits us to search for all the possibilities for θ(x1) and θ(x2) satisfying conditions (1),
(2) and (3) up to conjugation in SD and to assume that θ−1(J1) equals U (otherwise, we will be working with a conjugate
copy of U in K ). In this way, in order to prove Proposition 15, we only need to prove that Γ ′ cannot be a normal subgroup
of K .

If our choices for θ(x1) and θ(x2) happen to be inconsistent with the identity θ(x2x1) = θ(x2)θ(x1), that would mean
that K cannot contain such a subgroup U and we are done in that case.

If on the contrary these choices are consistent, then the group J1 can be easily described. This being done we will
determine a nice set of generators of U by making a choice of elements of U satisfying the desired relations, and then using
GAP [31] to check that the index of the subgroup U1 of U generated by them is equal to 1. Next we write generators y1, y2
and y3 for Γ as above. Clearly, Γ ′ is normal subgroup of K if and only if Γ ′

= ⟨⟨Γ ′
⟩⟩. As [K : Γ ′

] = [K : U][U : Γ ][Γ :

Γ ′
] = 4Dk3, in order to get a contradiction we only need to see that [K : ⟨⟨Γ ′

⟩⟩] ≠ 4Dk3. The computation of the index
[K : ⟨⟨Γ ′

⟩⟩] is done with the help of GAP.

Remark 20. In using GAP, we should be aware of the following fact. Wemultiply cycles from right to left whereas GAP does
it from left to right. In order to get the same results, we need to make the computations in GAP reversing the order of the
cycles in each permutation.

Proof of part (1)

Case k = 6, D = 4, (r, s, t) = (2, 3, 12)

As x2x1 has order 3, it follows that θ(x2x1) must fix some point. We may assume θ(x2x1) fixes 1. It follows then that
x2x1 ∈ U , which implies that H2/U should have a conical point of order 3, a contradiction.

Case k = 8, D = 3, (r, s, t) = (2, 4, 8)

As in the signature of U there is not a period 4, it follows that no conjugate of x2x1 can belong to U , that is, θ(x2x1) should
not fix a point. But, as x2x1 has order 4 and D = 3, it follows that this must be the case, a contradiction.

Case k = 5, D = 3, (r, s, t) = (2, 5, 5)

As in the signature of U there is a period 5, we may assume x1 ∈ U . As θ(x1)5 = 1, it follows that θ(x1) = (1)(2)(3). It
follows we must have at least three periods of order 5 in the signature of U , a contradiction.
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Case k = 4, D = 3, (r, s, t) = (3, 3, 4)

As in the signature of U there is a period 4, we may assume x1 ∈ U . As θ(x1)4 = 1, it follows that ρ1 ∈ {2, 3}. As D = 3,
it is clear that ρ2, ρ3 ∈ {0, 3}. With such a possibilities ρ1 + ρ2 + ρ3 ≠ 4, a contradiction.

Proof of part (2)

We have to analyze the ten cases listed in the first table of Proposition 15. Since the method is similar in most of them,
we only describe it in three representative cases.

Case k = 5, D = 6, (r, s, t) = (2, 4, 5)

In this case, since U has a period of order 5 in its signature, we may assume, up to conjugation in K , that θ(x1) ∈ J1.
Next, up to permutation of the indices 2, . . . ,6, we may assume (as U has only one period of order 5 in its signature) that
θ(x1) = (1)(2 3 4 5 6). As ρ1 = 1, we have that ρ2 + ρ3 = 3. If ρ2 ∈ {1, 3}, then θ(x2) should contain exactly ρ2 cycles of
length 1 and all the others of length 2. But this is impossible for D = 6; it follows that ρ2 ∈ {0, 2}.

Subcase 1
If ρ2 = 0, then ρ3 = 3 and we must have

θ(x2) = (a1 a2)(a3 a4)(a5 a6), θ(x2x1) = (b1 b2)(b3 b4)(b5 b6).

Wemay assume a1 = 1 and, up to conjugation by a power of θ(x1), that a2 = 2. In this way, the possibilities are

θ(x2) ∈ {(1 2)(3 4)(5 6), (1 2)(3 5)(4 6), (1 2)(3 6)(4 5)}

In the case θ(x2) = (1 2)(3 4)(5 6) we have that θ(x2x1) = θ(x2)θ(x1) = (1 2 4 6)(3)(5); in the case
θ(x2) = (1 2)(3 5)(5 6) we have that θ(x2x1) = θ(x2)θ(x1) = (1 2 5 4 3 6); and in the case θ(x2) = (1 2)(3 6)(4 5)
we have that θ(x2x1) = θ(x2)θ(x1) = (1 2 6)(3 5)(4). Each of these cases produces a contradiction with the desired cycle
decomposition of θ(x2x1).

Subcase 2
If ρ2 = 2, then ρ3 = 1 and we must have

θ(x2) = (a1 a2)(a3 a4), θ(x2x1) = (b1 b2)(b3 b4 b5 b6).

If θ(x2)(1) = 1, then θ(x2x1)(1) = 1, a contradiction to our assumption. So, we may assume a1 = 1. Also, up to
conjugation by a power of θ(x1), we may also assume that a2 = 2. The possibilities are

θ(x2) ∈ {(1 2)(3 4), (1 2)(3 5), (1 2)(3 6), (1 2)(4 5), (1 2)(4 6), (1 2)(5 6)}

Therefore, the only chances to have a cycle decomposition of θ(x2x1) as desired are given by

θ(x2) = (1 2)(3 5) =⇒ θ(x2x1) = (1 2 5 6)(3 4)
θ(x2) = (1 2)(4 6) =⇒ θ(x2x1) = (1 2 3 6)(4 5).

Both cases are the same up to the (geometric) automorphism of K defined by φ(x1) = x−1
1 , φ(x2) = x2. So we only

need to consider one of them, say θ(x2) = (1 2)(3 5). In this case, J = θ(K) = ⟨(2 3 4 5 6), (1 2)(3 5)⟩ and
J1 = ⟨(2 3 4 5 6), (3 4 5)⟩.

Let us consider the subgroup U1 generated by the elements z1 = x1, z2 = x2x−1
1 x2x−2

1 x2, z3 = x2x31x2x
−3
1 x2 and

z4 = x2x1x2x−1
1 x2 (see Fig. 1 for a fundamental polygon for U1 and the side pairings). We have that U1 < U and that

[K : U1] = 6 = [K : U]; so U1 = U .
Notice that w1 = x2x1x2x−1

1 x2, w2 = x2x31x2x
−3
1 x2, w3 = x2x31(x1x2)

2x−3
1 x2 and w4 = x−1

1 are nice generators of U . So,
generators of Γ are given by y1 = x1, y2 = x2x−2

1 x2x−2
1 x2x21x2x

−1
1 x2x1x2 and y3 = x2x1x2x−2

1 x2x−2
1 x2. We obtain, by using

GAP, that [K : ⟨⟨Γ ′
⟩⟩] = 10 ≠ 4Dk3, in particular, Γ ′ cannot be normal subgroup of K .

Case k = 8, D = 9, (r, s, t) = (2, 3, 8)

AsU has an element of order 8, thenwemay assume θ(x1) ∈ J1, that is, ρ1 ≥ 1. Let us recall that ρ1 denotes the number of
cycles of θ(x1)whose lengths are divisors of 8 and different from8; therefore ρ1 ≠ 2. Let us nownote that ρ2 ≥ 1; otherwise
every cycle of θ(x2)must have length 2, not possible usingD = 9 letters. As ρ1+ρ2 ≤ 4, it follows that ρ1 ∈ {1, 3}. Similarly,
ρ3 ≠ 1; otherwise θ(x2x1) has exactly one cycle of length less than 3 and, as such a length is a divisor of 3, it has length 1.
This clearly is again impossible to achieve with D = 9 letters.
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Up to permutation of the indices 2, 3, 4, 5, 6, 7, 8, 9, we may assume that θ(x1) is one of the following ones:

θ(x1) =


(2 3 4 5 6 7 8 9), ρ1 = 1
(2 3 4 5)(6 7 8 9), ρ1 = 3. (27)

Subcase 1
Let us assume θ(x1) = (2 3 4 5 6 7 8 9). As in this case, ρ2 + ρ3 = 3, ρ2 ≥ 1 and ρ3 ≠ 1, we have the

following possibilities: (ρ2, ρ3) ∈ {(1, 2), (3, 0)}. The case ρ3 = 2 ensures that θ(x2x1) has exactly two cycles of length
1 and all the others of length 3; this is not possible with D = 9 letters. So, we have that ρ2 = 3 and ρ3 = 0; that is
θ(x2) = (a1 a2)(a3 a4)(a5 a6) and θ(x2x1) = (b1 b2 b3)(b4 b5 b6)(b7 b8 b9). The only possibilities for θ(x2), up to
conjugation by powers of θ(x1), are

θ(x2) ∈ {(1 3)(2 4)(6 9), (1 3)(2 4)(5 8)}.

If we consider the groups (both of order 432)

L1 = ⟨(2 3 4 5 6 7 8 9), (1 3)(2 4)(5 8)⟩

and

L2 = ⟨(2 3 4 5 6 7 8 9), (1 3)(2 4)(6 9)⟩ = ⟨(2 9 8 7 6 5 4 3), (1 4)(2 7)(3 5)⟩,

then there is an isomorphism φ : L1 → L2 defined by

φ((2 3 4 5 6 7 8 9)) = (2 9 8 7 6 5 4 3)
φ((1 3)(2 4)(5 8)) = (1 4)(2 7)(3 5).

As a consequence, we only need to consider one of the two possibilities for θ(x2), say θ(x2) = (1 3)(2 4)(6 9). In this
case, 

J = ⟨(2 3 4 5 6 7 8 9), (1 3)(2 4)(5 8)⟩
J1 = ⟨(3 5)(4 8)(7 9), (2, 6)(3, 8)(4, ; 7), (2, 7)(3, 6)(5, 9), (2 5 6 9)(3 8 7 4)⟩.

The group U is generated by the elements w1 = x2x−2
1 x2x21x2x

3
1x2, w2 = x2x−3

1 x2x31x2, w3 = x2x21x2x
−2
1 x2 and w4 = x1. In

this case, Γ is generated by y1 = x−1
1 , y2 = x2x31x2x

−4
1 x2x−2

1 x2 and y3 = x2x−2
1 x2x21x2x

−3
1 x2x31x2x

3
1x2. Now it can be seen that

[K : ⟨⟨Γ ′
⟩⟩] = 2 ≠ 4Dk3, from which we infer that Γ ′ cannot be normal in K .

Subcase 2
Let us first assume θ(x1) = (2 3 4 5)(6 7 8 9). In this case ρ2 + ρ3 = 1 and ρ2 ≥ 1. It follows that ρ3 = 0 and ρ2 = 1.

This now ensures that θ(x2x1) is product of exactly three disjoint 3-cycles and that θ(x2) has exactly one cycle of length 1
and all the others of length 2. Clearly, θ(x2) cannot fix 1, for otherwise, θ(x2x1) will have a 1-cycle, a contradiction. Up to
conjugation by θ(x1), we may assume that

θ(x2) = (2)(1 a2)(a3 a4)(a5 a6)(a7 a8)

and

θ(x2x1) = (b1 b2 b3)(b4 b5 b6)(b7 b8 b9).

Using GAP, one can check that the above cannot happen.

Case k = 7, D = 15, (r, s, t) = (2, 3, 7)

In this case (and only in this case) we use a different kind of argument (one may also proceed similarly as in the other
cases, but the computations are lengthy in the symmetric group in 15 letters). Let S = H2/Γ ′, let H = Γ /Γ ′ < Aut(S)
and let us assume that Γ ′ is a normal subgroup of K . By means of GAP we see that in this situation F = K/Γ ′ < Aut(S)
is of order | F |= [K : Γ ][Γ : Γ ′

] = 60 ∗ 73
= 20 580. Note that the number of 7-Sylow subgroups is greater than 1,

for otherwise, H ▹ F and F/H will be a group of (orbifold) automorphisms of the orbifold H2/Γ of order 60, which is not
possible by the computations in Section 5: the only possible orbifold automorphism groups are Z2

2, D4 and A4. On the other
hand, it is known that there is no simple group of order 20 580, therefore we may construct a non-trivial chain

F1 ▹ F2 ▹ · · · Fr ▹ Fr+1 = F , (28)

with Fj+1/Fj a simple group and F/Fr non-trivial. As the only order of a non-cyclic simple group that divides 20 580 is 60,
the group F/Fr is either cyclic or A5. This quotient cannot be A5 as in that case Fr would be a normal 7-Sylow subgroup,
a contradiction. It follows that F/Fr is a non-trivial abelian group. But, F = K/Γ ′ and Fr = Kr/Γ

′, for some Kr ▹ K , and
K/Kr ∼= F/Fr . It follows that K ′ ▹ Kr . Now, as K/K ′ ∼= ⟨a, b : a7 = b2 = (ba)3 = 1, ab = ba⟩ = ⟨a, b : a1 = b1 = 1⟩, it
follows that [K : K ′

] = 1. We get that Kr = K , so Fr = F , a contradiction.
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