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A closed Riemann surface S is a generalized Fermat curve of type
(k,n) if it admits a group of automorphisms H ∼= Zn

k such that the
quotient O = S/H is an orbifold with signature (0,n + 1;k, . . . ,k),
that is, the Riemann sphere with (n + 1) conical points, all of same
order k. The group H is called a generalized Fermat group of type
(k,n) and the pair (S, H) is called a generalized Fermat pair of
type (k,n). We study some of the properties of generalized Fermat
curves and, in particular, we provide simple algebraic curve real-
ization of a generalized Fermat pair (S, H) in a lower-dimensional
projective space than the usual canonical curve of S so that the
normalizer of H in Aut(S) is still linear. We (partially) study the
problem of the uniqueness of a generalized Fermat group on a
fixed Riemann surface. It is noted that the moduli space of general-
ized Fermat curves of type (p,n), where p is a prime, is isomorphic
to the moduli space of orbifolds of signature (0,n + 1; p, . . . , p).
Some applications are: (i) an example of a pencil consisting of only
non-hyperelliptic Riemann surfaces of genus gk = 1 + k3 − 2k2, for
every integer k � 3, admitting exactly three singular fibers, (ii) an
injective holomorphic map ψ : C −{0,1} → M g , where M g is the
moduli space of genus g � 2 (for infinitely many values of g), and
(iii) a description of all complex surfaces isogenous to a product
with invariants pg = q = 0 and covering group equal to Z

2
5 or Z

4
2.
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1. Preliminaries

If S denotes a closed Riemann surface, then Aut(S) will denote its full group of conformal auto-
morphisms. If H < Aut(S), then we denote by AutH (S) the normalizer of H inside Aut(S), that is, the
highest subgroup of Aut(S) containing H as normal subgroup. If K is any group, we denote by K ′ its
commutator subgroup.

An orbifold O of signature (g, r;n1, . . . ,nr), where g � 0, r � 0, n j � 2, are integers, is a closed
Riemann surface of genus g together with a collection of r conical points of orders n1, . . . ,nr . Its
orbifold fundamental group, π orb

1 (O), is a group with generators a1, . . . ,ag,b1, . . . ,bg, c1, . . . , cr and
relations

∏g
j=1[a j,b j]∏r

s=1 c j = 1 = cn1
1 = · · · = cnr

r , where [a,b] = aba−1b−1. Generalities on orbifolds
can be found in [26,29].

An orbifold of signature (g,0;−) is a closed Riemann surface of genus g . A conformal automor-
phism of an orbifold is a conformal automorphism of the corresponding Riemann surface which
preserves the conical points of the same orders. The homology cover of an orbifold O is an orb-
ifold Õ providing the highest regular Abelian cover of it, that is, the regular covering induced by the
commutator subgroup π orb

1 (O)′ � πorb
1 (O). In many cases Õ has no conical points, that is, it turns

out to be a closed Riemann surface.
A closed Riemann surface S is called a generalized Fermat curve of type (k,n) if it is the homology

cover of an orbifold of signature (0,n + 1;k, . . . ,k). It follows that there exists H < Aut(S), so that
H ∼= Zn

k and S/H is an orbifold with signature (0,n + 1;k, . . . ,k). In this case we say that H is a
generalized Fermat group of type (k,n) and (S, H) a generalized Fermat pair of type (k,n). Reciprocally,
each pair (S, H) so that S is a closed Riemann surface, H < Aut(S) is isomorphic to Zn

k and S/H is
an orbifold with signature (0,n + 1;k, . . . ,k) is a generalized Fermat pair of type (k,n). Riemann–
Hurwitz’s formula asserts that the genus gk,n of a generalized Fermat curve of type (k,n) is

gk,n = 2 + kn−1((n − 1)(k − 1) − 2)

2
. (1)

In particular, a generalized Fermat curve of type (k,n) is hyperbolic, that is, it has the hyperbolic
plane H2 as universal cover Riemann surface, if and only if (n − 1)(k − 1) > 2. As an example, the
classical Fermat curve xk + yk + zk = 0 defines, in the complex projective plane P2, a generalized
Fermat curve of type (k,2). Examples of generalized Fermat curves of type (2,n) were studied in [9]
from the point of view of Fuchsian and Schottky groups (see also Section 6).

We say that two generalized Fermat pairs (S1, H1) and (S2, H2) are topologically (holomorphically)
equivalent if there is some orientation-preserving homeomorphism (holomorphic homeomorphism)
f : S1 → S2 so that f H1 f −1 = H2.

The non-hyperbolic generalized Fermat pairs are the following ones.

(i) (k,n) = (2,2): S = Ĉ and H = 〈A(z) = −z, B(z) = 1/z〉.
(ii) (k,n) = (3,2): S = C/Λe2π i/3 , where Λe2π i/3 = 〈A(z) = z+1, B(z) = z+e2π i/3〉, and H is generated

by the induced transformations of J (z) = e2π i/3z and T (z) = z + (2 + e2π i/3)/3. In this case, the 3
cyclic groups 〈 J 〉, 〈T J 〉 and 〈T 2 J 〉 project to the only 3 cyclic subgroups in H with fixed points;
3 fixed points each one. This is provided by the degree 3 Fermat curve x3 + y3 + z3 = 0.

(iii) (k,n) = (2,3): S = C/Λτ , where τ ∈ C with Im(τ ) > 0, Λτ = 〈A(z) = z + 1, B(z) = z + τ 〉, and
H is generated by the induced transformations from T1(z) = −z, T2(z) = −z + 1/2 and T3(z) =
−z + τ/2. In this case, the conformal involutions induced on the torus by T1, T2, T3 and their
product are the only ones acting with fixed points; 4 fixed points each. This is also described by
the algebraic curve {x2 + y2 + z2 = 0, λx2 + y2 + w2 = 0}, where λ ∈ C − {0,1}.

The hyperbolic generalized Fermat pair (S, H) of type (k,n) can be described in terms of Fuchsian
groups as follows. Classical uniformization theorem asserts that the orbifold O = S/H is uniformized
by a Fuchsian group Γ < PSL(2,R), that is, H2/Γ = O. The group Γ has presentation (we say that Γ

is of type (k,n))
Please cite this article in press as: G. González-Diez et al., Generalized Fermat curves, J. Algebra (2009),
doi:10.1016/j.jalgebra.2009.01.002
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Γ = 〈
x1, . . . , xn+1: xk

1 = · · · = xk
n+1 = x1x2 · · · xn+1 = 1

〉
. (2)

There is a torsion free normal subgroup L � Γ providing a uniformization of S and so that H =
Γ/L. The commutator subgroup Γ ′ is torsion free [22] and uniformizes a closed Riemann surface S ′ .
On S ′ we have the Abelian group H ′ = Γ/Γ ′ ∼= Zn

k so that S ′/H ′ = O, that is, S ′ is a generalized
Fermat curve of type (k,n) with generalized Fermat group H ′ of type (k,n). As L � Γ satisfies that
Γ/L is Abelian, we must have that Γ ′ � L. As the index of L in Γ is equal to the index of Γ ′ in Γ , we
have that L = Γ ′ . As Fuchsian groups of a fixed type (k,n) are topologically rigid and the commutator
subgroup Γ ′ is a characteristic subgroup, all the above can be summarized in the following.

Theorem 1. Let (S, H) be a generalized Fermat pair and Γ be a (orbifold) universal cover group of the orb-
ifold S/H. Then (S, H) is holomorphically equivalent to (U/Γ,Γ/Γ ′), where U ∈ {Ĉ,C,H2} is the universal
Riemann surface cover of S/H and Γ ′ is the commutator subgroup of Γ . In particular, any two generalized
Fermat pairs of the same type are topologically equivalent.

Denoting by a j the congruence class of x j mod Γ ′ , we easily obtain the following consequences of
Theorem 1, which we will need later.

Corollary 2. Let (S, H) be a generalized Fermat pair of type (k,n) and let P : S → S/H be a branched regular
covering with H as group of cover transformations.

1.- If AutH (S) denotes the normalizer of H inside Aut(S), then each orbifold automorphism of S/H lifts to an
automorphism in AutH (S); that is, for each orbifold automorphism τ : S/H → S/H there is a conformal
automorphism τ̂ : S → S so that P τ̂ = τ P .

2.- There exist elements of order k in H, say a1, . . . ,an, so that:
(i) H = 〈a1, . . . ,an〉;

(ii) each a1, . . . ,an and an+1 = a1a2 · · ·an has exactly kn−1 fixed points;
(iii) if h ∈ H has fixed points, then h ∈ 〈a1〉 ∪ · · · ∪ 〈an〉 ∪ 〈an+1〉;
(iv) if k is prime and h ∈ H has no fixed points and it has order k, then no non-trivial power of h has fixed

points; and
(v) if h ∈ H is an element of order k with fixed points and x, y are any two of these fixed points, then

there is some h∗ ∈ H so that h∗(x) = y.
Such a set of generators a1, . . . ,an shall be called a standard set of generators for the generalized Fermat
group H.

Remark 3. If (S, H) is a generalized Fermat pair of type (k,n), then for each h ∈ H of order k with
fixed points, we have that the Riemann surface structure of the orbifold R = S/〈h〉 is a generalized
Fermat curve of type (k,n − 1) with K = H/〈h〉 as a generalized Fermat group of type (k,n − 1). This
fact permits to construct towers of generalized Fermat curves starting from some non-hyperbolic one
and adding an extra conical point at each step.

Having recalled all the necessary general basic facts and descriptions, we will proceed in the rest
of this paper as follows. In Section 2 we note that generalized Fermat curves of genus at least 2 are
non-hyperelliptic and we provide algebraic curve description of them (as fiber products of classical
Fermat curves) in lower-dimensional projective spaces than the usual canonical curve (this may be
of interest for computation on Riemann surfaces). In Section 3 we discuss the problem of uniqueness
of generalized Fermat groups on each generalized Fermat curve. In Section 4 we describe the locus
of generalized Fermat curves in the corresponding moduli space. In Section 5 we proceed to use the
results obtained in the previous sections in order to produce three examples. The first one is the
construction of a pencil of non-hyperelliptic Riemann surfaces of genus gk = 1 + k3 − 2k2, for every
integer k � 3, with exactly three singular fibers. The second one is the construction of an injective
holomorphic map ψ : C − {0,1} → M g , where M g is the moduli space of genus g � 2, for infinitely
many values of g . The third one is the description of all complex surfaces isogenous to a product
Please cite this article in press as: G. González-Diez et al., Generalized Fermat curves, J. Algebra (2009),
doi:10.1016/j.jalgebra.2009.01.002
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X = S1 × S2/G with invariants pg = q = 0 and group G equals either G = Z2
5 or G = Z4

2. Finally,
in Section 6 we describe those generalized Fermat curves which can act as group of isometries of
hyperbolic handlebodies.

2. Algebraic description

2.1. Non-hyperellipticity of general Fermat curves

Let us recall that a closed Riemann surface S of genus g � 2 is called hyperelliptic if it admits a
(necessarily unique) conformal involution with exactly 2(g + 1) fixed points, called the hyperellip-
tic involution. Equivalently, S is hyperelliptic if and only if there is a two-fold branched regular
covering f : S → Ĉ. The algebraic equation of a hyperelliptic Riemann surface S is of the form
y2 = ∏2(g+1)

j=1 (x − a j) and, moreover, as the hyperelliptic involution belongs to the center of Aut(S),
a complete description of Aut(S) can be done via such a curve description [6].

Unfortunately, generalized Fermat curves of genus at least 2 are non-hyperelliptic Riemann sur-
faces.

Theorem 4. A hyperbolic generalized Fermat curve is non-hyperelliptic.

Proof. Let (S, H) be a hyperbolic generalized Fermat pair of type (k,n). Let us assume S is hyperellip-
tic and let us denote by j its hyperelliptic involution. As j belongs to the center of Aut(S), the action
of H descends to a finite Abelian group of Möbius transformations PSL(2,C) on the Riemann sphere.
The fact that the finite Abelian groups inside PSL(2,C) are either finite cyclic groups or the Klein
group Z2

2 obligates to have either (i) k > 2 and n = 1, or (ii) k = 2 and n = 1,2, a contradiction. �
2.2. Algebraic description

As a generalized Fermat curve S of genus g � 2 is non-hyperelliptic, it is well known that, if
w1, . . . , w g is any basis of H1,0(S), the g-dimensional vector space of holomorphic 1-forms, then
θ : S → Pg−1 defined by θ(x) = [w1(x) : · · · : w g(x)], is a holomorphic embedding and θ(S) is a non-
singular projective algebraic curve of degree 2(g − 1), called a canonical curve of S (see, for instance,
[10]).

Assume (S, H) is generalized Fermat pair of type (k,n) and genus g = gk,n � 2. Theorem 5 below
provides a holomorphic embedding ρ : S → Pn so that ρ(S) is a non-singular projective algebraic
curve of degree kn−1 � 2(g − 1) and the action of H is defined by a projective linear action H0 <

PGL(n + 1,C). Note that this description produces a projective curve of lower degree than a canonical
curve and also the embedding is in lower dimension than the canonical embedding (this lower degree
and dimension representation seems to be useful for practical computations). Not only the action of
H will be linear, but also the action of AutH (S).

Let us start with the following fiber product of (n − 1) classical Fermat curves, say the algebraic
curve C(λ1, . . . , λn−2) ⊂ Pn given by the following (n − 1) homogeneous polynomials of degree k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk
1 + xk

2 + xk
3 = 0,

λ1xk
1 + xk

2 + xk
4 = 0,

λ2xk
1 + xk

2 + xk
5 = 0,

.

.

.
.
.
.

.

.

.

λn−2xk
1 + xk

2 + xk
n+1 = 0,

(3)

where λ j ∈ C − {0,1}, λi �= λ j , for i �= j. The conditions on the parameters λ j ensure that
C(λ1, . . . , λn−2) is a non-singular projective algebraic curve, that is, a closed Riemann surface. On
Please cite this article in press as: G. González-Diez et al., Generalized Fermat curves, J. Algebra (2009),
doi:10.1016/j.jalgebra.2009.01.002
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C(λ1, . . . , λn−2) we have the Abelian group H0 ∼= Zn
k of conformal automorphisms generated by the

transformations

a j
([x1 : · · · : xn+1]

) = [x1 : · · · : x j−1 : ωkx j : x j+1 : · · · : xn+1], j = 1, . . . ,n,

where ωk = e2π i/k . If we consider the degree kn holomorphic map

π : C(λ1, . . . , λn−2) → Ĉ

given by

π
([x1 : · · · : xn+1]

) = −
(

x2

x1

)k

,

then π ◦a j = π , for every a j , j = 1, . . . ,n. It follows that C(λ1, . . . , λn−2) is a generalized Fermat curve
with generalized Fermat group H0 with standard generators a1, . . . ,an , an+1 = a1a2 · · ·an . The fixed
points of a j on C(λ1, . . . , λn−2) are given by the intersection Fix(a j) = F j ∩ C(λ1, . . . , λn−2) where
F j = {x j = 0}. In this way, the branch values of π are given by the points

π
(
Fix(a1)

) = ∞, π
(
Fix(a2)

) = 0, π
(
Fix(a3)

) = 1,

π
(
Fix(a4)

) = λ1, . . . , π
(
Fix(an+1)

) = λn−2.

As every generalized Fermat pair (S, H) is uniquely determined by the orbifold S/H (by Theo-
rem 1), we get the following algebraic description of generalized Fermat pairs.

Theorem 5. Let (S, H) be a generalized Fermat pair of type (k,n) and, up to a Möbius transformation, let

{∞,0,1, λ1, λ2, . . . , λn−2}

be the conical points of S/H, then (S, H) and (C(λ1, . . . , λn−2), H0) are holomorphically equivalent and the
action of H is defined by the projective linear action H0 < PGL(n + 1,C). We say that (S, H) is modeled by
the algebraic curve C(λ1, . . . , λn−2).

The structure of equations in (3) and Theorem 5 provides the following.

Corollary 6. A generalized Fermat curve of type (k,n) is the fiber product of (n − 1) classical Fermat curves of
type (k,2).

Remark 7. Note that there are (n + 1)! choices in the normalization of the conical points as described
in Theorem 5. This normalization provides a canonical action of the symmetric group Sn+1 on the
locus of ordered tuples (λ1, . . . , λn−2). We will come back to this discussion in Section 4.

Corollary 8. If (C(λ1, . . . , λn−2), H0) is a generalized hyperbolic Fermat pair of type (k,n), then AutH0 (C(λ1,

. . . , λn−2))/H0 is isomorphic to the subgroup of Möbius transformations that preserves the finite set

{∞,0,1, λ1, λ2, . . . , λn−2}.

Please cite this article in press as: G. González-Diez et al., Generalized Fermat curves, J. Algebra (2009),
doi:10.1016/j.jalgebra.2009.01.002
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Corollary 9. If (C(λ1, . . . , λn−2), H0) is a generalized hyperbolic Fermat pair of type (k,n), then AutH0(C(λ1
, . . . , λn−2)) < PGL(n + 1,C).

Proof. Let (S, H) be a generalized Fermat curve. As consequence of Theorem 5 we may assume
(S, H) = (C(λ1, . . . , λn−2), H0). Let T be a Möbius transformation that permutes the conical points
μ1 = ∞, μ2 = 0, μ3 = 1, μ4 = λ1, . . . , μn+1 = λn−2. Corollary 8 asserts the existence of a conformal
automorphism T̂ of C = C(λ1, . . . , λn−2) so that π T̂ = Tπ , that is, if T̂ ([x1 : · · · : xn+1]) = [y1 : · · · :
yn+1] and z = −(x2/x1)

k , then T (z) = −(y2/y1)
k . As the only cyclic subgroups of H or order k acting

with fixed points are 〈a j〉, for j = 1, . . . ,n + 1, there is a permutation σ ∈ Sn+1 (the symmetric group
on (n + 1) letters) so that T̂ 〈a j〉T̂ −1 = 〈aσ( j)〉. Now, since the zeros and poles of the meromorphic
function x j/x1 : C → Ĉ are Fix(a j) and Fix(a1) respectively, we see that the zeros and poles of the
pullback function T̂ ∗(x j/x1) = (x j/x1) ◦ T̂ : C → Ĉ are Fix(aσ−1( j)) and Fix(aσ−1(1)) respectively. It fol-
lows that there exist c2, . . . , cn+1 ∈ C −{0} such that T̂ ∗(x j/x1) = c j(xσ−1( j)/xσ−1(1)) on C . This means
that in the open set {x1 �= 0} the expression of the automorphism T̂ in terms of affine coordinates is

T̂ (x2/x1, . . . , xn+1/x1) = (c2xσ−1(2)/xσ−1(1), . . . , cn+1xσ−1(n+1)/xσ−1(1)).

Therefore, in projective coordinates T̂ must be of the form

T̂
([x1 : x2 : · · · : xn+1]

) = [xσ−1(1) : c2xσ−1(2) : · · · : cn+1xσ−1(n+1)].

The constants c j can be easily computed from the algebraic equations (3). Now, as T (z) =
−ck

2(xσ−1(2)/xσ−1(1))
k , if we set μ1 = ∞, μ2 = 0, μ3 = 1 and μ j+3 = λ j , for j = 1, . . . ,n − 2, then

T (μ j) = μσ( j),

that is, the transformation T induces the same permutation of the index set {1, . . . ,n + 1} as T̂ .
This permits to compute easily AutH (S) (this can be implemented into a computer program) and
also to see that it is a subgroup of PGL(n + 1;C) whose matrix coordinates belong to the field
Q(e2π i/k, c2, . . . , cn−2). �
Remark 10. The procedure described in the above proof permits to define for each Möbius transfor-
mation T that permutes the conical points {∞,0,1, λ1, . . . , λn−2} an element T̂ ∈ PGL(n + 1,C). Such
element is not uniquely defined by T , but it is unique up to composition with an element of H0. Also,
this representation satisfies that T̂1T2 = T̂1 T̂2 (up to composition with some element of H0).

In the following examples we clarify the procedure given in the proof of Corollary 9.

Example 11. Let us clarify the above with the following example. Consider n = 4 and λ2 = λ2
1 =

1 + λ1, then we obtain a generalized Fermat curve S of genus gk = (2 − 5k3 + 3k4)/2. If k = 2, then
S corresponds to the classical Humbert curve of genus 5 with 160 conformal automorphisms. In this
case, the finite Möbius group that permutes the conical values ∞, 0, 1, λ1 and λ2 is the dihedral
group D5 generated by u(z) = λ2/(λ2 − z) (permuting cyclically ∞, 0, 1, λ1 and λ2) and v(z) = λ2 − z
(fixing ∞ and permuting 0 with λ2 and 1 with λ1). Liftings of u and v are given by

û
([x1 : x2 : x3 : x4 : x5]

) = [
x5 : λ1/k

2 x1 : x2 : (−λ1)
1/kx3 : (−λ2)

1/kx4
]
,

v̂
([x1 : x2 : x3 : x4 : x5]

) = [
x1 : x5 : (−1)1/kx4 : (−1)1/kx3 : x2

]
.

Note that û5 = v̂2 = 1. Moreover, if we choose branches of (−λ2)
1/k , (−1)1/k , λ

1/k
2 and λ

1/k
1 so

that they all satisfy (−λ2)
1/k(−1)1/k = λ

1/k
2 and (λ

1/k
1 )2 = λ

1/k
2 , then (̂u v̂)2 = 1, that is, D5 ∼= 〈̂u, v̂〉 <
Please cite this article in press as: G. González-Diez et al., Generalized Fermat curves, J. Algebra (2009),
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AutH (S). It follows that AutH (S) = H � D5, in particular, |AutH (S)| = 10k4. By Hurwitz’s upper bound,
if k = 2, then Aut(S) = AutH (S).

Example 12. If S = {xk
1 + xk

2 + xk
3 = 0} ⊂ P2 is a classical Fermat curve of degree k � 4, that is, n = 2,

then Aut(S) ∼= Z2
k �S3 [27,30]. An easy way to see this is as follows. Let H ∼= Z2

k be a generalized Fer-
mat group of type (k,2) inside Aut(S). The quotient orbifold S/H has signature (0,3;k,k,k). Clearly,
S/H admits the symmetric group S3 as group of orbifold automorphisms. A lift of S3 is generated by
the permutations of the coordinates: σ([x1 : x2 : x3]) = [x2 : x1 : x3] and τ ([x1 : x2 : x3]) = [x3 : x1 : x2].
In this case AutH (S) = H � S3 and S/AutH (S) = (S/H)/S3 has signature (0,3;2,3,2k), which is
maximal if k � 4 [28], in particular, Aut(S) = AutH (S).

3. On the uniqueness of generalized Fermat groups

3.1. Uniqueness for fixed type

In this section we are concerned with the uniqueness of the generalized Fermat group, within a
fixed type, on a fixed generalized Fermat curve. We are not able to provide a general answer to this
problem, but in the case of types (p,n), where p is a prime, we have the following partial result.

Theorem 13. Let p � 2 be a prime and n � 2 an integer so that (n − 1)(p − 1) > 2. If H1 and H2 are
generalized Fermat groups of type (p,n) for the same Riemann surface S, then they are conjugate in Aut(S).

Proof. Let H be a generalized Fermat group of type (p,n), where p � 2 is a prime so that (n − 1)(p −
1) > 2. We have a chain of p-subgroups

H = K0 � K1 � K2 � · · · � Kk

where Kk is a p-Sylow subgroup and K j+1/K j ∼= Zp . If k = 0, then we are done. Otherwise, Lemma 17
below asserts that K0 is unique in K1, hence K0 is also normal subgroup in K2, then (again by
Lemma 17) unique in K2. Proceeding in this way we end with K0 being unique in Kk . �
Corollary 14. If n � 2 is an integer and p � 2 is a prime so that (n − 1)(p − 1) > 2, then any Fuchsian
group of type (p,n) is uniquely determined by its commutator subgroup up to conjugation by some isometry
of hyperbolic plane. In particular, any two hyperbolic orbifolds of signature (0,n+1; p, . . . , p) are conformally
equivalent if and only if their homology cover Riemann surfaces are conformally equivalent.

In [15] (and for many classes of torsion free non-elementary Kleinian groups in [16–19,23]) was
noted that any Fuchsian group of type (∞,n), n � 2, is uniquely determined by its commutator sub-
group. A natural question is if there is some integer q(n) so that if k � q(n), then generalized Fermat
groups of type (k,n) should be unique in Aut(S). Related to this problem, the following was proved
in [21].

Theorem 15. (See [21].) If n � 2, then there exists a prime q(n) so that for each prime p � q(n) the generalized
Fermat group of type (p,n) is unique in Aut(S).

Unfortunately, we do not have an explicit formula for q(n) and n large. It was observed in [9] that
a generalized Fermat group of type (2,n), for n = 4,5, of a closed Riemann surface S is unique in
Aut(S), in particular, a normal subgroup of Aut(S). All the above permits to state the following fact.

Corollary 16. Let (S, H) be a generalized hyperbolic Fermat pair of type (p,n), where p is a prime, and let
q(n) as in Theorem 15. If either
Please cite this article in press as: G. González-Diez et al., Generalized Fermat curves, J. Algebra (2009),
doi:10.1016/j.jalgebra.2009.01.002
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(i) p � q(n), or
(ii) (p,n) = (2,n), where n = 4,5,

then Aut(S)/H is isomorphic to the subgroup of Möbius transformations preserving the finite set of conical
points of S/H ∼= Ĉ.

Lemma 17. Let p,n � 2 be so that p is a prime and (n − 1)(p − 1) > 2. Let L < Aut(S) be any p-subgroup of
conformal automorphisms of S. If L contains as normal subgroup a generalized Fermat group H of type (p,n),
then H is the unique generalized Fermat group of type (p,n) contained in L.

Proof. The case p = 2 was proved in [9]. From now on, we assume p � 3 a prime. We use induction
on n.

If n = 2 and p � 5, then S is (conformally equivalent to) the classical Fermat curves {xp + yp + zp =
0} ⊂ P2, whose full group of conformal automorphisms is H � S3 [27,30] (see also Example 12), in
particular, H = L.

Let n = 3, p � 3 and H � L as in the hypothesis. In this case, L/H is a finite p-group of orbifold
automorphisms of S/H . As (i) L/H is, in particular, a group of conformal automorphisms of Ĉ, (ii) the
finite subgroups of PSL(2,C) are cyclic groups, dihedral groups, alternating groups A4, A5 and the
symmetric group S4 [24] and (iii) p � 3, it follows that H/L is either trivial (then H = L and we are
done) or a cyclic group of order p. Let us assume L/H = 〈τ 〉 ∼= Zp . As τ must permute the 4 conical
points, it follows that this case is only possible if p = 3. In this case, up to a Möbius transformation,
we may assume the conical points are ∞, 0, 1 and 1 + w3 (where w3 = e2π i/3), and τ (z) = w3z + 1.
It follows that S is given by {

x3
1 + x3

2 + x3
3 = 0,

(1 + w3)x3
1 + x3

2 + x3
4 = 0.

In this case (see also Remark 20), L is generated by H and (assuming τ fixes the conical point of
S/H determined by the fixed points of a1([x1 : x2 : x3 : x4]) = [w3x1 : x2 : x3 : x4])

α
([x1 : x2 : x3 : x4]

) = [
(1 + w3)

1/3x1 : x4 : x2 : −x3
]
.

Note that α3 ∈ H − {I}. Now, direct computations permits to see that in L the generalized Fermat
group is unique. In this case, A4 = 〈τ (z) = w3z + 1, η(z) = (z − 1)/z〉 is the group of orbifold auto-
morphisms of S/H . As the 4 conical points of S/H are fixed points of elements of order 3 in A3 (the
4 vertices of a spherical tetrahedron in Ĉ invariant under A4) it follows that (S/H)/A4 has signature
(0,3;2,3,9) (the conical point of order 9 is the projection of one of the fixed point of τ , that is ∞,
the conical point of order 3 is the projection of the other fixed point of τ , that is 0, and the conical
point of order 2 is the projection of a fixed point of the involution τ 2η). As the signature (0,3;2,3,9)

is a maximal one [28], it follows that Aut(S) = AutH (S) = 〈H,α,β〉, where

β
([x1 : x2 : x3 : x4]

) = [
x2 : (1 + w3)

1/3x1 : x4 : (1 + w3)
1/3x3

] (
β2 = I

)
.

Let us assume our proposition to be true for types (p,m), where m � n − 1 and n � 4.
Let us assume also that we have a generalized Fermat group H̃ < L, of type (p,n) such that H �= H̃ .

Set G = 〈H, H̃〉 = H H̃ and R = H ∩ H̃ < Z(G) (where Z(G) denotes the center of G). Clearly, H � G .
Let us consider the group G/H of conformal automorphisms of the orbifold S/H . As G/H ∼= Zl

p , for
some l � 1, and S/H has underlying Riemann surface the Riemann sphere, necessarily l = 1, that is,
G/H ∼= Zp . It follows that G has order pn+1 and, as |G| = |H||H̃|/|R|, that R has order pn−1, that is,
R ∼= Zn−1

p . This also asserts that G/R is a group of order p2, then an Abelian group. We may write
H = 〈R, x〉 and H̃ = 〈R, y〉, for some x ∈ H − R and y ∈ H̃ − R (both of them then have order p). As
G/R is Abelian, it follows that xyx−1 y−1 ∈ R and, in particular, that H̃ � G .
Please cite this article in press as: G. González-Diez et al., Generalized Fermat curves, J. Algebra (2009),
doi:10.1016/j.jalgebra.2009.01.002
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If R contains some standard generator, say t ∈ R , then we consider the generalized Fermat curve
S/〈t〉 (the underlying Riemann surface structure) and the generalized Fermat groups H/〈t〉 and H̃/〈t〉,
both of type (p,n − 1). By the inductive hypothesis, H/〈t〉 = H̃/〈t〉; then H = H̃ , a contradiction. This
fact together with Parts 2-(iii) and 2-(iv) of Corollary 2 implies that R acts freely on S . Set M = S/R .
On M we have two commuting conformal automorphisms, say x̃ and ỹ, both of order p, which are
induced by x and y, respectively. The quotients of M by any of them is the Riemann sphere with
exactly (n + 1) conical points of order p; that is, each of these automorphisms has exactly (n + 1)

fixed points.
By Proposition 1.8, in [12], the surface M is one of the following ones:

F p : w p = up − 1,

D p : w p = (
up − 1

)(
up − λp)p−1

, some λ ∈ C, λp �= 1,

and

x̃(u, w) = (
ηau, ηb w

)
,

ỹ(u, w) = (
ηcu, ηd w

)
where 1 � a,b, c,d � p and η = e2π i/p . In there it is also noted that both automorphisms must have
either p (if M = F p) or 2p (if M = D p) fixed points, that is, either n + 1 = p or n + 1 = 2p (it follows
that S/G has signature either (0,3; p, p, p) or (0,4; p, p, p, p)).

In the F p case, the conical points in S/H are exactly p and they are invariant under some elliptic
transformation u of order p (induced by y). We may assume, up to a Möbius transformation, that
these conical points are ∞, 0, 1, λ1, . . . , λp−3 and that u(∞) = 0, u(0) = 1, u(1) = λ1, u(λ j) = λ j+1
(for j = 1, . . . , p − 4) and u(λp−3) = ∞. In this way, we can assume S = C(λ1, . . . , λp−3) and H =
H0 ∼= Zp−1

p is generated by standard generators a1, . . . ,ap−1 (as described in Section 2; the other
standard generator is ap = a1 · · ·ap−1). A lifting of u, under the natural projection π [x1 : · · · : xp] =
−(x2/x1)

p , has the form û[x1 : · · · : xp] = [xp : c2x1 : · · · : cp xp−1], where c2, . . . , cp ∈ C − {0} (see
Corollary 9). All other liftings are of the form hû, where h ∈ H . In this way, y = hû for suitable h ∈ H .
As h ∈ H and y commute with each r ∈ R , this commutativity property also holds for each of the
liftings û. Now, the only elements of H commuting with û are the powers of β = a1a2

2a3
3 · · ·ap−1

p−1. In
fact, a non-trivial element of H is of the form α([x1 : · · · : xp]) = [w1x1 : w2x2 : · · · : w p xp], where
w p

j = 1. We may assume w p = 1. As

αû
([x1 : · · · : xp]) = [w1xp : w2c2x1 : w3c3x3 : · · · : w p−1cp−1xp−2 : cpxp−1],

ûα
([x1 : · · · : xp]) = [xp : w1c2x1 : w2c3x3 : · · · : w p−2cp−1xp−2 : w p−1cp xp−1]

it follows that w2 = w2
1, w3 = w3

1, . . . , w p−1 = w p−1
1 , in particular, the above assertion. Since R has

order pn−1 there are plenty of elements in R which cannot commute with û, a contradiction.
In the D p case, the arguments are similar but in that case we should use û[x1 : · · · : x2p] = [xp :

c2x1 : · · · : cpxp−1 : cp+1x2p : cp+2xp+1 : · · · : c2px2p−1], where c j ∈ C − {0}. �
Remark 18. If p is a prime and either (i) p > n + 1 or (ii) n + 1 is not congruent to 0, 1 or 2
module p, then a generalized Fermat group of type (p,n) is a p-Sylow subgroup of Aut(S). In fact,
if H is a generalized Fermat group of type (p,n), then H is either a p-Sylow subgroup of Aut(S)

or it is a normal subgroup of index p of some subgroup K < Aut(S). The last case will provide an
elliptic Möbius transformation of order p that preserves n + 1 points on the Riemann sphere S/H , a
contradiction to the conditions (i) or (ii).
Please cite this article in press as: G. González-Diez et al., Generalized Fermat curves, J. Algebra (2009),
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Proposition 19. Let S be a generalized Fermat curve of type (p,n). If p � 5 is a prime, then a generalized
Fermat group of type (p,n) cannot belong to two different p-Sylow subgroups of Aut(S). In particular, the
number of different generalized Fermat groups in S is equal to the number of p-Sylow subgroups in Aut(S).

Proof. Lemma 17 asserts that inside every p-Sylow subgroup of Aut(S) there is a unique generalized
Fermat group of type (p,n). Assume p � 5 is prime. If H is a generalized Fermat group contained in
two different p-Sylow subgroups, say G1 and G2, then S/H will admit two different automorphisms
of order p, both of them permuting the conical points; this would imply that there is a finite group of
Möbius transformations generated by two different transformations of order p � 5, a contradiction (all
finite subgroups of Möbius transformations are either cyclic, Z2

2, dihedral groups, alternating groups
A4 or A5 or the symmetric group S4 [24]). �
Remark 20. Proposition 19 is false for p = 3. In fact, let us consider the generalized Fermat curve of
type (3,3)

S =
{

x3
1 + x3

2 + x3
3 = 0,

(1 + w3)x3
1 + x3

2 + x3
4 = 0.

We already noted in the proof of Lemma 17 that Aut(S) = 〈H0,α,β〉, where

α
([x1 : x2 : x3 : x4]

) = [
(1 + w3)

1/3x1 : x4 : x2 : −x3
] (

α9 = I, α3 ∈ H0 − {I}),
β
([x1 : x2 : x3 : x4]

) = [
x2 : (1 + w3)

1/3x1 : x4 : (1 + w3)
1/3x3

] (
β2 = I

)
.

The generalized Fermat group H0 = 〈a1,a2〉 is contained in the following two different 3-Sylow
subgroups of Aut(S): G1 = 〈H0,α〉 and G2 = 〈H0, δ〉, where

δ
([x1 : x2 : x3 : x4]

) = [
x4 : w1/3

3 x1 : −x3 : (1 + w3)
1/3x2

] (
δ3 = 1

)
,

β = δα2 (up to an element of H0).

3.2. On the uniqueness of the type

In this section we provide a partial discussion on the problem about the uniqueness of the type on
a fixed Riemann surface S admitting a generalized Fermat group. Let us assume we have a closed Rie-
mann surface S which is a generalized Fermat curve of type (k,n). As already noted at the beginning,
the genus of S is of the form

g = 1 + φ(k,n)

2
(4)

where φ(k,n) = kn−1((n − 1)k − n − 1). The hyperbolicity on S ensures that the possible pairs (k,n)

belong to the set

D = {
(k,n): k,n ∈ {2,3,4, . . .}, (k − 1)(n − 1) > 2

}
. (5)

If we set n(2) = 4, n(3) = 3 and n(k) = 2, for k � 4, then we easily see that

(P1) for each fixed k � 2 and n � n(k), we have that φ(k,n) is strictly increasing in n;
(P2) for each n � 2 and k � 2 so that n � n(k), we have that φ(k,n) is strictly increasing in k.
Please cite this article in press as: G. González-Diez et al., Generalized Fermat curves, J. Algebra (2009),
doi:10.1016/j.jalgebra.2009.01.002
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The function φ is injective for most fixed values of g � 2. The first two values of g for which
φ fails to be injective are g = 10 and g = 55, in which case, the possible values of (k,n) are (3,3),
(6,2) and (3,4), (12,2), respectively. However as the next proposition shows the uniqueness of type
is maintained in these two cases.

Proposition 21. No Riemann surface of genus 10 (respectively, 55) is simultaneously a generalized Fermat
curve of types (3,3) and (6,2) (respectively, (3,4) and (12,2)).

Proof. Assume we have a closed Riemann surface S , of genus g = 10, so that H1, H2 < Aut(S) are
generalized Fermat groups of types (3,3) and (6,2), respectively. As we have that S/H2 is an orbifold
of signature (0,3;6,6,6), it follows that S is the classical Fermat curve S = {x6

1 + x6
2 + x6

3 = 0} ⊂ P2. It
is well known that Aut(S) = Z2

6 � S3 [27,30] (see also Example 12) and that S/Aut(S) has signature
(0,3;2,3,12). But, a group Z2

6 � S3 admits no subgroup isomorphic to Z3
3, a contradiction.

Next, assume we have a closed Riemann surface S , of genus g = 55, so that H1, H2 < Aut(S) are
generalized Fermat groups of types (3,4) and (12,2), respectively. As we have that S/H2 is an orb-
ifold of signature (0,3;12,12,12), it follows that S is the classical Fermat curve S = {x12

1 + x12
2 + x12

3 =
0} ⊂ P2. It is well known that Aut(S) = Z2

12 � S3 [27,30] (see also Example 12) and that S/Aut(S) has
signature (0,3;2,3,24). But, a group Z2

12 � S3 admits no subgroup isomorphic to Z4
3, a contradic-

tion. �
Proposition 21 makes us wonder for the existence of a closed Riemann surface admitting general-

ized Fermat groups of different type. A partial answer to this question is provided by the following.

Proposition 22. If S is a hyperbolic generalized Fermat curve of even genus of types (k,n) and (̂k, n̂), so that
k and k̂ are even, then k = k̂ and n = n̂ = 2.

This is consequence of Lemma 23 below and property (P2) which says that φ(k,2) is strictly
increasing in k.

Lemma 23. If S is a hyperbolic generalized Fermat curve of genus g and type (k,n), where k and g are even,
then n = 2 and k is not divisible by 4.

Proof. As in g = 2 we have no generalized Fermat curves, we must assume g � 4. Let us write

g − 1 = pa1
1 · · · par

r ,

where p j � 3 are prime integers and a j � 1. In this way, we have that a type (k,n) for this genus g
must satisfy from (4) the equality

kn−1((n − 1)k − (n + 1)
) = 2pa1

1 · · · par
r .

As we are assuming k even, the above obligates to have

kn−1 = 2pb1
1 · · · pbr

r ,

(n − 1)k − (n + 1) = pa1−b1
1 · · · par−br

r ,

for certain values 0 � b j � a j . As all primes p j are different from 2, the first equality obligates to have
n = 2 and that k is not divisible by 4. �
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4. Moduli of generalized Fermat pairs

4.1. Some generalities

We now recall several known facts concerning parametrization of Riemann surfaces endowed with
a group action such as ours [13], see also [14]. Let S0 be closed Riemann surface of genus g and H0 <

Aut(S0). There is an irreducible complex analytic space M̃(H0) whose points are in bijection with the
isomorphy classes of pairs (S, H) topologically conjugate to (S0, H0). This space is the normalization
of the locus in the moduli space of genus g , say M g , consisting of the classes of Riemann surfaces
admitting a group of conformal automorphisms topologically conjugate to H0. Let T g the Teichmüller
space of genus g and Modg the corresponding mapping class group of genus g . Then, M g = T g/Modg .
Let us consider H0 as a subgroup of Modg and let T g(H0) ⊂ T g be its locus of fixed points. It is well
known that T g(H0)/N(H0) = M̃(H0), where N(H0) denotes the normalizer of H0 inside Modg .

4.2. Generalized Fermat curves

Let us now assume (S0, H0) is a generalized Fermat pair of type (k,n) and genus g = gk,n , where
(k,n) is so that (n − 1)(k − 1) > 2. As any two generalized Fermat pairs are topologically conjugate,
by Theorem 1, M̃(H0) contains the isomorphy classes of all generalized Fermat pairs of type (k,n).
We denote M̃(H0) simply by M(k,n) and by F (k,n) ⊂ M g the locus consisting of those classes
[S] ∈ M g where S is a generalized Fermat curve of type (k,n). The open connected set

Pn = {
(λ1, . . . , λn−2) ∈ Cn−2: λ j �= 0,1, λ j �= λi

} ⊂ Cn−2

is a model for the moduli space of ordered (n + 1) pointed sphere. Next we proceed to recall
the construction of a model of moduli space of unordered (n + 1) pointed sphere. We say that
(λ1, . . . , λn−2), (μ1, . . . ,μn−1) ∈ Pn are equivalent if there is a Möbius transformation A ∈ PSL(2,C)

so that A sends the set

{∞,0,1, λ1, λ2, . . . , λn−2}

onto

{∞,0,1,μ1,μ2, . . . ,μn−2}.

The above equivalence relation is in fact given by action of the symmetric group Sn+1 on n + 1
letters as follows. For each σ ∈ Sn+1 and each (λ1, . . . , λn−2) ∈ Pn we form the (n+1)-tuple (x1 = ∞,

x2 = 0, x3 = 1, x4 = λ1, . . . , xn+1 = λn−2). Then, we consider the (n + 1)-tuple (xσ(1), . . . , xσ(n+1))

and let Tσ ∈ PSL(2,C) be the unique Möbius transformation so that Tσ (xσ(1)) = ∞, Tσ (xσ(2)) = 0
and Tσ (xσ(3)) = 1. We set μ j = Tσ (xσ( j+3)), for j = 1, . . . ,n − 2. In this way, we obtain that
(μ1, . . . ,μn−1) ∈ Pn and an action of Sn+1 on Pn . The quotient space Qn obtained by this action
is a model of the moduli space M0,n+1 of the unordered (n + 1) pointed sphere.

The space F (k,n) is related to the moduli space Qn introduced above, as follows. Let us denote by
[S] (resp. [S, H], [S/H]) the isomorphy class of the Riemann surface S (resp. the pair (S, H), and the
orbifold S/H), then the rule that sends [S, H] to [S] (resp. to [S/H]) defines a surjective holomorphic
mapping π1 : M(k,n) → F (k,n) ⊂ M g (resp. π2 : M(k,n) → Qn). Moreover, π1 is known to be a
finite surjective mapping which fails to be injective if and only if there are surfaces S admitting two
generalized Fermat groups H1 and H2, both of type (k,n), which are not conjugate within the full
group Aut(S); so that, [S, H1] and [S, H2] are different points of M(k,n) which map to the same
point [S] ∈ F (k,n) ⊂ M g . As for π2, Theorem 1 tells us that it induces an isomorphism between Qn
and M(k,n). We can now state the following results.

Theorem 24. The moduli space Qn defines a generically one-to-one cover of F (k,n).
Please cite this article in press as: G. González-Diez et al., Generalized Fermat curves, J. Algebra (2009),
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Proof. As explained above, injectivity of π1 : Qn → M g only fails at points corresponding to Fermat
curves S such that Aut(S) contains a subgroup G generated by two non-conjugate Fermat groups
H1, H2 of same type (k,n). Since G strictly contains H1, we see that S/G is an orbifold of genus zero
with r < n + 1 branched points. This implies that the locus of unwanted points is a finite union of
spaces of dimension r − 3 with r < n + 1, hence its dimension is strictly lower than that of Qn . �

The space Qn is the normalization of F (k,n). In the particular case that k = p is prime, the
argument given to prove Theorem 24 combined with Theorem 13 clearly implies the following more
precise statement.

Theorem 25. Let p,n > 0 be integers with (n − 1)(p − 1) > 2 and p is a prime. Then, Qn is isomorphic to
F (p,n), that is, F (p,n) is a normal variety.

Corollary 26. Let p,n > 0 be integers with (n − 1)(p − 1) > 2 and p a prime. Then, the moduli space of
n + 1 unordered points in the sphere (∼= Qn) embeds holomorphically inside the moduli space M g , where
g = 1 + φ(p,n)/2, as the locus of generalized Fermat curves of type (p,n).

5. Applications of generalized Fermat curves

In this section we provide three higher-dimensional applications of generalized Fermat curves. The
first one is the construction of a pencil of non-hyperelliptic Riemann surfaces with exactly three sin-
gular fibers. The second one is related to the previous one and consists of the definition of an injective
holomorphic map from C − {0,1} into some moduli space M g . The third one is the description of
all complex surfaces isogenous to a product X = S1 × S2/G with invariants pg = q = 0 and group G
equals either G = Z2

5 or G = Z4
2.

The link between the first two applications is made as follows. If π : X → P1 is a pencil of curves
of genus g with singular fibers at t ∈ {0,1,∞}, then, by the universal property of moduli space,
there is a holomorphic map ψ : C − {0,1} → M g defined by sending t ∈ C − {0,1} to the point in
M g representing the isomorphism class of the curve π−1(t). Conversely, M g comes equipped with
a fiber space π : C g → M g , the universal curve, whose fiber over a point x ∈ M g is generically the
Riemann surface Cx that this point represents, and so our initial pencil is obtained as pull-back of
C g by ψ . However, this correspondence is not a perfect one because if x represents a curve with
automorphisms the true fiber is Cx/Aut(Cx). Therefore, if a map ψ : C−{0,1} → M g , such as the one
we construct below, parametrizes Riemann surfaces with automorphisms it is not, in principle, clear
that it must be induced by a pencil of curves.

5.1. A pencil of generalized Fermat curves with three singular fibers

It was observed by A. Beauville [4] that every family of curves over P1, with variable moduli,
admits at least 3 singular fibers. In that paper an example for which the minimal number of singular
fibers occurs is provided by certain family of hyperelliptic Riemann surfaces. Another example of
this kind was constructed by González-Aguilera and Rodríguez [11]; in this case all curves in the
family possess an automorphism group which contains the alternating group in 5 letters A5. Next
we provide another example of this sort in which the members of the family are generalized Fermat
curves, hence never hyperelliptic.

Let us consider n = 3 and k � 3. In this case P3 = C − {0,1}. Inside P1 × P3 let us consider the
complex surface

X =
{

xk
1 + xk

2 + xk
3 = 0,

axk
1 + bxk

2 + bxk
4 = 0

: [a : b] ∈ P1, [x1 : · · · : x4] ∈ P3
}
.

Equipped with the projection into the first factor, this is a pencil whose fibers we denote by
V ([a : b]).
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By taking b = 1 and a ∈ C − {0,1}, we see that this is a moduli family of non-hyperelliptic curves
with variable moduli. We already known that the only singular fibers are provided by V ([0 : 1]),
V [1 : 1] and V ([1 : 0]).

The singular fiber V ([1 : 0]) = {[0 : 1 : w : z] ∈ P3 : wk = −1} ∪ {[0 : 0 : 0 : 1]} is given by k different
P1 ⊂ P3 all of them sharing a unique point [0 : 0 : 0 : 1]. The singular fiber V ([0 : 1]) = {[x1 : x2 :
x3 : x4] ∈ P3: xk

1 + xk
2 + xk

3 = 0, x4 = wx2, wk = −1} is given by k different classical Fermat curves of
order k all of them sharing exactly k points, these being [1 : 0 : w : 0], where wk = −1. Similarly, the
singular fiber V ([1 : 1]) is given by k different classical Fermat curves of order k all of them sharing
exactly k points, these being [1 : w : 0 : 0], where wk = −1. In particular, V ([0 : 1]) ≡ V ([1 : 1]).

5.2. An injective embedding of the thrice punctured sphere in moduli space

Let q(59) as in Theorem 15, enjoying the property that for every prime p � q(59) we have that
a closed Riemann surface S has at most one generalized Fermat group of type (p,59), which then
must be a normal subgroup of Aut(S). Let us choose once for all such a prime integer p � q(59) and,
throughout this section, let us denote by gp the genus of the generalized Fermat curve of type (p,59).

Now, let us regard A5 as a finite group of Möbius transformations and let π : Ĉ → Ĉ be a holo-
morphic branched covering map induced by the action of A5. Let us assume the branch values of π
are given by ∞, 0 and 1. For each t ∈ C − {0,1}, we consider the preimage π−1(t) = {μ1, . . . ,μ60}.
We may then consider a Möbius transformation to send 3 of these preimages onto ∞, 0 and 1;
the others are denoted by λ1, . . . , λ57. This gives us a generalized Fermat curve of type (p,59), say
C(λ1, . . . , λ57) = C(t). The previous choices are not unique, but the conformal class [C(t)] of the re-
sulting generalized Fermat curve is uniquely determined by the value of t . This asserts that there is a
well defined holomorphic map

ψ : C − {0,1} → F (p,59) ⊂ M gp .

Assume ψ(t1) = ψ(t2). In this case, the uniqueness of the generalized Fermat group, asserts the
existence of a Möbius transformation T so that T (π−1(t1)) = π−1(t2). If π−1(t1) = {μ1, . . . ,μ60}
and π−1(t2) = {μ′

1, . . . ,μ
′
60}, then as both sets are invariant by (the same) A5, it follows that T

normalizes A5. Set G = 〈T , A5〉. As T leaves invariant the set of fixed points of the order 3 elements
in A5 (20 points) and each Möbius transformation is uniquely determined by its action at three
different points, it follows that T has finite order and that G is finite. But, it is well known that
there is no finite subgroup of Möbius transformations containing A5 as a proper subgroup [24], in
particular, T ∈ A5. It follows that ψ is an injective map.

As the set {λ1, . . . , λ60} is invariant under the action of A5, C(λ1, . . . , λ57) has the property that
Aut(C(λ1, . . . , λ57)) contains the group L = 〈H ∼= Z59

p , A∗
5〉, where A∗

5 denotes the set formed by a
lifting of each element of the group A5, which exists by Corollary 2. As there is no finite group of
Möbius transformations containing strictly A5, it follows that in fact L = Aut(C(λ1, . . . , λ57)). As a
consequence, for every t ∈ C − {0,1}, the automorphism group is the same at each surface C(t).

All the above is summarized in the following.

Proposition 27. Let q(59) be as in Theorem 15 and p � q(59) a prime number. Then the above construction
provides an injective holomorphic map ψ : C − {0,1} → F (p,59) ⊂ M gp which sends t ∈ C − {0,1} to the
point in M gp representing the generalized Fermat curve C(t). Moreover, for each t ∈ C − {0,1} Aut(C(t)) is

an extension of A5 by Z59
p .

Remark 28. Let us go back to the group L which arises as the full automorphism group of the
curves occurring in Proposition 27. In the language of Section 4.1 consider the quotient space
M̃(L) = T gp (L)/N(L). By general results of Teichmüller theory [25] one knows that the stabilizer
of a point x ∈ T gp (L) is precisely the group Stab(x) = Aut(x) ∩ N(L) where Aut(x) is the full group
of automorphisms of a suitable model Sx of the Riemann surface parametrized by the point x. This
fact has two implications. Firstly, we see that L acts trivially on T gp (L), so we may as well write
Please cite this article in press as: G. González-Diez et al., Generalized Fermat curves, J. Algebra (2009),
doi:10.1016/j.jalgebra.2009.01.002
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M̃(L) = T gp (L)/(N(L)/L). Secondly, since Aut(x) = L for each x ∈ T gp (L), we infer that N(L)/L acts
fixed point freely on T gp (L). Moreover, since Sx/L is an orbifold of genus zero with four branching
values (in fact, with signature (0,4;2,3,5, p)), it follows, again by general results of Teichmüller the-
ory, that T gp (L) is isomorphic to the Teichmüller space of a 4-puncture sphere, which we may identify
with the hyperbolic plane H2. The conclusion is that M̃(L) is a Riemann surface and that N(L)/L is
its fundamental group. Now by Proposition 27 this Riemann surface contains C−{0,1}. Hence, we can
only have M̃(L) = C − {0,1} and so N(L)/L is isomorphic to Γ (2) ∼= Z ∗ Z, the principal congruence
subgroup of level 2 of PSL(2,Z).

5.3. Complex surfaces isogenous to a product

By a complex surface we shall mean a compact holomorphic manifold of complex dimension two,
hence a real four manifold.

A complex surface X is said to be isogenous to a higher product if there are Riemann surfaces S1
and S2 of genus � 2 and a finite group G acting freely on S1 × S2 by biholomorphic transformations
such that X is isomorphic to the quotient S1 × S2/G . If the action of G preserves each of the fac-
tors then X is said to be of unmixed type. In what follows we shall assume that this is always the
case. Surfaces isogenous to a higher product have been extensively studied by Bauer, Catanese and
Grunewald [3,7,8].

The first example of a complex surface isogenous to a higher product was given by Beauville as
exercise number 4 in page 159 of [5]. In his example the algebraic curves S1, S2 are both the Fermat
curve S: X5

1 + X5
2 + X5

3 = 0 and G is the group Z2
5 acting on S × S by, say,

(a,b)
([x1 : x2 : x3], [y1 : y2 : y3]

) = ([
ξax1 : ξbx2 : x3

]
,
[
ξa+3b y1 : ξ2a+4b y2 : y3

])
where ξ is 5th root of unity.

The results in this paper allow us to extend Beauville’s construction to generalized Fermat pairs
as follows. Let us consider two generalized Fermat pairs (S1, H1) and (S2, H2), both of type (k,n),
where k,n � 2, (k − 1)(n − 1) > 2.

Let a1, . . . ,an and an+1 = a1 · · ·an be standard generators of H1 and let b1, . . . ,bn and bn+1 =
b1 · · ·bn be standard generators of H2.

Remember that the only non-trivial elements of the generalized Fermat group H2 acting with fixed
points are contained in the cyclic groups generated by the n + 1 standard generators b1, . . . ,bn+1.

Remark 29. If n = 2 and k � 4, a necessary and sufficient condition for the existence of generators
of H2 acting freely on S2 is that LCM(k,6) = 1, where LCM stands for “least common multiple” (see
[7,8]).

If n = 2 (in which case k � 4) and LCM(k,6) = 1, a set of generators acting freely is given by

c1 = b1b2
2, c2 = b1b−1

2 .

If n = 3, k � 4 and LCM(6,k) = 1, then a set of generators of H2, each one acting freely on S2, is
given by

c1 = b1b2
2, c2 = b1b−1

2 , c3 = b1b3.

If n = 3 = k, then a set of generators of H2, each one acting freely on S2, is given by

c1 = b1b2
2, c2 = b1b2, c3 = b2b3.

If n � 4, then a set of generators of H2, each one acting freely on S2, is given by
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c1 = b1b2b3, c2 = b1b2, c3 = b2b3, c j = b1b j, j = 4, . . . ,n.

Note that, in any of the above case, cn+1 = c1c2 · · · cn also acts freely on S2.
Let us consider an action Φ : Zn

k → Aut(S1 × S2) as follows. If e1, . . . , en denotes the standard basis
of Zn

k , then set

Φ(e j) : S1 × S2 → S1 × S2,

Φ
([x1 : · · · : xn+1], [y1 : · · · : yn+1]

) �→ (
a j

([x1 : · · · : xn+1]
)
, c j

([y1 : · · · : yn+1]
))

and extend it to the rest of Zn
k in the natural way.

Proposition 30. Let (S1, H1) and (S2, H2) be two generalized Fermat pairs of same type (k,n), where (n −
1)(k − 1) > 2. If n ∈ {2,3} and k � 4 we assume LCM(6,k) = 1. Let Φ : Zn

k → Aut(S1 × S2) be the action
constructed above. Then, Φ(Zn

k) acts freely on S1 × S2 giving rise to a complex surface X = S1 × S2/Zn
k with

geometric genus pg and irregularity q = 0 where

pg = kn−2((n − 1)(k − 1) − 2)2

4
− 1.

Proof. That the action is free is consequence of the previous observations and construction. The fact
that the irregularity q vanishes is a consequence of the fact that each of the quotient Riemann surfaces
Si/Hi is isomorphic to P1 which does not admit non-zero holomorphic differentials (cf. [2], p. 303).
The statement relative to the geometric genus pg follows from the following identity (see [2,4,8])

1 + pg − q = χ(X) = 1

4
χtop(X) = (gk,n − 1)2

4|Zn
k |

where χtop(S) stands for the Euler–Poincaré characteristic of X , χ(X) =: χ(O X ) for the Euler charac-
teristic of the structure sheaf of X and gk,n denotes the genus of a Fermat curve of type (k,n). �
Corollary 31. The above construction gives complex surfaces X = S1 × S2/Zn

k with invariants pg = q = 0 if
and only if (k,n) = (5,2) or (k,n) = (2,4).

Conversely, if X = S1 × S2/G is a complex surface isogenous to a higher product with invariants pg = q = 0
and group G = Z2

5 (resp. G = Z4
2) then S1 and S2 are generalized Fermat curves of type (5,2) (resp. (2,4)).

Proof. As we are looking for complex surfaces with q = 0, both quotients S1/G and S2/G are isomor-
phic to P1. Exploiting the Riemann–Hurwitz formula, it is shown in [3] that the orbifolds Si/G have
to have both signature (0,3;5,5,5) (resp. (0,5;2,2,2,2,2)), hence S1 and S2 are generalized Fermat
curves of the required type. �
Remark 32. Bauer and Catanese [3] have proved that when G = Z2

5 one obtains exactly two non-
isomorphic complex surfaces whereas for G = Z4

2 the complex surfaces so obtained form an irre-
ducible connected component of dimension 4 in their moduli space. The dimensions of these compo-
nents are in accordance with our Theorem 25 which implies that these components are parametrized
by the space Q3 × Q3 (resp. Q5 × Q5) via the rule

(S1, S2) → X = S1 × S2/G.

Furthermore, by the uniqueness of this representation of X (Proposition 3.13 in [8]), this map is
injective modulo the action of Z2 which interchanges the factors of Qn × Qn . In the first case the two
different components (of dimension 0) arise from two different actions of the group Z2

5 whereas in
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the second case the above seems to indicate that all possible actions of the group Z4
2 are equivalent

and that the irreducible component in question is Q5 × Q5/Z2.
In [3] it is also shown that there are only two other Abelian groups G which can give rise to

complex surfaces X = S1 × S2/G with invariants pg = q = 0, namely G = Z3
2 and G = Z2

3.

6. Connection with handlebodies

A Schottky uniformization of a closed Riemann surface S is a triple (Ω, G, p : Ω → S), where G is
a Schottky group with region of discontinuity Ω and p : Ω → S is a regular holomorphic covering
with G as covering group. The 3-manifold with boundary MG = (H3 ∪ Ω)/G is a handlebody body
of genus g whose interior admits a complete hyperbolic metric with injectivity radius bounded from
below by zero. Let t be a hyperbolic isometry of the interior of MG . By lifting it to the universal
cover H3, we obtain a Möbius transformation in the normalizer of the Schottky group G; so it defines
naturally a continuous extension of t as a conformal automorphism of S . Reciprocally, a conformal
automorphism of S extends continuously as an isometry of the interior of MG if and only if it lifts to
Ω (by the given Schottky uniformization) as a conformal automorphism (this because the region of
discontinuity of a Schottky group is of class O AD ). As a consequence, a group H < Aut(S) extends as
a group of isometries of the interior of MG if and only if H lifts under the Schottky uniformization as
a group of automorphisms of Ω .

Theorem 33. Let (S, H) be a generalized Fermat pair of type (k,n). Then H can be extended as group of
hyperbolic isometries of some handlebody whose conformal boundary is S if and only if k = 2.

Proof. Necessary and sufficient conditions for H Abelian to lift to some Schottky uniformization of
S are given in [20]. A necessary condition is that every non-trivial element of H must have an even
number of fixed points. Now, let H be a generalized Fermat group of type (k,n). The above together
with part (2.-(ii)) of Corollary 2 asserts that k should be even. Assuming k even, choose any element
a of the standard set of generators of H , and choose any two fixed points of it, say x and y. Part
(2.-(v)) of Corollary 2 asserts the existence of some h ∈ H so that h(x) = y, so the angles of rotation
of a1 at both x and y are the same. This violates the necessary conditions of [20] for H to lift to some
Schottky uniformization if k > 2. The case k = 2 it is known to be of Schottky type. �
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