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Abstract. It is known that the symmetric group Sn, for n ≥ 5, and the
alternating group An, for large n, admit a Beauville structure. In this paper
we prove that An admits a Beauville (resp. strongly real Beauville) structure
if and only if n ≥ 6 (resp n ≥ 7). We also show that Sn admits a strongly
real Beauville structure for n ≥ 5.

1. Introduction and statement of results

A complex algebraic curve C will be termed triangle curve if it admits a finite
group of automorphisms G < Aut(C) so that C/G ∼= P1 and the natural projection
C → C/G ramifies over three values, say 0, 1,∞. If the branching orders at these
points are p, q and r we will say that C/G is an orbifold of type (p, q, r). Due to
the celebrated theorem of Belyi, triangle curves are known to be defined over a
number field.

Beauville surfaces arise as suitable quotients of a product of two triangle curves.

Definition [3] A Beauville surface is a compact complex surface S satisfying
the following properties:

1) It is isogenous to a higher product, that is S ∼= C1×C2/G, where Ci(i = 1, 2)
are curves of genera gi ≥ 2 and G is a finite group acting freely on C1 × C2 by
holomorphic transformations.

2) If Go < G denotes de subgroup consisting of the elements which preserve
each of the factors, then Go acts effectively on each curve Ci so that Ci/Go ∼= P1

and Ci → Ci/Go ramifies over three points.

It is easy to see ([4]) that an automorphism of the product of two curves as
above f : C1 × C2 → C1 × C2 either preserves each factor or interchanges them.
The latter case can only occur if C1

∼= C2. Clearly Go has at most index 2 in G .
A Beauville surface C1 × C2/G is said to be of mixed or unmixed type depending
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on whether [G : Go] = 2 or G = Go. Accordingly the group G is said to admit a
mixed or unmixed Beauville structure.

In this paper we focus on the symmetric and alternating groups Sn and An.
We anticipate that these groups can never admit mixed Beauville structures (see
section 3), therefore all Beauville structures occurring in this paper will be of
unmixed type.

Beauville surfaces were introduced by F. Catanese in [4] generalizing a con-
struction of A. Beauville in [1]. The first kind of questions that naturally arise
regarding Beauville surfaces are questions such as which finite groups G can oc-
cur, which curves Ci, which genera gi, etc. Most of what is known about these
problems is due to Catanese ([4]) and Bauer-Catanese-Grunewald ([3], [2]). See
also our article [6].

The following facts relative to the existence of Beauville structures on Sn and
An are known.

(1) Sn admits an unmixed Beauville structure if and only if n ≥ 5. ([3] and
[6] )

(2) An admits an unmixed Beauville structure for large n. ([2])

Here we prove

Theorem 1. The alternating group An admits an unmixed Beauville structure if
and only if n ≥ 6.

This is part of a much more ambitious conjecture according to which all finite
simple nonabelian groups except A5 admit an unmixed Beauville structure ([3]).

The relevance of Beauville surfaces lies mainly on the fact that they are the
rigid ones among surfaces isogenous to a product. In fact, Catanese ([4], see also
[3] ) was able to prove the following powerful result:

If S is a Beauville surface and X is a complex surface with same topological
number as S, and with isomorphic fundamental group, then X is diffeomorphic to
S, and either X or the complex conjugate surface X is isomorphic to S.

In view of this fact a different kind of questions naturally arise. Namely, one
should like to know when a Beauville surface S is isomorphic to S or, more sharply,
when S is real, that is when there is a biholomorphic map σ : S → S with
σ2 = id. Again, the existing answers to these questions are contained in the work
by Catanese ([5]) and Bauer-Catanese-Grunewald ([3], [2]). The following facts
relative to the existence of Beauville structures on Sn and An are known

(1) The alternating group An admits a Beauville structure whose correspond-
ing surface S is not isomorphic to S when n satisfies the following con-
ditions n ≥ 16, n ≡ 0 mod 4, n ≡ 1 mod 3, n 6≡ 3, 4 mod 7 ([3] and
[2]).

(2) Let p > 5 be a prime number with p ≡ 1 mod 4, p 6≡ 2, 4 mod 5, p 6≡
5 mod 13 and p 6≡ 4 mod 11. Then there is a Beauville surface S with
group A3p+1 which is biholomorphic to S but is not real ([3] and [2]).
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and, in the opposite direction,
(3) Let p > 5 be a prime number with p ≡ 1 mod 4. Then, there is a real

Beauville surface S with group A3p+1 ([2], Proposition 3.15).

In this article we prove

Theorem 2. The alternating group An admits a strongly real unmixed Beauville
structure if and only if n ≥ 7.

Again, this is part of a more ambitious conjecture according to which all but
finitely many finite simple groups have a strongly real Beauville structure ([2]). The
precise definition of a strongly real action is given in section 2.2. But, of course,
if a group G admits a strongly real structure then the corresponding Beauville
surface S = (C1 × C2)/G will automatically be a real surface.

Theorem 3. The symmetric group Sn admits a strongly real unmixed Beauville
structure for n ≥ 5.

The paper is organized as follows. The starting point of the article is the
fact that, according to [2], the existence of Beauville and strongly real Beauville
structures on a given group G is equivalent to the existence of a pair of triples of
generators (ai, bi, ci), (i=1,2), of G satisfying certain properties, one of which is
the identity aibici = 1. That is why instead of generating triples we often speak
of generating couples (ai, ci) with the understanding that bi = a−1

i c−1
i . Section 2

is devoted to the quotation of these purely algebraic criteria for the existence of
Beauville structures.
Then, with these criteria at one’s disposal, we look for generators (ai, ci) of Sn such
that they not only define a Beauville surface S = (C1 × C2)/Sn but in addition
they satisfy the extra property that the surface S̃ = (C1 ×C2)/An obtained when
only the subgroup An is allowed to act on C1 × C2 is still a Beauville surface.
A peculiarity of this construction is that the Beauville surfaces C1 × C2/An so
obtained will automatically be double covers of the Beauville surfaces C1×C2/Sn.
All this is done in section 5.
Previously, in section 4, we deal with the low order groups not covered by the
general approach; these turn out to be the groups An and Sn with n ≤ 10.

Acknowledgment. We would like to express our gratitude to our colleague Ernesto
Girondo who checked some of our calculations by means of the GAP computer pro-
gramme.

2. Criteria for G to admit Beauville and real Beauville structures

There are purely algebraic criteria to detect when a finite group G admits a
Beauville structure and when the corresponding surface S is real. In this section
we quote these criteria, which can be found in [2] and [3].

2.1. Criterion for G to admit Beauville structure.

Definition 4. Let G be a finite group and a, b, c three generators of order p, q, r
respectively. We shall say that (a, b, c) is a hyperbolic triple of generators if the
following conditions hold
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(i) abc = 1
(ii) 1

p + 1
q + 1

r < 1

Now, set

Σ(a, c) :=
⋃

g∈G

∞⋃

i=1

{gaig−1, gbig−1, gcig−1}

Criterion A([2]). G admits a unmixed Beauville structure if and only if it
has two hyperbolic triples of generators (ai, bi, ci) of order (pi, qi, ri), i = 1, 2,
satisfying the following compatibility condition

Σ(a1, c1)
⋂

Σ(a2, c2) = 1

The curves Ci on which G acts to produce the required Beauville surface

S = S(a1, c1; a2, c2) = C1 × C2/G

arise as follows:
The triangle group

Γ(pi,qi,ri) = 〈x, y, z : xpi = yqi = zri = xyz = 1〉
acts in the upper half-plane H as a discrete group of isometries (i.e. as a Fuchsian
group) and Ci = H/Ki where Ki is the kernel of the epimorphism θi : Γ(pi,qi,ri) →
G which sends x → ai, y → bi and z → ci. As for the action of an element
g = θ1(γ1) = θ2(γ2) ∈ G on C1 × C2 this is induced by the action of (γ1, γ2) on
H×H.

We will say that the pair (ai, ci) (resp. the quadruple (a1, c1; a2, c2)) defines a
triangle (resp. a Beauville) structure on G.

2.2. Criterion for G to admit real Beauville structures.
It has been noted in [2] that if, with the notation as above, S = S(a1, c1; a2, c2)

then S = S(a−1
1 , c−1

1 ; a−1
2 , c−1

2 ). Starting with this observation, the authors have
been able to give a purely group theoretical criterion to decide when S is isomorphic
to S or, even, when S is real. The full characterization can be found in [2]. For
our purposes it will be enough to have out our disposal the following sufficient
condition for S to be real.

Criterion B([2]) Setting G = 〈ai, ci〉 and S = S(a1, c1; a2, c2) = C1 × C2/G,
as before, we have

• S is isomorphic to S whenever there is ψ ∈ Aut(G) and δi ∈ G (i = 1, 2)
such that δiψ(ai)δ−1

i = a−1
i and δiψ(ci)δ−1

i = c−1
i (i = 1, 2).

The finite groups G enjoying this property are said to admit a strongly real unmixed
structure.

3. The mixed case

In this short section we deal with the mixed case. We find that Sn and An do
not admit a mixed Beauville structure. This is only a simple observation but we
record it here for the sake of completeness.
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Lemma 5. Let C×C/G be a Beauville surface of mixed type and G0 the subgroup
of G consisting of the elements which preserve each of the factors, then the order
of any element f ∈ G \G0 is divisible by 4.

Proof. Clearly, it is enough to show that f2 6= id, for any f ∈ G \ G0 since
any odd power of f will lie again in G \ G0. So, let us write f in the form
f(x, y) = (λ1(y), λ2(x)), then f2(x, y) = (λ1(λ2(x)), λ2(λ1(y)) = (x, y) would
imply λ2 = λ−1

1 which, in turn, implies that all points of the form (λ1(y), y) are
fixed points, a contradiction. ¤

Corollary 6. Sn and An do not admit a mixed Beauville structure.

Proof. For n ≥ 5 the group G = An cannot admit a mixed Beauville structure
simply because it does not contain subgroups G0 of index 2. As for n ≤ 4 let us
just say that no group of order ≤ 120 admits a mixed Beauville structure ([2], [6]).

As for the group G = Sn, its only subgroup of index 2 is G0 = An but then,
there would be plenty of elements of order 2 in G \G0 to contradict lemma 5. ¤

Remark 7. The number 4 appearing in lemma 5 as the minimum possible order
of any element in G \G0 is sharp. The only known examples of groups admitting
mixed Beauville structures have been constructed in [2] as a semidirect product of
Z/4Z and a certain class of special groups.

4. The low order alternating and symmetric groups

In this section we produce Beauville structures on the few groups An and Sn

which do not fit in the general pattern; these are the alternating and symmetric
groups on n ≤ 10 letters. By section 2 it will be enough to find a pair of suitable
triples of generators of the group in question. The main tool to prove that the
chosen triples of permutations are indeed generators will be Jordan’s symmetric
group theorem which we now state (see e.g. [8]).

Theorem (Jordan, 1873)
Let G be a primitive permutation group of degree n containing a prime cycle

for some prime q ≤ n − 3. Then, G is either the alternating group An or the
symmetric group Sn.

In the next example we employ this theorem to produce an unmixed Beauville
structure on A6. It has been already noted that An does not admit a Beauville
structure for n ≤ 5 ([2], [6]).

Example 8. (A Beauville structure on A6) Let us consider the following pair of
triples of elements of A6

a1 = (4, 5, 6), b1 = (1, 5, 4, 3, 2), c1 = (1, 2, 3, 4, 6)

a2 = (1, 2)(3, 4, 5, 6), b2 = (1, 5, 6, 4)(2, 3) c2 = (1, 3, 5, 6)(2, 4).
Clearly the groups Hi = 〈ai, ci〉, i = 1, 2 act primitively on {1, 2, 3, 4, 5, 6}. By
considering the 3-cycles α1 = c1 ∈ H1 and α2 = b−1

2 a−1
2 b−1

2 c2b2c2 = (2, 4, 3) ∈ H2

we conclude that Hi = A6. Moreover, a quick look at the cycle decomposition of
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these elements shows that Criterion A is satisfied. Thus, A6 admits an unmixed
Beauville structure.

On the other hand computer inspection using the GAP programme has revealed
that no strongly real structure exists on A6. It should be mentioned that the same
conclusion has been reached in [2] also by computer means.

Proposition 9. The groups An, 7 ≤ n ≤ 10 and Sm, 5 ≤ m ≤ 10 admit a strongly
real unmixed Beauville structure.

Proof. We claim that the following pairs of couples of permutations define strongly
real structures in each case

a1; c1 a2; c2

A7 (1,6,7,3,2); (1,2,3,4,5) (1,6,4)(3,7,5); (1,2,3,4,5,6,7)

A8 (6,3,5)(4,7,8); (1,2,3,4,5) (1,7,5,3)(2,8,6,4);(1,2,3,4,5,6,7)

A9 (1,6)(2,7)(3,8)(4,9); (1,2,3,4,5) (1,8)(2,9)(5,4,6); (1,2,3,4,5,6,7)

A10 (1,8,3,2)(6,5,9,10); (1,2,3,4,5,6,7) (1,9,7,5,3)(2,10,8,6,4); (1,2,3,4,5,6,7,8,9)

S5 (1,2,5); (4,5)(1,2,3) (2,3,4,5); (1,4,2,5,3)

S6 (5,6); (1,2,3,4,5) (3,4,5,6) ; (1,2,3,5)

S7 (2,6)(4,7); (1,2,3,4)(5,6,7) (6,7); (1,2,3,4,5,6,7)

S8 (2,7,3)(5,8,6); (1,2,3,4,5,6) (7,8); (1,2,3,4,5,6,7,8)

S9 (1,8)(2,5)(6,7); (1,2,3,4,5)(8,6,9,7) (8,9); (1,2,3,4,5,6,7,8,9)

S10 (1,9)(5,10)(2,3)(7,8); (1,2,3,4,5,6,7,8) (9,10); (1,2,3,4,5,6,7,8,9,10)

We only provide proof of the case of the group A7, the remaining cases can
be proved along the same lines or, else, using GAP. We first observe that the
groups generated by the triples (ai, bi = a−1

i c−1
i , ci), i = 1, 2 satisfy the hypothesis

of Jordan’s symmetric group theorem for the p-cycles α1 = (a1c
3
1)

2 = (3, 7, 6)
and α2 = b−1

2 c2 = (1, 3, 2). On the other hand it is clear that both triples are
compatible in the sense of Criterion A. Therefore, the quadruple (a1, c1; a2, c2)
provides an unmixed Beauville structure on A7. Finally, denoting by ψ = ψτ the
automorphism of A7 obtained by conjugation by an element τ ∈ Sn, one easily
checks that Criterion B is accomplished if we set τ = (1, 2)(6, 7)(3, 5) ∈ S7, δ1 = c1

and δ2 = c2α with α = (3, 5, 7, 4, 6) ∈ A7.
¤

5. Real unmixed Beauville structures on An and Sn

While finding generators of all kinds on a trial an error basis turns out to
be quite painless for the group Sn, achieving the same goal for An appears to
be more difficult. For this reason, the way we construct our Beauville surfaces
with group An is by finding Beauville structures (ai, ci) on Sn whose associated
Beauville surfaces C1 × C2/Sn satisfy the property that the surface C1 × C2/An

obtained when only the subgroup An is allowed to act on C1×C2 is still a Beauville
surface. In turn these will explicitly give us the corresponding Beauville structures
(ãi = b2

i , c̃i = ci) on An. We observe that the Beauville surfaces (C1 × C2)/An

this way obtained will be double covers of the Beauville surfaces (C1 × C2)/Sn.
We start by studying the relationship between the actions of these two groups.
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5.1. Relating the actions of An and Sn.

Lemma 10. Let (a, b, c) be a triangle structure on Sn of hyperbolic type (2, 2q, r),
with r odd, and let us denote by C/Sn the associated orbifold. Consider the orbifold
C/An obtained as quotient of the action of the subgroup An on the same curve C.
Then C/An is the orbifold of type (q, r, r) associated to the triangle structure on
An provided by the triple

(ã = b2, b̃ = b−1cb, c̃ = c)

Proof. The situation is described in the following commutative diagram

C

²² $$HHHHHHHHH

C/An
// C/Sn

The orbifold C/Sn is obtained as the quotient of the orbifold C/An by the group
of order two 〈j〉 = Sn/An. Since C/Sn is a Riemann surface of genus zero with
three distinguished points, only two possibilities are left for C/An.
(i) C/An is an orbifold of genus zero with 4 branching values P, Q, R, S of orders
m, d, l, s ≥ 2 and j interchanges two points, say R and S, while fixing P and Q.
In this case we would have l = s and the type of C/Sn would be (2m, 2d, l) thus,
different from (2, 2q, r). Contradiction.
(ii) C/An is an orbifold of genus zero with 3 branching values Q,R, S of orders
q, r, l and j interchanges two points, say R and S, while fixing Q and another point
P . In this case we would have r = l and so the type of C/An would be (q, r, r)
while that of C/Sn would have to be (2, 2q, r) as stated.

In order to obtain the triple of generators of An that gives rise to this orbifold, let
us recall (see section 2.1) that the orbifold C/Sn determined by the triple (a, b, c)
is obtained as C/Sn = H/K

Γ/K , where K is the kernel of the group epimorphism
θ : Γ = Γ(2,2q,r) → Sn defined by x → a, y → b and z → c. Now if we set
θ−1(An) = Λ, then Λ agrees with the unique index two subgroup of Γ(2,2q,r)

generated by x̃ = y2, ỹ = y−1zy, z̃ = z (see [7]). Clearly the restriction of θ to Λ
is nothing but the epimorphism which sends x̃ to ã, ỹ to b̃ and z̃ to c̃. This means
that the orbifold corresponding to the triple (ã, b̃, c̃) is H/K

Λ/K =: C/An. ¤

Corollary 11. Let (a1, c1; a2, c2) be an unmixed Beauville structure on Sn. Let
(pi, 2qi, ri), with ri odd, be the type of the triple (ai, bi, ci) (i=1,2), and let S =
S(a1, c1; a2, c2) = C1 × C2/Sn be the corresponding Beauville surface. Let S̃ =
C1×C2/An be the double cover of S obtained as quotient of C1×C2 by the action
of the subgroup An. Then S̃ is the Beauville surface S̃ = S(ã1, c̃1; ã2, c̃2) where

ã1 = b2
1, c̃1 = c1; ã2 = b2

2, c̃2 = c2

Moreover, if (a1, c1; a2, c2) defines a strongly real unmixed structure on Sn so
that S is a real surface, then (ã1, c̃1; ã2, c̃2) defines a strongly real unmixed structure
on An so that S̃ is also real.
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Proof. The first statement is a direct consequence of Lemma 10. As for the ques-
tion of reality, suppose that there is ψ ∈ Aut(Sn) and δi ∈ Sn, (i = 1, 2), such
that

δiψ(ai)δ−1
i = a−1

i and δiψ(ci)δ−1
i = c−1

i , (i = 1, 2)

Then, setting ψ̃ = ψ|An
, δ̃i = ciδi, and using the identity δiψ(bi)δ−1

i = aici, one
easily checks that

δ̃iψ̃(ãi)δ̃−1
i = ã−1

i and δ̃iψ̃(c̃i)δ̃−1
i = c̃−1

i , (i = 1, 2)

as was to be seen. ¤
5.2. Real unmixed Beauville structures on An and Sn, n even.

Lemma 12. For n ≥ 10 even, the permutations

a1 = (1, n)(2, n− 1)
(n

2
, n− 2

)(n

2
− 1,

n

2
− 2

)(n

2
+ 1,

n

2
+ 2

)

and c1 = (1, 2, 3, . . . , n− 3) generate Sn.

Proof. If we consider

d := a1c1 =
(
1, n− 1, 2, 3, . . . ,

n

2
− 3,

n

2
− 1, n− 2,

n

2
,
n

2
+ 2,

n

2
+ 3, . . . , n− 3, n

)

and

e := c1a1 =
(
1, n, 2, n− 1, 3, . . . ,

n

2
− 3,

n

2
− 2,

n

2
, n− 2,

n

2
+ 1,

n

2
+ 3, . . . , n− 3

)
.

Then,

e−1d := (1, 2, n− 1, n, n− 3)
(n

2
− 3,

n

2
− 1,

n

2
,
n

2
+ 2,

n

2
+ 1, n− 2,

n

2
− 2

)
.

Therefore, the subgroup H generated by a1 and c1 contains a 5−cycle. Moreover,
since each of the three elements fixed by c1 is permuted by a1 with an element
not fixed by c1, it is clear that H acts primitively on {1, 2, . . . , n}. By Jordan’s
symmetric group theorem it then follows that H is either An or Sn. Now, since
a1 /∈ An we finally conclude that H = Sn. ¤
Proposition 13. Sn has a strongly real unmixed Beauville structure for n > 10
even.

Proof. Let us consider the following two triples of hyperbolic generators

a1, b1 := a−1
1 c−1

1 , c1 as in Lemma 12 above
a2 = (n, n− 1), b2 = (1, n, n− 1, . . . , 2), c2 = (1, 2, . . . , n− 1)

We observe that b1 is a (n − 2)-cycle; in fact the inverse of the permutation e
occurring in Lemma 12 above which fixes n

2 − 1 and n
2 + 2. From here we deduce

that the two triples are compatible in the sense of Criterion A. As for the question
of reality, one easily checks that Criterion B of section 2.2 is satisfied if we choose
as δ1, δ2 the elements

δ1 = 1, and δ2 = (n, n− 1)(1, n− 3, n− 4, . . . , 3, 2, n− 2) ∈ An

and as ψ = ψτ the automorphism consisting in conjugation by the permutation
τ = (1, 2)(n, n−1)(3, n−3) · · · (k, n−k) · · · (n

2 − 1, n
2 + 1

) (
n
2 − 2, n

2 + 2
) ∈ Sn. ¤
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Corollary 14. An admits a strongly real unmixed Beauville structure for n > 10
even.

Proof. This clearly follows from Corollary 11. ¤

5.3. Real unmixed Beauville structures on An and Sn, n odd.

Lemma 15. For n > 10 odd,

a1 = (1, n− 1)(2, n)
(

n− 5
2

,
n + 7

2

)(
n− 3

2
,
n− 1

2

)(
n + 3

2
,
n + 5

2

)

and c1 = (1, . . . , n− 2) generate Sn.

Proof. Consider the permutations

d := a1c1 =
(

1, n, 2, 3, . . . ,
n− 7

2
,
n + 7

2
,
n + 9

2
, . . . , n− 2, n− 1

)
·

(
n− 5

2
,
n− 1

2
,
n + 1

2
,
n + 5

2

)(
n− 3

2

)(
n + 3

2

)

and

b−1
1 = c1a1 =

(
1, n− 1, 2, n, 3, 4, . . . ,

n− 5
2

,
n + 9

2
,
n + 11

2
, . . . , n− 2

)
·

(
n− 3

2
,
n + 1

2
,
n + 3

2
,
n + 7

2

)(
n− 1

2

)(
n + 5

2

)

Then,

d−1b−1
1 = (1, n− 2, n− 1, n, 2)

(
n− 7

2
,
n + 5

2
,
n + 1

2
,
n + 3

2

) (
n− 5

2
,
n + 7

2
,
n− 3

2
,
n− 1

2

)
.

From here the conclusion follows arguing in exactly the same way as we did in
the proof of Lemma 12. ¤

Proposition 16. For n > 10 odd, Sn has a strongly real unmixed Beauville struc-
ture.

Proof. Let us consider the following two triples of hyperbolic generators

a1, b1 := a−1
1 c−1

1 , c1 as in Lemma 15 above

a2 = (1, 2), b2 = a−1
2 c−1

2 , c2 = (1, 2, . . . , n)
We now observe that b1 is a product of a (n− 6)-cycle which fixes the elements

n−3
2 , n−1

2 , n+1
2 , n+3

2 , n+5
2 and n+7

2 and a 4-cycle, while b2 is a (n− 1)-cycle which
fixes the element 2. From this we deduce that the two triples are compatible in
the sense of Criterion A.

As for the question of reality, one easily checks that Criterion B of section 2.2
is satisfied if we choose as δ1, δ2 the elements

δ1 = 1, and δ2 = (3, 5, . . . , n, 4, 6, 8, . . . , n− 1) ∈ An
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and as ψ = ψτ the automorphism consisting in conjugation by the permutation

τ = (1, 2)(n, n− 1)(3, n− 2) · · · (k, n− k + 1) . . .

(
n− 3

2
,
n + 5

2

)(
n + 3

2
,
n− 1

2

)

¤
Applying Corollary 11 we now get

Corollary 17. For n > 10 odd, An admits a strongly real unmixed Beauville
structure.

6. Conclusion

Finally assembling together the results of section 4 and corollaries 14 and 17
we obtain the proof of theorems 1, 2 and 3.
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Boston, Boston, MA (2005).

[3] Bauer, I., Catanese, F. and Grunewald, F. Chebycheff and Belyi polynomials, dessins
d’enfants, Beauville surfaces and group theory. Mediterr. J. Math. 3 (2006), no. 2, 121-
146.

[4] Catanese, F. Fibred surfaces, varieties isogenous to a product and related moduli spaces.
Amer. J. Math. 122 (2000), no. 1, 1-44.

[5] Catanese, F. Moduli Spaces of surfaces and real structures. Ann. Math. 158 (2003), no. 12,
577-592.
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