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Particles in the standard model. The last column corresponds to bosons (force carriers)
the other to fermions.
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Examples of Feynman diagrams corresponding to decays. The general idea is that
gluons just change the color of the quarks. They behave, in some sense as pair quark antiquark,
with a color and its opposite. Bosons W± can change the flavor of a quark. The preferred
changes are in the same generation but the CKM matrix (Cabibbo-Kobayashi-Maskawa) allows
any other change with small probability. They can also turn a (left) lepton on its neutrino.
The neutral bosons Z can be emitted by a neutrino or a fermion.
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Cross section and amplitude. For P1 + P2 −→ P3 + P4 the amplitude of probability is

Tfi = −i(2π)4δ(4)(p1 + p2 − p3 − p4)F

where −iF is the result of the Feynman diagrams. The relation with the cross section is

dσ =
1

4
√

(p1 · p2)2 −m2
1m

2
2

|F̄ |2 dLips

where dLips is the Lorentz invariant phase factor

dLips = (2π)4δ(4)(p1 + p2 − p3 − p4)
d3 ~p3

2(2π)3E3

d3 ~p4
2(2π)3E4

.

In the center of mass frame,

(1) dLips =
1

16π2
|pf |√
s
dΩ and

dσ

dΩ
=

1

64π2s

|pf |
|pi|
|F̄ |2

where

|pi| =
1

2
√
s

√
(s−m2

1 −m2
2)

2 − 4m2
1m

2
2 and |pf | =

1

2
√
s

√
(s−m2

3 −m2
4)

2 − 4m2
3m

2
4

Recall that s = (p1 + p2)
2, t = (p1 − p3)2 and u = (p1 − p4)2 are the Mandelstam variables. In

the CM frame s = E1 + E2, pi = |~p1| = |~p2| and pf = |~p3| = |~p4|.

For a decay P1 −→ P2 + P3 the decay rate is given by

(2) dΓ =
|F̄ |2

2m1
dLips with dLips =

|pf |
16π2m1

dΩ and |pf | = |~p2| = |~p3|.

Gamma matrices. They are 4× 4 (complex) matrices γµ satisfying

(3) {γµ, γν} = 2gµνI, µ, ν = 0, 1, 2, 3.

It is also defined γ5 = iγ0γ1γ2γ3 that anti-commutes with the rest. A possible choice (Dirac
representation) are the Dirac matrices defined in 2× 2 blocks as

γ0 =

(
I O
O −I

)
, γi =

(
0 σi
−σi 0

)
, and γ5=

(
0 I
I 0

)
.

Another choice (chiral representation) are the Weyl matrices defined in 2× 2 blocks as

γ0 =

(
0 I
I 0

)
, γi =

(
0 σi
−σi 0

)
, and γ5=

(−I 0
0 I

)
.
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The slash notation consists of abbreviating aµγ
µ as /a and something similar for differential

operators, especially /∂ = γµ∂µ.
The gamma matrices are associated to a representation D = D(Λ) of the Lorentz group1

in the following way: If we want x 7→ Λx, Ψ 7→ DΨ to preserve Dirac’s equation, we need

D−1γµD = Λµνγ
ν

because (i/∂−m)Ψ = 0 7→ i(Λ−1)µν∂µγ
νDΨ−mDΨ = 0 that is i(Λ−1)µνD−1γνD∂µΨ−mΨ = 0.

The matrix γ5 commutes with products of two γµ and it proves that D is reducible giving rise
in the chiral representation to the projectors P± = (I± γ5)/2. We have the relations

γ0γµγ0 = (γµ)† and γ0D†γ0 = D−1.

The second follows from γ0[γµ, γν ]†γ0 = [γν , γµ].
It is convenient to define

Ψ = Ψ†γ0.

With this definition

ΨΨ is a scalar, ΨγµΨ is a vector, Ψγ5Ψ is a pseudo-scalar, Ψγµγ5Ψ is an axial vector

The first quantity is a scalar because ΨΨ = Ψ†γ0Ψ 7→ Ψ†D†γ0DΨ = ΨD−1γ0DΨ. For the
second, use D−1γµD = Λµνγν . In the rest, pseudo-scalar and axial vector refer to the fact that
they change sign under the parity transformation Ψ(~x, t) 7→ γ0Ψ(−~x, t) (probably this only
makes sense in the chiral representation).

In computations with Feynman diagrams, it is very convenient to employ identities involv-
ing traces of product of gamma matrices (Casimir’s trick). The main ones are

(4) Tr(γµγν) = 4gµν that implies Tr(/a/b) = 4a · b;

Tr(γµγνγργσ) = 4
(
gµνgρσ − gµρgνσ + gµσgνρ

)
, or equivalently

(5) Tr(/a/b/c/d) = 4(a · b)(c · d)− 4(a · c)(b · d) + 4(a · d)(b · c)

and the product of an odd number of gamma matrices is traceless.

(6) Tr(γµ1γµ2 . . . . . . γµ2k+1) = 0.

In the previous results, γ5 is not admitted. Two identities involving γ5 are

(7) Tr
(
γ5/a/b/c/d

)
= 4iεµνλσa

µbνcλdσ and Tr
(
γ5/a1 · · · /ak

)
= 0 for k < 4.

There are also some formulas not involving traces, but contractions. One of the most useful is

(8) γµ/aγ
µ = −2/a.

We also have

(9) /a2 = γµaµγ
νaν =

1

2

(
γµγν + γνγµ)aµaν = gµνaµaν = p2I.

1It seems that D(Λ) = exp
(
1
2
λµν

1
4
[γµ, γν ]

)
where λµν are the coefficients for the usual generators.
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Lines in Feynman diagrams. The factor for the internal lines:

spin 0 boson

in out
1 1

Fermion

in out
u ū

antifermion

in out
v̄ v

spin 1 boson

in out
εµ ε∗µ

For the internal lines we have the following propagators:

spin 0 boson

i

q2 −m2

fermion

i

/q −m
=
i(/q +m)

q2 −m2

spin 1 boson m = 0

− igµν
q2

spin 1 boson m 6= 0

− i(gµν − qµqν/m
2)

q2 −m2

For the propagator of a gluon (spin 1, m = 0) we have to introduce also a factor δab with
a, b = 1, 2, . . . , 8 are the eight color indexes.

Essentially the definition of u and v assures

(10) (/p−m)u = 0 and (/p+m)v = 0.

We have also the relations

(11)
∑
σ

u(p, σ)u(p, σ) = /p+m and
∑
σ

v(p, σ)v(p, σ) = /p−m

For massive vector (spin 1) particles, we have the completeness relation when summing over
the three polarization states

(12)
∑
σ

ε∗µ(p, σ)εν(p, σ) = −gµν +
pµpν
m2

.

For real photons, only two polarization states remains (the transverse ones). In Feynman
diagrams we can replace when computing |F̄ |2

(13)
∑
σ

ε∗µ(p, σ)εν(p, σ) by − gµν

although this quantities are not equal.
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The simplest Feynman diagram computation in QED. Consider e−+µ− −→ e−+µ−

in QED. There is only a possibility, the t channel (first particle connected to the third)

e− e−

µ− µ−

p1 p3

p2 p4

because e− and µ− cannot meet in any ingoing or outgoing situation by charge conservation
or by the leptonic flavor conservation.

From the upper fermionic line (upper vertex), we have ieū3γ
µu1 and from the lower

ieū4γ
νu2. The photon propagator is −igµν/q2 where q2 = (p1 − p3)

2 = (p2 − p4)
2. Then

we have

−iF = ieū3γ
µu1

−igµν
(p1 − p3)2

ieū4γ
νu2.

by definition |F̄ |2 is the average of |F |2 over all possible initial spin states and the sum over
the final states.

|F̄ |2 =
e4

(p1 − p3)4
1

2
· 1

2

∑
spin states

∣∣ū3γµu1ū4γµu2∣∣2.
The term under | |2 involves a sum, then

|F̄ |2 =
e4

4(p1 − p3)4
∑

spin states

ū3γ
µu1ū4γµu2ū2γνu4ū1γ

νu3

where it is used (ū1γ
νu2)

∗ = ū2γ
νu1.

The part of the electron corresponds to∑
spin states

ū3γ
µu1ū1γ

νu3 =
∑

spin states

Tr
(
ū3γ

µu1ū1γ
νu3
)
.

Using the relations (11) and Tr(AB) = Tr(BA), we have∑
spin states

Tr
(
ū3γ

µu1ū1γ
νu3
)

=
∑

spin states

Tr
(
ū3γ

µ(/p1 +m)γνu3
)

= Tr
(
(/p3 +m)γµ(/p1 +m)γν

)
with m the electron mass, that is

Tr
(
(/p3 +m)γµ(/p1 +m)γν

)
= Tr

(
/p3γ

µ
/p1γ

ν
)

+m2Tr
(
γµγν

)
,
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where we have used Tr
(
/pγµγν

)
= 0 because (6).

Finally, we employ (4) and (5) to get

Tr
(
(/p3 +m)γµ(/p1 +m)γν

)
= 4
(
pµ3p

ν
1 + pν3p

µ
1 − (p1 · p3)gµν +m2gµν

)
The muon part gives a similar contribution and then

|F̄ |2 =
4e4

(p1 − p3)4
(
pµ3p

ν
1 + pν3p

µ
1 − (p1 · p3 −m2

e)g
µν
)(
p4µp2ν + p4νp2µ − (p2 · p4 −m2

µ)gµν
)
.

Neglecting the masses, after some calculations, this expression simplifies to

|F̄ |2 =
4e4

(p1 − p3)4
(
2(p1 · p2)(p3 · p4) + 2(p1 · p4)(p2 · p3)

)
.

The Mandelstam variables for negligible masses are

(14)


s = (p1 + p2)

2 = (p3 + p4)
2 ∼ 2p1 · p2 ∼ 2p3 · p4

t = (p1 − p3)2 = (p4 − p2)2 ∼ −2p1 · p3 ∼ −2p4 · p2
u = (p1 − p4)2 = (p3 − p2)2 ∼ −2p1 · p4 ∼ −2p3 · p2

Then we conclude

|F̄ |2 =
2e4

t2
(
s2 + u2

)
A more involved diagram in QED. Consider Compton scattering e− + γ −→ e− + γ. In
this cases there are two possible diagrams (apart from no interaction), the s channel and the
u channel.

e−

e−

e−

γ γ

e−

e−

e−

γ γ

For the first diagram, the contributions of the first vertex, the second vertex and the propagator
are

ε2µieγ
µu1, ε∗4νieū3γ

µ,
i

/q −m
=
i(/q +m)

q2 −m2
.

Putting it together, the first amplitude is

−iF1 = − e2

s−m2
ε∗4νε2µū3γ

ν(/p1 + /p2 +m)γµu1.



Some formulas in the SM 7

In the same way, the amplitude corresponding to the second diagram is

−iF2 = − e2

u−m2
ε∗4µε2ν ū3γ

ν(/p1 − /p4 +m)γµu1.

From here onwards, we are going to assume that the electron massm is negligible. Even without
his assumption, m can be omitted in the parentheses using the following trick involving (3)
and (10)

(/p+m)γµu = −pνγµγνu+ 2pνg
µνu+mγµu = −γµ(/p−m)u+ 2pνg

µνu = 2pνu

that does not depend on m.
The averaged square amplitude is

|F̄ |2 = |F̄1|2 + |F̄2|2 + 2<
(
F1F ∗2

)
.

There are two spin states for the ingoing electron and two polarization states for the photon,
then

|F̄1|2 =
1

2
· 1

2

e4

s2

∑
spin & pol.

ε∗4νε2µε4ρε
∗
2τ ū3γ

ν(/p1 + /p2)γ
µu1ū1γ

τ (/p1 + /p2)γ
ρu3.

By the formula (11) and the recipe (13), we have

|F̄1|2 =
e4

4s2
Tr
(
/p3γ

ν(/p1 + /p2)γ
µ
/p1γµ(/p1 + /p2)γ

ν
)

=
e4

s2
Tr
(
/p3(/p1 + /p2)/p1(/p1 + /p2)

)
where (8) was applied in the second equality. With (9), under m = p21 = p23 = 0, and (5) we
get the compact expression

|F̄1|2 =
e4

s2
Tr
(
/p3/p2/p1/p2

)
=

8e4

s2
(p1 · p2)(p2 · p3) = −2e4

s
t

where the last equality follows from the approximation (14).
The result for |F̄2|2 is similar with the change p2 ↔ −p4 and it is like s ↔ t. In the

interference term F1F ∗2 we find the trace

Tr
(
/p3γ

ν(/p1 + /p2)γ
µ
/p1γµ(/p1 − /p24γ

ν
)

= 4Tr
(
/p3(/p1 + /p2)/p1(/p1 − /p4)

)
= −4Tr

(
/p3/p2/p1/p4

)
,

under m = 0. The identity (5) and the conservation of 4-momentum p4 = p1 + p2 − p3 prove
that this trace vanishes.

In this way, there is no interference term and we conclude

|F̄ |2 = |F̄1|2 + |F̄2|2 = −2e4

s
t− 2e4

u
s.
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The simplest Feynman diagram computation in EW. Consider e− + νµ −→ νe + µ−

in EW. As in QED, there is only a possibility, the t channel

W−

e

νµ

νe

µ

The contributions of the upper and lower fermionic lines are

ū3
ig

2
√

2
γµ(1− γ5)u1 and ū4

ig

2
√

2
γµ(1− γ5)u2.

The W propagator in the unitary gauge is

−i
q2 −M2

W

(
gµν −

kµkν
M2
W

)
that we approximate by

igµν
M2
W

because MW is large.
Putting these terms together

−iF = −i g2

8M2
W

ū3γµ(1− γ5)u1ū4γµ(1− γ5)u2.

Recall that γ5γµ = −γµγ5, γ̄5 = −γ5, and γ̄µ = γµ. Hence (1− γ5)γµ = γµ(1+γ5) = (1−γ5)γµ.
Then

|F |2 =
g4

64M4
W

[ū3γµ(1− γ5)u1][ū4γµ(1− γ5)u2][ū1γν(1− γ5)u3][ū2γν(1− γ5)u4]

where the terms in the brackets are scalars and then it can be reordered. We have

[ū3γµ(1− γ5)u1][ū1γν(1− γ5)u3] = Tr
(
u3ū3γµ(1− γ5)u1ū1γν(1− γ5)

)
and a similar formula for the lower fermionic line. Using (11), we have that the sum of
64M4

W g
−4|F |2 is

g4

64M4
W

Tr
(
/p3γµ(1− γ5)(/p1 +me)γν(1− γ5)

)
Tr
(
(/p4 +mµ)γµ(1− γ5)/p2γ

ν(1− γ5)
)

and the last trace can be replaced by Tr
(
/p2γ

ν(1− γ5)(/p4 +mµ)γµ(1− γ5)
)

because Tr(AB) =

Tr(BA). Note that Tr
(
/piγµ(1 − γ5)γν(1 − γ5)

)
= 0, i = 2, 3, because (1 − γ5)γν(1 − γ5) =

(1− γ5)(1 + γ5)γν = (1− γ25)γν = 0. It implies that we can omit me and mµ below.
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There are two spin states for the electron and only one for the neutrino (it is always
left-handed). Then

|F̄ |2 =
1

2
· g4

64M4
W

Hµν(p1, p3)H
µν(p4, p2) with Hµν(p1, p3) = Tr

(
/p3γµ(1−γ5)/p1γν(1−γ5)

)
.

Using that {γ5, γµ} = 0, and that (1− γ5)/2 is a projector, in particular (1− γ5)2 = 2(1− γ5),

Hµν(p1, p3) = Tr
(
/p3γµ(1− γ5)2/p1γν

)
= 2Tr

(
/p3γµ/p1γν

)
− 2Tr

(
γ5/p3γµ/p1γν

)
.

Now we employ (5) and (7) to get

Hµν(p1, p3) = 8
(
p1µp3ν + p3µp1ν − gµν(p1 · p3)

)
− 8iεµλνσp

λ
1p
σ
4 .

Note that the term in the first parenthesis is symmetric and vanishes when contracted with an
anti-symmetric expression. Keeping this idea in mind, after some calculations

Hµν(p1, p3)H
µν(p4, p2) = 64

(
2(p1 · p2)(p3 · p4) + 2(p1 · p4)(p2 · p3)

)
− 64εµλνσε

µρντpλ1p
σ
3p4ρp2τ .

Using εµλνσε
µρντ = 2δρλδ

τ
σ − 2δρσδτλ, we have

εµλνσε
µρντpλ1p

σ
3p4ρp2τ = 2(p1 · p4)(p2 · p3)− 2(p1 · p2)(p3 · p4).

Hence

|F̄ |2 =
g4

128M4
W

Hµν(p1, p3)H
µν(p4, p2) =

g4

128M4
W

· 256(p1 · p2)(p3 · p4) = 2
g4

M4
W

(p1 · p2)(p3 · p4).

A simple decay rate. Consider the decay of the Higgs particle H −→ e− + e+. The
corresponding Feynman diagram and the naming of the momenta are

H

e−

e+
p1

p2

p3

First of all, we compute the amplitude −iF . The Feynman rule assigns −i gm
2MW

to the vertex,
where m is the mass of the electron. The amplitude is this constant multiplied by ū2v3. Hence

|F̄ |2 =
∑

spin states

g2m2

4M2
W

ū2v3v̄3v2 =
g2m2

4M2
W

Tr
(
(/p2 +m)(/p3 −m)

)
.
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Using Tr
(
γµγν) = 4gµν and that the matrices γµ are traceless,

|F̄ |2 =
g2m2

4M2
W

(
4(p2 · p3)− 4m2

)
=
g2m2

4M2
W

(
2M2 − 8m2

)
,

where we have employed 2(p2 · p3) = p21 − p22 − p23 that follows from p1 = p2 + p3.
By (2), we have

dΓ =
|F̄ |2

2M
· |~p2|

16π2M
dΩ with M the mass of the Higgs particle.

In the CM frame, p1 = (M,~0), p2 = (E2, ~p2) and p3 = (E2,−~p2). By energy conservation
E2 = 1

2M and |~p2|2 = E2
2 − p22 = 1

4M
2 −m2. Substituting this and the previous value of the

mean squared amplitude we have that dΓ/dΩ does not depend on Ω and we conclude

Γ(H −→ e− + e+) =
g2m2M

32πMW

(
1− 4m2

M

)
,

since
∫
dΩ = 4π.

The Lagrangians of the SM. The full Lagrangian (density) of the SM is the combination
of the QCD (quantum chromodynamics) and the EW (electroweak) Lagrangians modified with
the Higgs field.

The Lagrangian of QED is an abelian gauge theory and then it is by far simpler than that
of QCD and EW but still acts as a model. The Lagrangian of QED is obtained coupling Dirac
Lagrangian ψ̄(i/∂ −m)ψ, corresponding to the free spinor field, and the electromagnetic field,

(15) L = iψ̄ /Dψ−mψ̄ψ− 1

4
FµνFµν where Dµ = ∂µ+ieAµ and Fµν = ∂µAν−∂νAµ.

It has local gauge under U(1) invariance given by ψ 7→ e−iθ(x)eψ and Aµ 7→ Aµ + ∂µθ(x). In a
displayed way, it is

L = iψ̄γµ∂µψ −mψ̄ψ −
1

4
FµνFµν − ejµAµ

for the electromagnetic current jµ = eψ̄γµψ. Fixing the gauge of the electromagnetic field may
require a term − 1

2ξ (∂µA
µ)2 with ξ a constant. For Feynman gauge, ξ = 1.

In QCD we have local gauge invariance under a more complicate group SU(Nc) where Nc

is the number of colors, Nc = 3 in the standard theory. For a quark q, there are Nc spinorial
wave functions ψAq , 1 ≤ A ≤ Nc. In this way, the free Lagrangian is

L =

Nf∑
q=1

Nc∑
A=1

(
iψ̄Aq γ

µ∂µψ
A
q −mqψ̄

A
q ψ

A
q

)
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where Nf is the number of flavors, Nf = 6 in the actual theory (there are 6 quarks). It is
common to write the inner sum as the Dirac Lagrangian ψ̄(i/∂−mq)ψ, then the gamma matrices
act on each of the three (or Nc) color components. To mimic (15) with SU(Nc) invariance one
considers as the “free” part

L0 = iψ̄ /Dψ −mψ̄ψ where Dµ = ∂µ − igsAµ.

Here gs is a coupling constant (of the strong force) and Aµ a “vector potential” that for each
Lorentzian index µ acts on the color space, it is a 3×3 matrix. The Lagrangian L0 is invariant
under the gauge transformations ψ 7→ Ω(x)ψ with Ω(x) ∈ SU(Nc) (in color components ψA =
ΩA
Bψ

B) when Aµ 7→ ΩAµΩ† − i
gs

Ω∂µΩ†. We can always write Ω = e−iθa(x)T
a

where T a are the

generators of su(3). The standard choice is T a = 1
2λ

a where λa are the Gell-Mann matrices

λ1 =
(

0 1 0
1 0 0
0 0 0

)
, λ2 =

(
0 −i 0
i 0 0
0 0 0

)
, λ3 =

(
1 0 0
0 −1 0
0 0 0

)
, λ4 =

(
0 0 1
0 0 0
1 0 0

)
λ5 =

(
0 0 −i
0 0 0
i 0 0

)
, λ6 =

(
0 0 0
0 0 1
0 1 0

)
, λ7 =

(
0 0 0
0 0 −i
0 i 0

)
, λ8 = 1√

3

(
1 0 0
0 1 0
0 0 −2

)
Note that 1 ≤ a ≤ N2

c − 1 because N2 − 1 is the dimension of su(N). Its rank is N − 1 and
in the previous case (N = 3) the Cartan subalgebra is generated by T 3 and T 8. The particles
associated to the field Aµ are called gluons. There are dim su(3) = 8 of them in the standard
theory.

To complete the analogy with (15) one needs to introduce something similar to FµνFµν
but in this case the choice Fµν = ∂µAν − ∂νAµ (and taking the trace to get an scalar) does
not work because the Lagrangian would not be invariant. The obstruction is that Aµ and Aν
do not commute in general because we are in a not abelian group. The right definition, up to
constants, is the curvature tensor associated to the covariant derivative Dµ

Fµν =
i

gs

[
Dµ, Dν

]
= ∂µAν − ∂νAµ − igs[Aµ, Aν ].

It is invariant in the sense that it transform with the adjoint representation Fµν 7→ ΩFµνΩ†

under gauge transformations.

The final Lagrangian for QCD is obtained from L0 adding the Yang-Mills term

(16) L = iψ̄ /Dψ −mψ̄ψ − 1

2
Tr
(
FµνFµν

)
.

Again one can add a term to fix the gauge.

When expanding this Lagrangian, one finds terms involving product or three or four Aµ
(with derivatives in the first case), It implies that there are Feynman rules for 3 or 4 gluons
meeting at a vertex.
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The procedure can be copied to other groups of symmetries (Yang-Mills theories). In
particular in the electroweak theory where the symmetry group is SU(2)×U(1), usually written
SU(2)L × U(1)Y . Note firstly that in the case of QCD we could define scalar functions Aaµ(x)
such that Aµ =

∑
T aAaµ and express for instance Fµν in terms of this functions (this is usually

done). For SU(2), we could express in the same way any Wµ(x) as σ1W
1
µ + σ2W

2
µ + σ3W

3
µ =

1
2~σ · ~Wµ. For U(1) the situation is like in QED and we have a vector potential denoted by Bµ.

The analog of (16) in the EW theory is

(17) L = i
∑
ψ

ψ̄ /Dψ − 1

4
W i
µνW

µν
i −

1

4
BµνB

µν

where
W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν and Bµν = ∂µBν − ∂νBµ.

The, in principle easy, kinetic term deserve some comments. The covariant derivative is

Dµ = ∂µ − ig ~T · ~Wµ − ig′
Y

2
Bµ

The important point is that EW interaction is chiral and ψ involves a part, say L, that
transforms with SU(2) and other, R, that transforms with U(1). We want to switch off ~Wµ for

L then we can say that ~T is 0 for R and 1
2~σ for L. We also take the weak hypercharge Y = −2

in R and Y = −1 in L for neutrinos and electrons (for quarks, it is 2q in R and 1/3 in L). In
a displayed form, for

ψ =

(
L
R

)
, with L =

(
νe
eL

)
, R = eR

where eL = 1
2(1− γ5)ψe, eR = 1

2(1− γ5)ψe and ψe the wave function of the electron, we have
that the kinetic term is

iL̄ /DL+ iR̄ /DR with

{
DµL =

(
∂µ − ig2~σ · ~W + ig

′

2 Bµ
)
L

DµR =
(
∂µ + ig′Bµ

)
R

The group U(1)em corresponding to the electromagnetic theory (QED) is included in a
nontrivial way in SU(2)L × U(1)Y . As the rank is 4, we have four force carriers, one is the
photon and the other three are the vector bosons W+, W− and Z. These three particles has
mass but the previous model does not allow it (terms of the form WµW

µ are not invariant
under the gauge transformations). To avoid this situation, a new term is introduced in the
Lagrangian corresponding to the Higgs field. Firstly one makes the Lagrangian of a standard
(double) scalar field with a Mexican hat potential

Lφ = (Dµφ)†(Dµφ) +
1

2
m2
Hφ
†φ− 1

4
λ(φ†φ)2, the usual notation is φ =

(
φ+

φ0

)
,
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and one adds an interaction term with the particles of the form

Lint = −Ge(L̄φR+ R̄φ†L)

with Ge a coupling constant. In one consider quarks, new coupling constants are needed.

Color factors. In vertexes quark-quark-gluon and gluon-gluon-gluon, the Feynman rules of
QCD introduce factors depending on color indexes:

i

j
α       

Tαij = 1
2λ

α
ij

β

σ

τ

fβστ

where i, j ∈ {1, 2, 3} represent colors and α, β, σ, τ ∈ {1, . . . , 8} are indexes corresponding to the
adjoint representation of SU(3), selecting Gell-Mann matrices. When computing amplitudes,
after squaring, one has to average over the indexes of the incoming particles ans to sum over
the indexes of the outgoing particles. The result corresponding to the previous factors is called
the color factor.

The basic formulas are

δαβCA =
∑
γ,δ

fαγδfβγδ, δikCF =
∑
α,l

Tαil T
α
lk and δαβTF =

∑
k,i

TαikT
β
ki = Tr(TαT β)

with CA = 3, CF = 4/3 and TF = 1/2 with the usual normalization.
Let us compute the color factors for the following diagrams:

i l

δαβ       

j m

δαβ

σ

τ

i

j

In the first diagram, there are 9 = 3 · 3 possible values of (i, j), then when we compute |F̄ |2
the color factor is

C =
1

9

∑
i,j,l,m

(
Tαil δαβT

β
jm

)(
T σil δστT

τ
jm

)∗
where the Kronecker deltas come from the propagator and we assume the summation con-
vention in their indexes. The Gell-Mann matrices are Hermitian, then (Tα)∗ = (Tα)t and we
have

C =
1

9

∑
α,σ

∑
i,j,l,m

Tαil T
σ
liT

α
jmT

σ
mj =

1

9

∑
α,σ

TF δασTF δασ =
8

9
T 2
F =

2

9
.
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For instance the scattering u + d −→ u + d can be treated as e− + µ− −→ e− + µ− in QED
but one has to replace e by gs and to introduce this factor, i.e.

|F̄ |2 =
4g4s
9t2
(
s2 + u2

)
.

In this case, the differential cross section (1) is

dσ

dΩ
=

1

64π2s

|pf |
|pi|
|F̄ |2 =

|F̄ |2

64π2s
=

g4s
144π2st2

(
s2 + u2

)
.

For the second diagram, we have a color factor

C =
1

9

∑
i,j,σ,τ

(
Tαijδαβf

βστ
)(
T ρijδρλf

λστ
)∗
.

Using the properties

C =
1

9

∑
α,ρ

∑
i,j,σ,τ

TαijT
ρ
jif

αστfρστ =
1

9

∑
α,ρ

δαρTF δαρCA =
8

9
TFCA =

4

3
.


