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Second quantization. The fields turn into field operators with quanta=particles. Coordi-
nates are labels, not operators.

Classical Poisson bracket {·, ·} −→ Quantum commutator i[·, ·].

Scalar field example:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2.

In classical terms, the momentum is π = π(~x) = ∂0φ and the Hamiltonian density is

H = π∂0φ− L =
1

2
π2 +

1

2
∂iφ∂

iφ+
1

2
m2φ2.

It can be re-written as

H =
1

2
π2 +

1

2
φ(−∆ +m2)φ+ total derivative.

The plane waves e±i~p·~x diagonalize the operator −∆ + m2. To promote φ to an operator φ̂,
keeping the analogy with the harmonic oscillator, one takes:

φ̂(~x) =

∫
d3~p

(2π)3/2
1√

2E(~p)

(
ei~p·~xâ(~p)+e−i~p·~xâ†(~p)

)
and π̂(~x) =

∫
d3~p

(2π)3/2
i

√
E(~p)

2

(
−ei~p·~xâ(~p)+e−i~p·~xâ†(~p)

)
with E(~p) = (~p2 + m2)1/2. The following commutation rules for a (no hats onwards) imply

the canonical relations in the quantum setting

[a(~p), a†(~q)] = δ(~p− ~q)
rest zero

⇒ i[π(~x), φ(~y)] = δ(~x− ~y)
rest zero

Substituting the Hamiltonian becomes

H =

∫
d3~xH =

∫
d3~p

E(~p)

2

(
a†(~p)a(~p) + a(~p)a†(~p)

)
=

∫
d3~pE(~p)a†(~p)a(~p) +∞.

The number operator a†(~p)a(~p) counts the particles of momentum ~p. Using normal ordering
1
2 : a†a+ aa† : = a†a and ∞ does not appear. It is considered a non-observable ground energy
anyway.
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Free scalar field. In the Heisenberg picture a† 7→ eiEta†. The field operator becomes

φ(x) =

∫
d3~p

(2π)3/2
1√

2E(~p)

(
e−ip·xa(~p) + eip·xa†(~p)

)
where x = (t, ~x) and Minkowski scalar product is assumed. The moment is

π(x) =

∫
d3~p

(2π)3/2
i

√
E(~p)

2

(
− e−ip·xa(~p) + eip·xa†(~p)

)
that is coherent with π = ∂0φ. Now we have

i[φ(x), φ(y)] = D(x− y)

where D vanishes at time zero (equal times), ∂0D(x0 = 0, ~x) = δ(~x) and (�+m2)D = 0. It is
the Pauli-Jordan function1.

Dirac equation and Dirac matrices. The Dirac equation is

(i/∂ −m)Ψ = 0 with /∂ = γµ∂µ

and γµ are 4× 4 (complex) matrices satisfying

{γµ, γν} = 2ηµνI, µ, ν = 0, 1, 2, 3.

It is also defined γ5 = −iγ0γ1γ2γ3 that anti-commutes with the rest. A possible choice are the
Dirac matrices defined in 2× 2 blocks

γ0 =

(
I O
O −I

)
, γi =

(
0 σi
−σi 0

)
, and γ5=

(
0 −I
−I 0

)
.

They are associated to a representation D = D(Λ) of the Lorentz group2 in the following way:
If we want x 7→ Λx, Ψ 7→ DΨ to preserve Dirac’s equation, we need

D−1γµD = Λµνγ
ν

because (i/∂−m)Ψ = 0 7→ i(Λ−1)µν∂µγ
νDΨ−mDΨ = 0 that is i(Λ−1)µνD−1γνD∂µΨ−mΨ = 0.

The matrix γ5 commutes with products of two γµ and it proves that D is reducible giving rise
to the projectors P± = (I± γ5)/2. We have the relations

γ0γµγ0 = (γµ)† and γ0D†γ0 = D−1.

1It seems that a explicit formula is D(x) = −i
∫

d3~p
(2π)3

sin(pµx
µ)

E(~p)
= i
∫

d4~p
(2π)3

e−ip·xsgn(p0)δ(p2 −m2).
2It seems that D(Λ) = exp

(
1
2
λµν

1
4
[γµ, γν ]

)
where λµν are the coefficients for the usual generators.
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The second follows from γ0[γµ, γν ]†γ0 = [γν , γµ].
It is convenient to define

Ψ = Ψ†γ0.

With this definition

ΨΨ is a scalar

ΨγµΨ is a vector

Ψγ5Ψ is a pseudo-scalar

Ψγµγ5Ψ is an axial vector

The first quantity is a scalar because ΨΨ = Ψ†γ0Ψ 7→ Ψ†D†γ0DΨ = ΨD−1γ0DΨ. For the
second in the first column, use D−1γµD = Λµνγν . In the second column, pseudo-scalar and
axial vector refer to the fact that they change sign under the parity transformation Ψ(~x, t) 7→
γ0Ψ(−~x, t) (probably this only makes sense in the chiral representation.

Free spinor field. The natural Lagrangian leading to Dirac’s equation is

L = Ψ(i/∂ −m)Ψ.

Up to a total derivative, it can be written as

L =
1

2
iΨ
↔
∂ µγ

µΨ−mΨΨ where A
↔
∂ µB = A∂µB − (∂µA)B.

This Lagrangian has the internal symmetry Ψ 7→ e−iαΨ, Ψ 7→ e−iαΨ. the corresponding
current is (waving hands about the 4 components in the calculation)

jµ =
∂L

∂(∂µΨ)

d

dα

∣∣∣
α=0

e−iαΨ = iΨγµ(−i)Ψ = ΨγµΨ

and the conserved charge is Q =
∫
d3~xΨγ0Ψ =

∫
d3~xΨ†Ψ (conservation of probability).

The generalized moments are πα = i
2(Ψγ0)α and πα = − i

2(γ0Ψ)α, then

H = − i
2

Ψ
↔
∂ iγ

iΨ +mΨΨ or H = −iΨ∂iγiΨ +mΨΨ

using the first form of the Lagrangian. The Hamiltonian is

H =

∫
d3~xΨ†γ0(−i∂iγi +m)Ψ.

Looking for plane waves Ψ(~x) = ei~p·~xC(~p) that diagonalize γ0(−i∂iγi + m) we have that
C(~p) is an eigenvector of H(~p) = piγ0γi + mγ0 which is Hermitian with 2 double eigenvalues
±E(~p) = ±

√
~p2 +m2. They give solutions of the Dirac equation depending on the spin σ√

m

E(~p)
u(~p, σ)e−ip·x and

√
m

E(~p)
v(~p, σ)eip·x.
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The first solutions correspond to particles (electrons) and the second correspond to antiparticles
(positrons). The normalization is

u†u = v†v =
E(~p)

m
δσσ′ and uu = −vv = δσσ′

where the first u or v is evaluated at (~p, σ)and the second at (~p, σ′). We have also

∑
σ

uα(~p, σ)uβ(~p, σ) =
(/p+m)αβ

2m
and

∑
σ

vα(~p, σ)vβ(~p, σ) =
(/p−m)αβ

2m
.

In the Heisenberg picture the second quantization of the spinor field is the following formal
solution of the Dirac equation

Ψ(x) =

∫
d3~p

(2π)3/2

√
m

E(~p)

∑
σ

(
e−i~p·~xu(~p, σ)bσ(~p) + ei~p·~xv(~p, σ)d†σ(~p)

)
.

Here bσ(~p) annihilates a particle and d†σ(~p) creates an antiparticle and they satisfy the relations

{bσ(~p), b†σ′(~q)} = {dσ(~p), d†σ′(~q)} = δσσ′δ(~p− ~q)

and the rest of the anti-commutators are 0. For instance, bσ and dσ anti-commute. Replac-
ing commutators by anti-commutators {·, ·} = [·, ·]+ is required to keep the statistics of the
fermions. In analogy with the free scalar field, we have

H =

∫
d3~xH =

∫
d3~pE(~p)

(
b†σ(~p)bσ(~p) + d†σ(~p)dσ(~p)

)
+∞.

As before, one can avoid the infinity using normal ordering that for fermions satisfies : bb† : =
−b†b and the same for d.

Propagators. The propagators appear in the theory as the expectation of a time ordered
product and give a probability amplitude to travel from a point to another. Mathematically
they are fundamental solutions of the “equations of motion”. The propagators can also be
considered in momentum space. From the mathematical point of view this is applying the
Fourier transform. In the following cases it reduces to cross out the integral and d4p/(2π)4.

For the scalar field, GF (x−y) = 〈0|T{φ(x)φ(y)}|0〉, it solves (�+m2)GF (x) = −iδ(x) and
is given by

GF (x) = i

∫
d4p

(2π)4
eipx

p2 −m2 + iε
.
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For the spinor field, Gαβ(x− y) = 〈0|T{Ψα(x)Ψβ(y)}|0〉, it solves (i/∂−m)Gαβ(x) = iδ(x)I
and is given by (possible problem with a sign)

Gαβ(x) = (i/∂ +m)GF (x) = i

∫
d4p

(2π)4
e−ipx

p2 −m2 + iε
(/p+m)αβ = i

∫
d4p

(2π)4
e−ipx

/p−m+ iε
.

The last equality is just formal.
For photons with the Feynman gauge

Gµν(x) = −i
∫

d4p

(2π)4
eipx

p2 + iε
ηµν .

Some Lagrangians. A recollection of some common Lagrangians.
Free scalar field in the real and complex cases

Lr =
1

2
∂µφ∂

µφ− 1

2
m2φ2, Lc = ∂µϕ

∗∂µϕ−m2ϕ∗ϕ.

The second corresponds to the first for N = 2 fields taking ϕ = 1
2

(
φ(1) + iφ(2)

)
.

Phi-4 theory

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4.

Free spinor field, two forms differing in a total derivative,

L = Ψ(i/∂ −m)Ψ, L =
1

2
iΨ
↔
∂ µγ

µΨ−mΨΨ.

Yukawa, the coupling of a scalar field a a spinor field

L = Ψ(i/∂ −m)Ψ +
1

2
∂µφ∂

µφ− 1

2
µ2φ2 − λY ΨΓΨφ

where Γ = I or Γ = γ5.
QED, coupling the spinor field and the electromagnetic field,

L =
1

2
iΨ
↔
/DγµΨ−mΨΨ− 1

4
FµνFµν where Dµ = ∂µ + ieAµ.

It has local gauge invariance given by Ψ 7→ e−iθ(x)eΨ and Aµ 7→ Aµ+∂µθ(x). This Lagrangian
can be written as

L =
1

2
iΨ
↔
/∂γµΨ−mΨΨ− 1

4
FµνFµν − ejµAµ

for the electromagnetic current jµ = eΨγµΨ. Fixing the gauge of the electromagnetic field
may require a term − 1

2α(∂µA
µ)2 with α a constant. For Feynman gauge, α = 1.
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QCD, it has the form

L =
1

2
iΨ
∼

↔
/DΨ
∼
−mΨ

∼
Ψ
∼
− 1

2g2
Tr
(
F
∼
µνF
∼ µν

)
where g is a coupling constant, Ψ

∼
is given by three gluon fields, Dµ = ∂µ − iAµ(x) with Aµ(x)

is a 3× 3 (block) matrix and F
∼ µν is its curvature form i[Dµ, Dν ].

Interacting theories. The general scheme is H = H0 +Hint where H0 the free Hamiltonian
density and Hint = −Lint with Lint the interaction part of the Lagrangian. For instance,
Hint = λφ4/4! in the phi-4 theory.

It is convenient to consider the interaction picture in which the operators evolve in time
with the unperturbed Hamiltonian, O(t) = eitH0Oe−itH0 and, consequently, the states with
Ψ(t) = eitH0e−itHΨ. If we define U(t, t0) such that U(t, t0)e

iH0t0Ψ(t0) = eiH0tΨ(t) then
〈e+iH0∞Ψ1|O|e−iH0∞Ψ2〉 gives the same result for O = S, the corresponding S-matrix, and
for O = U(+∞,−∞), then both operators coincide. A direct calculation from the definition
of U(t, t0) using the Schrödinger equation proves

∂

∂t
U(t, t0) = −iH(0)

int (t)U(t, t0) with H
(0)
int (t) = eitH0Hinte

−itH0 .

Then

S =
∞∑
n=0

(−i)n

n!
T
{(∫ ∞

−∞
dτH

(0)
int (τ)

)n}
= Texp

(
− i
∫ ∞
−∞

dτH
(0)
int (τ)

)
.

If we want to study ~p+ ~p ′ → ~q+ ~q ′ in the phi-4 theory where |~p〉 = a†c(~p)|0〉, etc. with the
covariant creation operator ac(~p) = (2π)3/2

√
2E(~p)a(~p), we have to compute

〈~q~q′|S|~p~p′〉 = 〈0|ac(~q)ac(~q′)Texp
(
− i λ

4!

∫ ∞
−∞

∫
d4x :

(
φ(0)(x)

)4
:
)
a†c(~p)a

†
c(
~p′)|0〉

with φ(0)(t, ~x) = eitH0φ(~x)e−itH0 . With the change in the creation operator, we have

φ(0)(x) =

∫
d3~k

(2π)3
1

2E(~k)

(
e−ik·xac(~k) + eik·xa†c(

~k)
)

where d3~k/E(~k) is Lorentz invariant. The new commutation rule is

[ac(~p), a
†
c(~q)] = (2π)32E(~p)δ(~p− ~q).

When expanding the formula for S it is very convenient to apply Wick’s theorem that allows
to write T{A1A2 · · ·An}, with Ai sums of creation and annihilation operators, as the sum of
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contractions of disjoint pairs of operators multiplied by the normal ordered product of the
remaining operators. The contraction of A and B is a scalar G, the propagator in the theory,
such that GI = T{AB}− : AB :. For instance, T{φ(0)(x1)φ(0)(x2)φ(0)(x3)φ(0)(x4)} is the sum
of : φ(0)(x1)φ

(0)(x2)φ
(0)(x3)φ

(0)(x4) :, six terms of the form : φ(0)(xi)φ
(0)(xj) : G(xi − xj) and

three terms of the form G(xi − xj)G(xk − xl)I.

Feynman rules. The complication in the notation and computation can be circumvent using
a pictorial way of representing the interactions called Feynman diagrams.

In the phi-4 theory the interaction vertexes involve 4 legs (edges). Let us say that we want
to study ~p+ ~p ′ → ~q + ~q ′. Then the simplest diagrams are

p

p′

q

q′

p

p′

q

q′

p

p′

q

q′

p

p′

q′

q

The loop number is L− V + 1 where L is the number of internal lines and V is the number of
vertexes. The loop number is 0 for the first diagram and 1 for the rest.

The contribution to the S matrix is specified for the Feynman rules (in momentum space):
A moment k is assigned to the internal lines (with an arbitrary orientation) and the propagator
i/(k2 −m2 + iε). For each (inner) vertex we put a term of the form

(−iλ)(2π)4δ
(∑

in

p−
∑
out

p
)
.

We multiply all of these terms and integrate d4k/(2π)4 with k the momenta associated to the
internal lines. Finally, we divide by the symmetries of the diagram, meaning the order of the
group permuting vertexes and internal lines leaving the diagram topologically invariant.

For instance, in the first diagram there are not internal lines nor symmetries, then it
contributes

S0 = (−iλ)(2π)4δ(p+ p′ − q − q′).
The second diagram has symmetry factor 1/2 because we can change the upper and the lower
edges (but not the vertexes preserving the names of the particles). If we assign to the inner
lines momenta k and l to the right, its contribution is

1

2

∫
d4k

(2π)4

∫
d4l

(2π)4
i

k2 −m2 + iε

i

l2 −m2 + iε
(−iλ)(2π)4δ(p+p′−k−l)(−iλ)(2π)4δ(k+l−q−q′)

and changing variables k + l 7→ k and performing the integration in k, the result is

1

2
(−iλ)2(2π)4δ(p+p′−q−q′)F (p+p′) with F (s) =

∫
d4l

(2π)4
i

(s− l)2 −m2 + iε

i

l2 −m2 + iε



8 Some formulas in QFT

The third and fourth diagrams gives the same contribution changing the variables. The one
loop contribution then amounts

S1 =
1

2
(−iλ)2(2π)4δ(p+ p′ − q − q′)

(
F̃ (s) + F̃ (t) + F̃ (u)

)
where s = (p+ p′)2, s = (p− q)2, t = (p− q′)2 are the Mandelstam variables. The problem is
that the integrals defining F̃ are divergent. The solution (renormalization) involves to consider
m and λ non-observable and related to the cut-off to regularize these integrals.


