Tachyonic instabilities in Yang-Mills theories and number theory

Fernando Chamizo

Presentation of the Master Thesis

July 4, 2016

Thesis	The model	The quantum problem	Conclusions
	It is not only QCD		

It is not only QCD...

Understanding the Yang-Mills theories is literally a 1 million dollar problem

Conclusions

Yang-Mills mass gap problem is one of the seven so-called *Millennium Problems* and Clay Mathematics Institute offers \$1million for a solution

Thesis

The master thesis

Main topic

Study the possibility of phase transitions (tachyonic instabilities) in a 2+1 model of SU(N) pure Yang-Mills theory when N and the volume vary

The master thesis

Main topic

Study the possibility of phase transitions (tachyonic instabilities) in a 2+1 model of SU(N) pure Yang-Mills theory when N and the volume vary

Keywords

Large N, volume independence, center symmetry, self-energy, symmetry breaking, twisted boundary conditions, lattice gauge theory, Diophantine approximation

Novelty

Surprisingly, the existence of instabilities translates into highly nontrivial problems in number theory

Scheme of the memoir

• Gauge theories)
 Lattice gauge theory 	Preliminary ideas
• Large N	and motivation
 EK and TEK models 	J
• Yang-Mills in $\mathbb{T}^2 imes \mathbb{R}$	
 Perturbation theory 	f The model
• Regularization of the self-energy)
• A number theoretical approach to tachyonic instabilities	<pre>Original contribution</pre>

Scheme of the memoir

• Gauge theories)
 Lattice gauge theory 	Preliminary ideas
• Large N	and motivation
 EK and TEK models 	J
• Yang-Mills in $\mathbb{T}^2 imes \mathbb{R}$	The model
 Perturbation theory 	
• Regularization of the self-energy)
• A number theoretical approach	Original contribution
to tachyonic instabilities)

Thesis	The model	The quantum problem	Conclusions
The model			

Configuration space How to glue the space

Flat torus \mathbb{T}^2

SU(N) bundle How to glue the field

Transition functions

• The magnetic flux $m \in \mathbb{Z}$

• The magnetic flux $m \in \mathbb{Z}$

Meaning: It expresses a compatibility condition.

 $\Omega_1(x + (0, L))\Omega_2(x) = e^{2\pi i m/N}\Omega_2(x + (L, 0))\Omega_1(x)$

Values of $m \leftrightarrow$ topological sectors in the space of gauge fields

- The magnetic flux $m \in \mathbb{Z}$
- 2 The (chromo-) electric flux $\vec{e} = (e_1, e_2) \in \mathbb{Z}_N \times \mathbb{Z}_N$

- The magnetic flux $m \in \mathbb{Z}$
- **2** The (chromo-) electric flux $\vec{e} = (e_1, e_2) \in \mathbb{Z}_N \times \mathbb{Z}_N$

Meaning: It represents the *center symmetry*: The gluon field does not "see" the center of SU(N), $Z_N = \{e^{2\pi i k/N}\mathbb{I}\}$

$$\begin{split} \Omega\big(x+(L,0)\big) &= e^{2\pi i k_1/N} \Omega_1(x) \Omega(x) \Omega_1(x)^{\dagger} \\ \Omega\big(x+(0,L)\big) &= e^{2\pi i k_2/N} \Omega_2(x) \Omega(x) \Omega_2(x)^{\dagger} \end{split}$$

 (k_1, k_2) and (e_1, e_2) are dual

The quantum problem

Center symmetry \rightarrow division into sectors with Hamiltonian $H_{\vec{e}}$ Vacuum \rightarrow ground state of $H_{\vec{0}}$

What happens when we let N and L vary?

Possible problem: the graph cross zero \rightarrow the vacuum becomes unstable and decays (phase transition) \rightarrow **tachyonic instabilities**

The fundamental question

Given a (large) N can we choose m to prevent tachyonic instabilities for any \vec{e} and L?

Timeline and motivation

Timeline and motivation

To avoid tachyonic instabilities, the following quantity has to be positive for every \vec{e}

$$\underbrace{x^{-2}|\vec{n}|^2 + \alpha x^{-1} \sum_{\vec{k}} \frac{\sin^2(\pi \vec{k} \cdot \vec{e}/N)}{|\vec{k}|}}_{\text{1-loop perturbative regime}} + \underbrace{\beta + \gamma N^{-2} x^2 |\vec{e}|^2}_{\text{Non perturbative}}$$

$$x = rac{g^2 N^2 L}{4\pi}, \qquad lpha, eta, \gamma symp 1, \qquad ec{n} = m(e_2, -e_1) + Nec{n}_0$$

Important point

$$\sum_{\vec{k}} \frac{\sin^2(\pi \vec{k} \cdot \vec{x})}{|\vec{k}|} \xrightarrow{\text{regularization}} \sim -\frac{1}{2} \left(\begin{array}{c} \text{distance of } \vec{x} \text{ to the} \\ \text{closer integer vector} \end{array} \right)^{-1}$$

Thesis

The mathematical interpretation

$$\begin{array}{l} \mathsf{d}(\vec{x}) = \text{distance of } \vec{x} \text{ to the closer point in } \mathbb{Z} \times \mathbb{Z} \\ \vec{e} = (e_1, e_2), \qquad \vec{e} \in \mathbb{Z}_N \times \mathbb{Z}_N - \{(0, 0)\} \\ \vec{e}^{\perp} = (e_2, -e_1) \\ c_0 = \text{universal constant} \end{array}$$

Given N (large) if there exists m such that for every $\vec{e} \neq \vec{0}$

$$\begin{split} & N \operatorname{d}(\frac{\vec{e}}{N}) \operatorname{d}(\frac{m \vec{e}^{\perp}}{N}) \geq c_0 \implies & \text{No tachyonic instabilities} \\ & N^2 \operatorname{d}(\frac{\vec{e}}{N}) \operatorname{d}^2(\frac{m \vec{e}^{\perp}}{N}) \geq c_0 \implies & \text{No tach, inst, at} \\ & \text{perturbative regime} \end{split}$$

Example: Can we take m = (N - 1)/2?

$$egin{array}{cccc} & \mathcal{N} & \mathsf{d}ig(rac{ec{e}}{\mathcal{N}}ig) & \mathsf{d}ig(rac{ec{mec{e}}_{\perp}}{\mathcal{N}}ig) & \stackrel{?}{>} & c_0 \ & \downarrow & \downarrow & \downarrow & \ ec{e} = (1,1) & \mathcal{N} & rac{\sqrt{2}}{\mathcal{N}} & rac{\mathcal{N}-1}{\sqrt{2}\mathcal{N}} & pprox & 1 \end{array}$$

Example: Can we take m = (N - 1)/2?

The model

$$N \quad d\left(\frac{\vec{e}}{N}\right) \quad d\left(\frac{m\vec{e}^{\perp}}{N}\right) \stackrel{?}{>} \quad c_{0}$$

$$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$$

$$\vec{e} = (1,1) \quad N \quad \frac{\sqrt{2}}{N} \quad \frac{N-1}{\sqrt{2}N} \quad \approx \quad 1$$

$$\vec{e} = (2,2) \quad N \quad \frac{2\sqrt{2}}{N} \quad \frac{\sqrt{2}}{N} \quad \approx \quad \frac{4}{N} \neq c_{0}$$

1110313	The model			Conclusions
Our resu	ılts			
St	udy of tachyonic instabilities	\leftarrow	Approximation of k/N by k'/N' with $N' < N$]

The quantum problem

Conclusions

Thosis

The model

Results

- Total absence of instabilities \leftrightarrow Conjecture in number theory
- Optimal situation $\leftrightarrow N$ = Fibonacci number and prime
- Algorithm to limit electric fluxes \leftrightarrow continued fractions
- No instabilities in pertub. regime \leftrightarrow Dioph. approximation

Thesis	The model	The quantum problem	Conclusions
Bibliography I			

F. Chamizo and A. González-Arroyo.

Tachyonic instabilities in 2 + 1 dimensional Yang-Mills and its connection to number theory results and conjectures. (In preparation).

M. García Pérez, A. González-Arroyo, and M. Okawa.
 Spatial volume dependence for 2 + 1 dimensional SU(N)
 Yang-Mills theory.
 JHEP, 2013(9), 2013.

M. García Pérez, A. González-Arroyo, and M. Okawa. Volume independence for Yang-Mills fields on the twisted torus.

Int. J. Mod. Phys. A, 29(1445001), 2014.

Bibliography II

T. Eguchi and H. Kawai.

Reduction of dynamical degrees of freedom in the large-*N* gauge theory. *Phys. Rev. Lett.*, 48:1063–1066, Apr 1982.

- A. González-Arroyo and M. Okawa.
 The twisted-Eguchi-Kawai model: A reduced model for large-N lattice gauge theory.
 Phys. Rev. D, 27(10):2397, 1983.
- A. González-Arroyo and M. Okawa.
 A twisted model for large N lattice gauge theory. Physics Letters B, 120:174–178, jan 1983.

G. 't Hooft.

A planar diagram theory for strong interactions. *Nuclear Phys. B*, 72:461–473, 1974.

🔋 G. 't Hooft.

A property of electric and magnetic flux in non-Abelian gauge theories.

Nuclear Phys. B, 153(1-2):141-160, 1979.

Large *N*.

arXiv:hep-th/0204069, 2002.

A. Zee.

Quantum field theory in a nutshell.

Princeton University Press, Princeton, NJ, 2003.