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It is not only QCD. . .

Understanding the Yang-Mills theories

is literally a 1 million dollar problem

Yang-Mills mass gap problem is one of the seven so-called
Millennium Problems and Clay Mathematics Institute offers
$1million for a solution
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The master thesis

Main topic
Study the possibility of phase transitions (tachyonic instabilities)
in a 2+1 model of SU(N) pure Yang-Mills theory when N and
the volume vary

Keywords
Large N, volume independence, center symmetry, self-energy,
symmetry breaking, twisted boundary conditions, lattice gauge
theory, Diophantine approximation

Novelty
Surprisingly, the existence of instabilities translates into highly
nontrivial problems in number theory
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Scheme of the memoir

Gauge theories
Lattice gauge theory
Large N
EK and TEK models
Yang-Mills in T2 × R
Perturbation theory
Regularization of the self-energy
A number theoretical approach
to tachyonic instabilities

Preliminary ideas
and motivation

The model

Original contribution
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The model

Configuration space
How to glue the space

Flat torus T2

L

L −→

SU(N) bundle
How to glue the field

Transition functions Ω1 Ω2
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Three important integral numbers

1 The magnetic flux m ∈ Z

2 The (chromo-) electric flux ~e = (e1, e2) ∈ ZN × ZN
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Three important integral numbers

1 The magnetic flux m ∈ Z

2 The (chromo-) electric flux ~e = (e1, e2) ∈ ZN × ZN

Meaning: It expresses a compatibility condition.

Transition function Ω1 Transition function Ω2 Compatibility condition

Ω1
(
x + (0, L)

)
Ω2(x) = e2πim/NΩ2

(
x + (L, 0)

)
Ω1(x)

Values of m ↔ topological sectors in the space of gauge fields
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Three important integral numbers

1 The magnetic flux m ∈ Z
2 The (chromo-) electric flux ~e = (e1, e2) ∈ ZN × ZN

Meaning: It represents the center symmetry: The gluon field does not
“see” the center of SU(N), ZN = {e2πik/NI}

Ω
(
x + (L, 0)

)
= e2πik1/NΩ1(x)Ω(x)Ω1(x)†

Ω
(
x + (0, L)

)
= e2πik2/NΩ2(x)Ω(x)Ω2(x)†

(k1, k2) and (e1, e2) are dual
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The quantum problem

Center symmetry → division into sectors with Hamiltonian H~e
Vacuum → ground state of H~0

“Normalized”
energy levels

vacuum

glueballs

~e = ~0
g
a
p

perturbation
L→0

~e 6= ~0

g
a
p

L→∞

~e 6= ~0

What happens when we let N and L vary?

F. Chamizo 6 Tachyonic instabilities



F. Chamizo 7 Tachyonic instabilities 7

Thesis The model The quantum problem Conclusions

Conjectural behavior
of the “mass” gap

EL

g2N2L

Possible problem: the graph cross zero → the vacuum becomes
unstable and decays (phase transition) → tachyonic instabilities

The fundamental question
Given a (large) N can we choose m to prevent tachyonic
instabilities for any ~e and L?

F. Chamizo 7 Tachyonic instabilities



F. Chamizo 8 Tachyonic instabilities 8

Thesis The model The quantum problem Conclusions

Timeline and motivation

’t Hooft(1974) large N

’t Hooft(1979) twist, center symmetry

Eguchi-Kawai(1982) reduced models [lattice]

González-Arroyo
Okawa

(1983) Symmetry breaking!?

González-Arroyo
Okawa

(1983) Symmetry breaking!?

+

Garćıa Pérez(2014) Continuous models

+

Garćıa Pérez(2014) Continuous models
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To avoid tachyonic instabilities, the following quantity has to be
positive for every ~e

x−2|~n|2 + αx−1∑
~k

sin2(π~k ·~e/N)

|~k|︸ ︷︷ ︸
1-loop perturbative regime

+ β + γN−2x2|~e|2︸ ︷︷ ︸
Non perturbative

(confinement)

x =
g2N2L

4π , α, β, γ � 1, ~n = m(e2,−e1) + N~n0

Important point

∑
~k

sin2(π~k · ~x)
|~k|

regularization−−−−−−−−→ ∼ −1
2
( distance of ~x to the

closer integer vector

)−1
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The mathematical interpretation

d(~x) = distance of ~x to the closer point in Z× Z
~e = (e1, e2), ~e ∈ ZN × ZN − {(0, 0)}
~e⊥ = (e2,−e1)
c0 = universal constant

Given N (large) if there exists m such that for every ~e 6= ~0

N d
( ~e

N
)

d
(m~e⊥

N
)
≥ c0 =⇒ No tachyonic instabilities

N2 d
( ~e

N
)

d2(m~e⊥
N

)
≥ c0 =⇒ No tach. inst. at

perturbative regime
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Example: Can we take m = (N − 1)/2?

N d
( ~e

N
)

d
(m~e⊥

N
) ?

> c0
↓

↓

↓

↓

↓

↓

~e = (1, 1) N
√

2
N

N−1√
2N ≈ 1

~e = (2, 2) N 2
√

2
N

√
2

N ≈ 4
N 6> c0

(0,0) (1,0)(−1,0)

(0,1) (1,1)(−1,1)

�e/N

m�e
⟂/N
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Our results

Yang-Mills theories Number theory

↓ ↑

Study of tachyonic
instabilities ←−−−→ Approximation of k/N

by k ′/N ′ with N ′ < N

Results
Total absence of instabilities ↔ Conjecture in number theory
Optimal situation ↔ N = Fibonacci number and prime
Algorithm to limit electric fluxes ↔ continued fractions
No instabilities in pertub. regime ↔ Dioph. approximation
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