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Lattice point counting and harmonic

analysis

F. Chamizo

Abstract

We explain the application of harmonic analysis to count lattice
points in large regions. We also present some of our recent results in
the three-dimensional case.

1. Introduction

The problem of counting lattice points in enlarging regions has a long history
in number theory that can be traced back to some problems considered by
Gauss and Dirichlet. In general terms, given a region B C R? we consider
the number of lattice points in large homothetic regions

N(R)=#{AeZ" : ii/R € B}.

We expect that this number is well approximated by the volume of RB and
we want to bound the lattice error term (lattice point discrepancy)

E(R) = N(R) — Vol(B)R".
Usually one looks for the error exponent
0, =inf{a : E(R) = O(R")}.

The meaning of “region” is not fixed here. The most natural setting is to
consider B to be a convex compact set such that its boundary is a smooth
compact and connected (d — 1)-submanifold of R? with positive curvature,
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but there are simple classical examples that do not match these require-
ments.

Sometimes lattice point problems appear naturally when averaging arith-
metical functions. For instance the formulas

N

(L.1) D h(=d) = N - SN o)

272
d=1

where h(—d) is the class number (of binary quadratic forms of negative
discriminant —d),

WE

(1.2) r(n) =7N + O(N*?)

1

where r(n) = #{(a,b) € Z* : n=a*+b*}, and

3
Il

(1.3) D d(n) = Nlog N + (2y — 1)N + O(N“)

n=1

where d(n) is the number of divisors of n, lead to probably the oldest lattice
point problems by chronological order. Clearly (1.2) and (1.3), the so-called
Gauss circle problem (Gauss 1834) and Dirichlet divisor problem (Dirichlet
1849), reduce to count lattice points in a circle and under a hyperbola.

With respect to (1.1) (Gauss 1801), we postpone further comments to §6.2
and we only mention here that the discriminant of a reduced form az? +
bry + cy? is given by d = b* — 4ac, and this can be used to interpret (1.1) as
a lattice point count in some hyperboloid.

Denoting by (; the greatest lower bound for the «a;’s such that these
formulas are valid, the best known upper bounds are (5; < 21/32 [6] (see
also [7], [15]), and [32, B3 < 131/416 [19]. On the other hand the conjectured
values are 3; = 1/2 and (3 = (3 = 1/4 matching with the proved Q-results
[33] (see also [13]) and [32]. The best known general upper bound for 6,
in the many dimensional case (as formulated before) is due to W. Miiller
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23] (see [25] for Q-results). The problem in dimension d > 4 is completely
solved for spheres and for rational ellipsoids of higher dimensions (d > 9)
[4]. We address the reader to the survey [20] for the state of the art in the
field and to the monographs [18] and [22] for more technical information.

2. Harmonics: the building blocks

The goal of harmonic analysis, at least the etymological goal, is to decompose
(analyze) large function spaces in terms of simple functions called harmonics.
The following table is a list containing some of the more often employed
examples in number theory

Space Harmonics

l-periodic, L?([0,1]) e?™nr with n € Z

L*(RY) 26T with € € RY

f:Z/mZ — C e?™me/m wwith n=0,1,...,m—1
f:(Z/mZ)* — C Dirichlet characters
SLy(Z)-periodic, L*(H) | Maass forms, Eisenstein series
fiA—C, A=addles | 2™ET) A1) = S +Try g (¢)

The first row is the classical Fourier analysis for periodic functions. A
smooth enough 1-periodic function f : R — C admits the Fourier expan-
sion

> 1
f(.’L') = Z am@%im:c where Ay = / f(m)e—%rimxdx'
0

m=—0o0

The second row is still classical Fourier analysis, in this case a rapidly de-
creasing function f : R — Cis a continuous combination of the harmonics
modulated by the Fourier transform f through the inversion formula

-~ ~ =

@ = | FOSTdE  where [(&)= [ f(@)emEdz.
Rd

R4

Let us see an example to peek at the connection with arithmetic. The
Fourier expansion of the fractional part Frac(x) = x — [z] gives

1 = sin(2rma)
Frac(r) — & + 3 S2mm)

m
m=1

which is in fact only true for x ¢ Z by regularity matters (note that it is
not continuous at z € Z). The functions sin(2wma) are simpler and nicer
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than Frac(z) from the analytic point of view. If we want to apply analytic
operators, like averaging, this expansion benefits us. For instance, in the
divisor problem one has to deal with ) _\ Frac(N/n) and this is clearly an
arithmetical problem, but in ) _ sin(2rmN/n) it seems that there exists
a chance to use analytic methods (and it is so). Of course identities are
identities and in some sense the arithmetical complications of Frac(x) are
hidden in the infinite summation of the simple non-arithmetical harmonics,
but analysis provides us with tools to mollify or cut this infinite summation
paying a fair prize (see §4). In connection with this it is possible to prove

1 sin(2mwma) I
Frac(z) = 5t Z — O(e*M™1)
m<M

whenever the distance of x to the nearest integer is greater than e.

3. Summation formulas

One of the most important tools in analytic number theory is the Poisson
summation formula. It transforms sums in a non trivial way and we hope
the transformed sum to be easier than the original one.

Its proof is simple and illustrative: If f : R — C is a smooth function
with a good decay at infinity, then F(z) = > 72 f(x + n) makes sense

n=—oo

in L?([0,1]) and it is 1-periodic. An easy computation proves that its nth-

~

Fourier coefficient is f(n) and Fourier expansion reads

oo

S farny= 3 fmee

n=—oo m=—0o0

By aesthetic reasons (symmetry), usually one takes x = 0 and the result is
the simplest form of the Poisson summation formula

(3.1) > f)y =" fim).

With the same proof one deduces the variant
(3.2) ) =Y fum).
ReL? mezd

The crux of the argument is that the one-dimensional torus T (this is [0, 1]
glueing the boundary points) can be unwrapped on R, in other words, we
force the 1-periodicity of f summing it over all translations. In the same way
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when one considers harmonic analysis on a locally compact abelian group
G, for any discrete subgroup H one can define F(z) = >, 5 f(z + h) and
repeat the argument. We shall not enter into details but we shall mention
that this can be very deep, for instance, J. Tate found in his thesis a fruitful
application to number theory when G is the adele group [24].

One of the most celebrated examples of (3.1) is the modular relation for
Jacobi #-function

0(z) = 2~ Y%0(1/x) where 0(x) = Z e ™ x> 0.

A calculation shows [;° 22 1e™™"* dy = 77/?I'(s/2)n"", then

T2 (5/2)C(s) = % /0 TP ) de with 6% () = 0(x) — 1.

Dreaming that 6* satisfies the same functional equation as @, after the change
of variables x — 1/z one would obtain the functional equation for ¢

(3.3) A(s) =A(1—s) where A(s) =7 %/?T'(5/2)((s).

The actual proof is more involved but the ideas are the same. These three
topics, summation formulas, modular forms and functional equations are
related. One could prove for instance (3.1) or #(z) = z~Y20(1/z) out of
(3.3), although it is not the most economical way.

4. The uncertainty principle

Thanks to the good expository abilities of our physicist colleagues, when we
hear the words uncertainty principle we surely think of quantum mechan-
ics, flying photons hitting electrons, non-deterministic paths, Copenhagen
interpretation. .. Too difficult. Let us try to explain it geometrically.

A function and a point (physicists would say a wave and a particle) are
quite different, but still a point can be represented as a very special kind
of function: its characteristic function (physicists would prefer, no doubt,
Dirac delta, that is in fact more convenient).

A point is too small to be detected by harmonic analysis and in fact in
L? sense its characteristic function is identically zero. Let us think, instead,
in a blur point, for instance the acoustic intensity of a rapid train passing at
100 mph in front of us, say that we represent it by a bump function and the
width of the “effective” support is 6. We assume that the support is inside



6 F. CHAMIZO

of (0,1) indeed, then we can use classical Fourier analysis for 1-periodic
functions.

If we have a look to the shape of the graphics representing the harmonics
we quickly realize that the bumps of width comparable to § occur when
the number of bumps (that is proportional to the frequency) is comparable
to 1. A bump function of width § (as our blur point) cannot be well
approximated by harmonics of frequency much less than 6!, in general
harmonics with frequency less than 51 are not suitable to see details at scale
less than ¢. Imagine that the function has a certain small anomaly in some
interval of length € < § (for instance a discontinuity), then to study it we
must use at least harmonics of frequencies less than something comparable

to e 1.

You cannot use optical microscopes in crystallography because the wave-
length of light (4 - 107~"m~7 - 10~ "m) skips the atoms, in fact is too coarse
to penetrate the crystals (this is an oversimplification because there are
absorption processes giving the colors or molecular structures producing
the transparency), you need something like X-rays, with a tiny wavelength
(3-107"m-3-107%m) and still you will not “see” clearly the atoms (their
“size” can be less than 1 Angstréom = 1071%n) but they are good enough to
observe some nice diffraction patterns showing bright points.

In the next figure there is a visual example. We represent a function as a
strip of gray tones depending on the absolute value at each point black = 1,
white = 0). The first strip corresponds to f, a sum of thinner and thinner
characteristic functions, and the rest of the strips are the approximations
using harmonic analysis with a smooth filtering in the indicated range of
frequencies (far beyond this range the cut of the frequencies is severe). Note
that the initial sharp vertical bands become blur and eventually disappear,
it is impossible to represent sharp edges with a short range of frequencies.
We have lost localization and gained uncertainty.
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Summarizing: with a range of frequencies like F' your sight is limited to
scale F~! and similarly, if the threshold of your sight is X then you cannot
get information about a range of frequencies larger that X!, In quantum
mechanics the frequency is related to the momentum p and physicists write
Az - Ap > C and even say that C' = h/2 = 5.27285 - 107%°. This value
just informs you that quantum effects only appear at submicroscopic scale,
so small that you cannot usually distinguish the “real” blur particles of
quantum mechanics from the nonexistent classical ones.

Is this relevant in real world? Absolutely yes. First of all quantum effects
are employed nowadays in some real machines, noticeably on NMR (nuclear
magnetic resonance) or in the scanning tunneling microscope. Secondly
uncertainty principle is associated to harmonic analysis and this explain its
ubiquity when analyzing signals. Therefore the Shannon sampling theorem,
artifacts in low quality jpeg image files, anti-aliasing filters and Heisenberg
inequality are relatives. In the last decades wavelets have flourished to push
the balance between the localization in space and frequency [9] and they
have real and conspicuous applications in engineering.

5. The basic lattice point analysis

Let us say that we want to study the circle problem (1.2), then we take B
as the unit disk in R? and N (R) counts the number of integral solutions of
2?2 +y? < R? (here R = VN ). If f equals the characteristic function of RB,

N(R) =" f(ii)

nez?
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and it is tempting to apply Poisson summation formula (3.2). The Fourier
transform of f is a radial function. Geometrically this follows because the
value of the integral of f against a planar wave does not depend on the
direction of the wave

~ ~

Hence f(m) = f(||n|,0) and this latter can be expressed in terms of a
Bessel function giving (i) = O(RY2|mi||=*/2). Intuitively, if we divide
the plane in squares of length ||7|~!, then the integral of f(z,y)e 277l
is zero on each of them except in the O(R||m||) squares on the boundary,
in which the value oscillates between —||m7||72 and ||m||72. Assuming that
it behaves as a random variable, central limit theorem would give f(ﬁ’i) =
O((R||m)*?||m| %) = O(RY?||mi||=3/2), the same bound as before without
appealing to special functions (of course this is not a rigorous proof).

Note that > 72 |772]| =3/ = oo, so that this approach is useless with
this f. A harmonic analyst would explain us that it is a consequence of the
low regularity of f. Let choose a new function g, a smoothed version of f. If
g € Cg° then g(Z) = O(||Z]|~") holds for any N and convergence is assured.

Radial profiles O<H<1

H
g N

R R R+H

We want to keep g close to f, say that they only differ in the annulus
R <r < R+ H as represented above. We need H to be small because the
new volume term §(0) = m(R+O(H ))2 should be very close to the previous

~

one f(0) = TR

What is the influence of the smoothing on the Fourier transform side?
The uncertainty principle says that harmonic analysis does not see the
smoothing of size H before the frequency range reaches H ' then we are
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forced to keep this part of the previous analysis. On the other hand regu-
larization will take care of the high frequencies. Roughly speaking we get

N(R) =m(R+O(H))> + O(R"> > |Imf|7*?).

(|| <H !

If H is very small the sum is large and if H is large the main term is affected.
The balance is reached for H = R™'/3 giving

N(R) = nR? + O(RY3).

This is (1.2) for ap = 1/3.

The advantage of having a radial Fourier transform is that Bessel func-
tions appear. This becomes a technical minor point because good approxi-
mations for Fourier transforms of characteristic functions of smooth convex
bodies are known ([17], [16]). In particular it is known that for B as in §1,
the characteristic function f of RB satisfies f(&) = O(RU=1/2|| || ~(d+1)/2),
The previous arguments give

N(R) = Vol(B) + O(R=Dd/(d+1))

and hence 0; < (d —1)d/(d+ 1) [17]. The expected values are 65 = 1/2 and
Hd:d—QfordZS.

5.1. The method of exponential sums

~

In the previous analysis we have disregarded the influence of the sign of f(1).
After dividing into dyadic intervals in one of the variables and extracting
the amplitude by partial summation, the basic problem is to beat the trivial
bound for an exponential sum

S = Z e(f(n)) for M < 2N,

N<n<M

where typically the derivative of f satisfies c; N7 < f' < ¢ N7 for some
v > 0. One looks for a k-saving with respect to the trivial estimate, this
means

S =O(N'™").

Ideally one conjectures that e(f(n)) behave as identically distributed in-
dependent random variables and that something close to the 1/2-saving is
reachable, but the actual proved values of x are commonly far from it. For
instance, k = (1 —7)/2 is true with some extra requirements on f, this is
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worse than trivial for v > 1 and several methods have been devised to treat
this case. One of the highlights of the theory is the method of exponent
pairs [12] based on the work of J.G. van der Corput and formulated in an
operative and systematic form by E. Phillips [27] in 1933.

In some other applications (for instance in the prime number theorem)
extra large oscillations appear, and the best methods are due to I.M. Vino-
gradov [35].

It is natural to think that we should double our winnings when two vari-
ables participate in exponential sums and in general to get more cancellation
in many dimensional sums but so far there is not a clear theory to quantify
this idea.

6. Recent research

In the following subsections we consider four lattice point problems in which
harmonic analysis is complemented with arithmetical ideas to improve pre-
vious known results. They are related to our recent research: the first and
the last are works in progress while the second and the third are [7] and [5].

6.1. Points in the sphere and L-functions

According to the basic analysis studied in §5 we can prove the error exponent
63 < 3/2, that corresponds to H = R™Y/2. To improve this result for the
sphere we examine the corresponding exponential sum. Indeed we have to
control a sum like

Su= 3 e®lml)= Y e(Ry/mi+mdtmd).

[lm]| <M m2+mi+mi<M

Conjecturally one expects Sy = O(M?®/**¢) in natural ranges due to an
1/2-saving on each variable but this is out of reach with current technology
(it would prove the conjecture 63 = 1). If we “glue” two variables into one,
n =m? + m3, and write

Su = Z r(n) Z e(Ry/n +m3),
n<M m§<an

we see that Sy, is a kind of long average of exponential sums. It turns out
that in this case one can prove 1/2-saving on average (essentially this is the
approach in [8] and [34]) giving in some ranges the bound

(6.1) Sy = O(M - (M'?)2H) = O(M>/*+),
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Introducing it in the basic analysis, one deduces 03 < 4/3 for the sphere
choosing optimally H = R~2/3,

Any improvement on (6.1) seems unrealistic without assuming big ad-
vances in the method of exponential sums. In other words, uncertainty
principle establishes a strong barrier that limits our vision to variations of
the radius like H = R~%3, then an error term like #{m € Z* : R < ||m| <
R + R7?/3}, which should be like R*?, is unavoidable if we use Fourier
analysis.

How can we defeat the uncertainty principle? In [11] Gauss proved a
deep result that, after the class number formula, allow to express the num-
ber of representation as a sum of three squares in terms of real Dirichlet
characters. New harmonics allow us new techniques and new uncertainty
ranges. Without entering into details, the character sum approach is ad-
vantageous in short distances and can be combined with Fourier analysis
to break the uncertainty barrier. The best known result obtained by this
method is #5 < 21/16 due to D.R. Heath-Brown [15].

In a work in progress (it will be a part of the Ph.D. thesis of E. Cristébal)
we try to exploit in this setting the conjectural properties of Dirichlet L-
functions

— x(m)
L(s,x) =D =
m=1
associated to real characters y. Complex analysis establishes a relation
between the location of the zeros of L(s, x) and its growth (think for instance
of Jensen formula as a model). On the other hand if the growth of L(s, x)
on vertical lines is under control then some cancellation in character sums
> X(m) should appear. Introducing this idea in the previous scheme one
can prove that if the distance from the line s = 1 to the zeros of L(s, x)
is greater than 0.08, then the best known bound for #3 in the sphere can be
improved. Note that under Generalized Riemann Hypothesis the distance
is 1/2. We can read this kind of result as a link between counting primes in
arithmetic progressions and lattice points in the sphere.
An insidious difficulty with this approach is that (6.1) is only known in
some ranges that must be extended, with involved techniques, to match the
ranges associated to character sum estimates.

6.2. Class number average

The origin of the problem (1.1) is Art.302 of [11] in which one can read:
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we have found by a theoretical investigation that the average num-
ber of classes around the determinant —D can be expressed approxi-
mately by vv/D — § where v = 0.7467183115 = 27 /Te where e is the
sum of the series 1+ § + 5= + g7 + s Tetc. § = 0.2026423673 = 2/7°.

In modern notation this can be written as

EN:h(—ALd)N AT sz 2y
21¢(3) 2
d=1

(Note that SN _, (yV/D — 6) ~ 2yN3/2/3 — §N). Gauss only considered
quadratic forms of the type az? + 2bxy + cy?, so that for him the discrimi-
nant was always a multiple of 4, but nowadays we also consider odd middle
coefficients and the sum in (1.1) becomes more natural.

Where is the lattice point problem here? Gauss proved that each class
of (primitive) quadratic forms of discriminant —d < 0 is represented by a
reduced form az? + bxy + cy? satisfying

ged(a,b,c) =1, 4ac—b*=d and —a<b<a<cor 0<b<a=c

In modern language we assign to each primitive quadratic form az?+bxy-+cy?
of discriminant —d < 0 the complex number (—b+iv/d)/2a in the upper half-
plane H and the action of PSLy(Z) on these complex numbers is equivalent
to the action of unimodular matrices on quadratic forms. Reduced forms
correspond to points in the standard fundamental domain.

Gauss also studied the average of class number for positive discriminants
multiplied by the logarithm of the fundamental unit. In Art.304 of [11], he
writes:

the average value of that product is approximately expressed by a
formula like mv/ D — n. However, we have not this far been able to
determine the values of the constant quantities m, n theoretically.

We can guess that Gauss did not succeed in this case because this average
resists a simple interpretation as a lattice point problem. In 1944 C.L. Siegel
[31] interpreted the first main term in Gauss’ assertion expressing h(d) log e,
as a weighted sum of the number of geodesics in H (endowed with Poincaré’s
metric) crossing the fundamental domain and having (—b & v/d)/2a (with
d = b* — 4ac) as end-points. Identifying the geodesics with their end-points
we recover a lattice point interpretation.
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If we try to parallel the scheme applied for the sphere we shall find strong
difficulties to use Fourier analysis because the regions are complicated: The
lack of regularity and curvature of the boundary causes serious problems in
the application of the Poisson summation formula.

One elegant solution is to employ the relation between functional equa-
tions and summation formulas. In 1975 T. Shintani [29] proved a vector
functional equation involving Y h(—d)d~* and > h(d)log eqd—*. One of the
consequences obtained by Shintani is that Gauss’ claim is not completely
correct. The corresponding summation formulas and the analysis of the as-
sociated lattice point problem is worked out in [7] and the method described
in the previous section for the sphere is adapted to get

N 472
h(4d)1 =
; ( ) log €44 21¢(3)

for any o > 21/32, where C' = log(27) + 8(log2)/3 — ('(2)/¢(2) — 1.
Gauss gave in the notes to [11] the right coefficient of N3/2 but his ex-
perimental computation led him to confuse log N with a constant.

4
N3/% —(C+log N)N + O(N?)

6.3. Visible points

We say that a point P € Z?—{(0,0)} is visible (from the origin) if O = (0, 0)
and P are the only lattice points on the segment OP. It is straightforward
to show that P = (n,m) is visible if and only if n and m are coprime. The
analog of circle problem for visible points (counting visible points in large
circles) is a hard problem and usually the Riemann Hypothesis is assumed
to get nontrivial error exponents [26]. By the way, there is a nice variant
for thick points due to Pélya, named the orchard problem, that in [28] p.150
is stated as: “How thick must the trunks of the trees in a regularly spaced
circular orchard grow if they are to block completely the view from the
center?”. The elementary solution probably will challenge the reader (see

[1])-

The visible lattice point problems in higher dimensions does not add
anything new to the usual ones. For instance if the number of lattice points
in the sphere is given by 47 R3/3 + O(R®) then the number of visible points
is 4mR3/3¢(3) + O(R“) and vice versa, assuming in both cases a > 1. The
assumption is known to be necessarily true and leads to study Q-results for
the lattice error term, a topic having a prominent place in the theory.

We say that f = Q(g) (and refer to it as an Q-result) if f = o(g)
is not true. Intuitively this means that it is impossible to improve the
bound O(g) if it holds. Integration is usually an easy method to prove
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Q-results for lattice point problems. For instance, studying the phase of
the Fourier transform in our basic analysis of the circle problem in §5, one
can prove that the error term E(R) is closely related to the real part of
cRYYYT g 1] 732e2m IR for a mon-zero (complex) constant ¢ (H is
taken to be R~ to reduce to O(1) the uncertainty in the main term).
Squaring and integrating, the non-diagonal terms are proved to be negli-
gible (integration kills oscillatory terms) and it follows

X
/‘UNMPdRNCXWQ
1

for a certain explicit positive constant C. This gives immediately F(R) =
Q(RY4).

In higher dimensions more variables participate in the summation giving
a huge number of non-diagonal terms. For the sphere one can still manage
them [21] (winning just a power of logarithm over the diagonal contribution).
For visible points in the sphere a new summation appears involving the
function, in this case the error term E(R) is related to the real part of

e2miRR||ni

R 2 MR

d<R ||| <M

where for technical reasons M is chosen slighty less that R. A direct ap-
proximation to the second power moment is not possible, in part because of
the unpredictable sign changes of u(d).

In [5] we have overcome the problem introducing the auxiliary function
g(R) = X,y V2 cos(2mRy/n) that we expect to resonate with E(R)

because in the product E(R)g(R) we find terms of the form (write k = ||71]|2)

RY S )2

ko d2lk

and this is non-oscillatory and large because of the formulas

Suldy =) and 30 A Mg

2|k k<x

The positivity is crucial. The analytic resonance has been deduced from the
simple arithmetic relation between p and g2

The rest of the terms are controlled after integration with a detailed
analysis. In this way we can conclude that

/mﬁmmmmR:meya

As g is v/Iog R on (L2-)average, it follows that E(R) = Q(Rv/log R).
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6.4. Rational ellipsoids

We have seen that the lattice point problem associated to the sphere admits a
special treatment. The relation between r3(n) and the class number allows to
employ successfully multiplicative harmonics (character sums) in a thin layer
when additive harmonics (exponential sums) are useless by the uncertainty
principle.

In a work in progress we extend the known bound for the error exponent
of the sphere [15] to rational ellipsoids: B = {7 € R® : 7'A% < 1} where
A € GL3(Q) is a positive definite matrix.

An interesting aspect of our approach is that some properties of modular
forms appear intrinsically in the proof. To our knowledge this is a novelty
in classical lattice point problems.

One can assume that A is an integral matrix because 6, is trivially invari-
ant by homothecies of B, then Q(¥) = ¥ AT is a positive integral ternary
form and the problem boils down to estimate very sharply short sums of
ro(n) =#{Z € Z® : Q(¥) =n}.

If, instead of rg(n), we consider the number of representations of n by
the genus of @, the Siegel mass formula [30] allows to express it as a product
of local (p-adic) factors that is susceptible to be treated by multiplicative
analysis. The computation of the product of these local factors is a difficult
task (A. Arenas got in her Ph.D. thesis some explicit formulas in connec-
tion with an arithmetical problem [2], [3]) but fortunately we do not need
complete evaluations. Having in mind Dirichlet L-functions we change the
usual terminology and name this number £(n).

For quadratic forms in many variables £(n) is a good approximation
of rg(n) but the ternary case is somewhat exceptional and W. Duke and
R. Schulze-Pillot have studied it showing a more involved situation [10] (see
also [14]). The key observation is that rg(n) and £(n) are Fourier coefficients
of modular forms of weight 3/2 with the same behavior at the cusps, then

ro(n) = L(n) + a,

where > a,e*™™ is a cusp form of weight 3/2. For individual n’s, a, could
exceed L(n), but using the best known bounds for coefficients of modular
forms of half-integral weight and the structure of the Shimura lift, we can
keep under control of its contribution to short sums of rg(n).

In some sense our approach is based on the combination of three kinds of
analysis: the bulk of the lattice points are counted with additive harmonics
and for the rest of them (those in a thin layer) we use multiplicative harmon-
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ics and coefficients of modular forms, whose bounds come from Kloosterman
sums that are the harmonics in the double coset decomposition of PSLy(Z).
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