Algebra II. Examen final. 5 de Septiembre de 2002.

Nota: El examen dura 3 horas. Cada problema tiene que estar en una hoja separada. Cada hoja tiene que llevar el nombre y el número del grupo.

- (i) (5 pts.) Considérese la extensión de cuerpos $F = \mathbb{Q}(\sqrt[4]{3}, i)$ sobre \mathbb{Q} .
 - a. Definir el grado de una extensión finita de cuerpos y, en particular, calcular el grado de F sobre $\mathbb Q.$
 - b. Discutir razonadamente si F sobre $\mathbb Q$ es una extensión de Galois.
 - c. Obtener el grado del polinomio mínimo de $\sqrt{3} + i$ sobre $\mathbb{Q}(\sqrt[4]{3})$.
 - d. Demostrar que el grupo de Galois de F/\mathbb{Q} es isomorfo al grupo diédrico de orden 8.
 - e. Enunciar el teorema de la correspondencia de Galois entre subgrupos y subcuerpos de una extensión Galoisiana.
 - f. Encontrar una subextensión de F/\mathbb{Q} normal y de grado 4. ¿Es única? Justificar la respuesta.
- (ii) (1.5 pt.) Consideramos los anillos $F_1 = \mathbb{Q}[x]/(p(x))$ y $F_2 = \mathbb{Q}(i)[x]/(p(x))$, siendo $p(x) = x^2 + 4$.
 - a. Decidir justificadamente si F_1 y F_2 son cuerpos o no.
 - b. Decidir si $\overline{x^3-5}$ es un elemento invertible en F_2 y, en caso afirmativo, encontrar su inverso.
- (iii) (1.5 pts.) Consideramos la extensión Galoisiana $K \subseteq K(u, u^2, u + v, u^2 + 1) = L$, siendo 2 y 3 los grados de los polinomios mínimos de u y v, respectivamente, sobre K.
 - a. Obtener razonadamente una base de L como espacio vectorial sobre K.
 - b. Demostrar que L = K(u + v).
- (iv) (2 pts.)
 - a. Supongamos que el polinomio $f \in \mathbb{Q}[x]$ tiene todas sus raíces reales y sea F el cuerpo de descomposición de f sobre \mathbb{Q} . ¿ Se puede asegurar que $\sqrt[3]{2} \notin F$? (Razonar la respuesta).
 - b. Sea F/K una extensión de Galois y su grupo de Galois $G=<\sigma,\tau>$. ¿ Qué se puede decir de un elemento $u\in F$ que cumple las condiciones: $\sigma(u)=u=\tau(u)$?