Theoretical challenge: Periodically explicit

Wavelets: theory and practice
Deadline: End of the course

The challenge

For $J \in \mathbb{Z}^{+}$let f_{J} be the 1-periodic extension of

$$
\sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} 2^{-j-1}\left(\psi\left(2^{j+1} x-k\right)+\psi\left(-2^{j+1} x-k\right)\right) \quad \text { for } \quad|x| \leq \frac{1}{2}
$$

where ψ is the Haar wavelet. Give a simple fully explicit formula for the coefficients c_{n}^{J} in the Fourier expansion $\sum c_{n}^{J} e(n x)$ of f_{J}.

Comments

Let $c_{n}^{\infty}=\lim _{J \rightarrow+\infty} c_{n}^{J}$. With your formula you can check that although $b_{n}^{J}=c_{n}^{J} / c_{n}^{\infty} \rightarrow 1$ for each fixed n with $c_{n}^{\infty} \neq 0$, we have $b_{2^{J+1}-1}^{J} \rightarrow-\infty$. This is related to the high pitch that one hears sometimes when quantizing in time a pure tone (see the experimental challenge "step by step").

