Theoretical challenge: Periodically explicit

Wavelets: theory and practice

Deadline: End of the course

The challenge

For $J \in \mathbb{Z}^+$ let f_J be the 1-periodic extension of

$$\sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} 2^{-j-1} \left(\psi(2^{j+1}x-k) + \psi(-2^{j+1}x-k) \right) \quad \text{for} \quad |x| \le \frac{1}{2}.$$

where ψ is the Haar wavelet. Give a simple fully explicit formula for the coefficients c_n^J in the Fourier expansion $\sum c_n^J e(nx)$ of f_J .

Comments

Let $c_n^{\infty} = \lim_{J \to +\infty} c_n^J$. With your formula you can check that although $b_n^J = c_n^J/c_n^{\infty} \to 1$ for each fixed n with $c_n^{\infty} \neq 0$, we have $b_{2^{J+1}-1}^J \to -\infty$. This is related to the high pitch that one hears sometimes when quantizing in time a pure tone (see the experimental challenge "step by step").