
Chapter 3

Wavelets and applications

3.1 Multiresolution analysis

3.1.1 The limits of Fourier analysis

Although along this chapter the underlying Hilbert space will be L2(R), we start with a
completely explicit example with Fourier series to illustrate the situation. We consider the
1-periodic functions

(3.1) f1(x) = ecos(2πx) cos
(

sin(2πx)
)

and f2(x) = f1(x) +
( sin(50πx)

50 cos(πx)

)2
.

Both functions differ in a scaled and displaced version of Fejér kernel (1.51) and in this
way f2 in [0, 1] is like f1 with a peak of height 1 and width approximately 1/25 at x = 1/2.
These C∞(T) functions equal their Fourier expansion that admit the closed form
(3.2)

f1(x) =
∞∑

n=0

cos(2πnx)

n!
and f2(x) = − 1

50
+

∞∑

n=0

(
1

n!
+

(−1)n

25

(
1− n

50

)

+

)
cos(2πnx),

where the index + indicates the positive part. The following figures contain the plots of
the functions f1 and f2 and the approximation (the dashed line) truncating these Fourier
series up to n = 8.
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The peak occurring in a short amount of time (or space, if you prefer) causes a small
change in 50 Fourier coefficients and we have to enlarge a lot the range of frequencies to
get a good approximation.
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The underlying idea, as we saw, is the uncertainty principle. It is impossible to see fine
details with a limited range of frequencies. How to fight against uncertainty principle? You
cannot defeat theorems but one can play the usual game in Mathematics: If you do not like
the conclusions, circumvent them changing the hypotheses. Imagine that we change the
usual complete orthonormal system {e(nx)}n∈Z in L2(T) by another containing a multiple
of f2 − f1, then to represent the peak we only need to spend a Fourier coefficient.

Let us move to L2(R) to address the problem in successive steps. Our intuition from
Fourier analysis and (1.101) tell us that, due to the lack of compactness of R, we deal
here with different animals, Fourier integrals instead of Fourier series, but the epitome of
wavelets that we will study next section, will recover the series for L2(R).

A first natural idea is to introduce windows. Have in mind a window as an approxi-
mation of a compactly supported function, something that lives mostly in an interval, the
one we are looking at. For us a window is a real function w : R −→ R with ‖w‖2 = 1
that we assume to be as regular as we wish, for instance rapidly decreasing, because this
is a temporary approach. If we are interested in representing details of a certain width we
should choose w having the most of its mass in an interval of the same size. If we “localize”
the harmonics e(ξx) of Fourier analysis with w(x)e(ξx) we will be able to reproduce func-
tions living in the approximate support of the window, whatever it means. To analyze any
function we must move the window along R. It suggests to introduce the windowed Fourier

transform, also called short-time Fourier transform when w is compactly supported,

(3.3) Gwf(ξ, b) =

∫
∞

−∞

f(x)wξ,b(x) dx with wξ,b(x) = w(x− b)e(ξx).

There exists a fair enough inversion formula and also a Parseval identity. We state them
here under overkilling regularity although there is an L2 version [Bré02, Th.D.1.2].

Proposition 3.1.1. Let w be as before. For any rapidly decreasing f we have

(3.4) f(x) =

∫
∞

−∞

∫
∞

−∞

Gwf(ξ, b)wξ,b(x) dξdb

and

(3.5) ‖f‖2
2 =

∫
∞

−∞

∫
∞

−∞

∣∣Gwf(ξ, b)
∣∣2 dξdb.

Proof. By Parseval identity (1.74) and ŵξ,b(t) = e
(
(ξ − t)b

)
ŵ(t− ξ), we have

(3.6) Gwf(ξ, b) =

∫
∞

−∞

f̂(t)e(tb)ŵ(ξ − t)e(−ξb) dt.

Note that the conjugate of ŵ(u) is ŵ(−u) because w is real. Changing the order of inte-
gration and using the inversion formula for the Fourier transform,

(3.7)

∫
∞

−∞

Gwf(ξ, b)e(ξx) dξ =

∫
∞

−∞

f̂(t)e(tb)e
(
t(x− b)

)
ŵ(x− b) dt = w(x− b)f(x).
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Following [Pin02] we call continuum wavelet to any ψ ∈ L2(R) − {0} satisfying

(3.9)

∫
∞

−∞

|ξ|−1|ψ̂(ξ)|2 dξ < ∞.

We say that ψ is normalized if this integral equals 1. We can always normalize a continuum
wavelet multiplying it by a positive real constant.

Given a certain wavelet ψ we define the wavelet transform associated to it as the
operator that applies f ∈ L2(R) into
(3.10)

Wψf(a, b) =

∫
∞

−∞

f(x)ψa,b(x) dx where ψa,b(x) =
1√
|a|
ψ

(x− b

a

)
, a, b ∈ R, a 6= 0.

Here ψa,b plays the role of a variable window where b gives the position and a the scale.
Note that ‖ψa,b‖2 = ‖ψ‖2 then Cauchy-Schwarz inequality assures that for each f ∈ L2(R)
its wavelet transform is bounded.

We expect some oscillation in ψ because we are mimicking wξ,b rather than w. The

condition (3.9) requires, for ψ̂ continuous, ψ̂(0) =
∫

∞

−∞
ψ = 0 and then involves a minimal

oscillation. In general, the vanishing of moments
∫

∞

−∞
xjψ(x) dx until certain n implies a

better behavior of the wavelet transform. We do not expand this idea here. It will reappear
later.

Of course, something with zero average and a minimal regularity and decay qualifies
to be a continuum wavelet. Let us review three celebrated examples.

A normalized continuum wavelet is the so-called Mexican hat wavelet, with a self-
explanatory name,

(3.11) ψ(x) =
1√
2π

(1 − x2)e−x2/2
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Its Fourier transform vanishes with order 2 at the origin and shows a quicker exponential
decay:

(3.12) ψ̂(ξ) = (2πξ)2e−2π2ξ2
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The next two wavelets receive proper names and appear in any academic textbook because
they provide examples with rather explicit calculations in the next section. Actually, they
are not very practical. The first one is the Haar wavelet and it was introduced at the
beginning of the 20th century [Haa10] to address a problem that would be central in the
development of wavelets. It is a humble horizontal broken line:

(3.13) ψ(x) =





1 if 0 ≤ x < 1/2,

−1 if 1/2 ≤ x < 1,

0 otherwise.
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Its Fourier transform vanishes with order 1 at ξ = 0 and decays as |ξ|−1, then (3.9) is
assured. We plot |ψ̂| because ψ̂ is complex.

(3.14) ψ̂(ξ) =

(
1 − e(−ξ/2)

)2

2πiξ
, |ψ̂|
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The Shannon wavelet involves the function sinc introduced in (1.60):

(3.15) ψ(x) = sinc
(x

2

)
cos

(3πx

2

)
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Its Fourier transform is almost as simple as the Haar wavelet:

(3.16) ψ̂(ξ) = χ∗

[−1,−1/2](ξ) + χ∗

[1/2,1](ξ)
-3 -2 -1 1 2 3

1

where χ∗

[a,b] means the characteristic function of the interval [a, b] putting 1/2 as the value
at the extremes.

For general normalized continuum wavelets, one can deduce an inversion formula and a
Parseval identity formally similar to Proposition 3.1.1. Due to the low regularity assumed
here the proof and even the statement requires finer considerations (as it happens with
the Fourier transform in L2 [DM72]). We state the result in this general context but we
assume some regularity for the proof (see [Pin02, §6.2] or [Bré02, D2·2] for a proof without
this assumption).

Proposition 3.1.2. Let ψ be a normalized continuum wavelet. Then for every f ∈ L2(R)

(3.17) f(x) =

∫
∞

−∞

∫
∞

−∞

Wψf(a, b)ψa,b(x)
dadb

a2
.

where the integrals are understood as principal values1 at a = 0 and a, b = ∞. Moreover

(3.18)

∫
∞

−∞

|f |2 =

∫
∞

−∞

∫
∞

−∞

∣∣Wψf(a, b)
∣∣2 dadb

a2
.

Proof. Let us assume ψ ∈ L1 (in this way ψ̂ ∈ L∞ ∩ C) and f, f̂ ∈ L1 ∩ C1 to have the
Fourier inversion formula at every point thanks to Theorem 1.2.4.

The Fourier transform of ψa,b is |a|1/2e(−bξ)ψ̂(aξ) by (1.71) and (1.72). Then Parseval
identity for the Fourier transform (1.74) implies

(3.19) Wψf(a, b) = |a|1/2
∫

∞

−∞

f̂(ξ)ψ̂(aξ)e(bξ) dξ.

1This means
∫

|b|<M1

∫
ǫ<|a|<M2

with ǫ → 0 and M1, M2 → ∞ and it converges in L2 to the function f .
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Truly both transforms are not very practical as they are because computing numerically
highly oscillatory integrals on R

2 is not so simple to implement. In the next section we
will see a Fourier series expansion with wavelets that is more friendly for computations
because it allows to consider approximations by partial sums. The most common approach
in applications employs a fully discrete wavelet transform involving only a finite number
of values that it is only vaguely related to (3.10).

3.1.2 The theoretical framework

To get some intuition about the idea behind multiresolution analysis, let us consider the
characteristic function f of the interval [0, 1) and let us try to analyze it in terms of the
Haar wavelet (3.13) following an iterative procedure. We define f1 to be the function
that gives the average of f in the doubled interval [0, 2) along this interval and that is 0
otherwise. The difference is easily related to the Haar wavelet ψ.
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f−f1

In a formula, f(x) − f1(x) = 2−1ψ(x/2). Now f1 is the same as f changing the scale in the
X and Y axes by factors 2 and 2−1 and we repeat the procedure defining in general fn as
the average of fn−1 in its doubled support to get
(3.23)

f(x) − f1(x) =
1

2
ψ

(x
2

)
, f1(x) − f2(x) =

1

4
ψ

(x
4

)
, . . . fn−1(x) − fn(x) =

1

2n
ψ

( x
2n

)
, . . .

Weierstrass M -test allows to sum all of these formulas to get

(3.24) f(x) =
∞∑

n=1

2−nψ(x/2n)

with uniform convergence. We have also convergence in L2 but not in L1 because the
integral of ψ vanishes and the integral of f does not.

Imagine that instead this silly f we have something more involved, say a function in L2

(as smooth as you wish, if you prefer so). It can be approximated by step functions. If the
steps are of width 2−m we can perform the same analysis with each step as we did with the
characteristic function of [0, 1) but now applying the scaling and translation x 7→ 2mx− k.
When the approximation by step functions is finer we will obtain more positive exponents
m − n in the powers of 2. In the limit, assuming the convergence, we would obtain an
expansion of any f ∈ L2 in terms of the Haar wavelet:

(3.25) f(x) =
∑

j,k∈Z

ajkψ(2jx− k).


