
2.1. SAMPLING AND A/D, D/A CONVERSION 49

This is a function F in 2M − 1 variables b1, . . . , bM−1, a1, . . . , aM and their extrema are
reached at values with ∇F = ~0. By the fundamental theorem of calculus, we have

(2.22)
∂F

∂bj

= (aj − bj)2g(bj) − (aj+1 − bj)2g(bj) for j = 1, 2, . . . , M − 1,

and differentiating under the integral

(2.23)
∂F

∂aj

= 2

∫

Ij

(aj − x)2g(x) dx for j = 1, 2, . . . , M.

If g(bj) 6= 0, the vanishing of (2.22) is equivalent to 2bj = aj + aj+1. The Lloyd-Max
algorithm [Llo82] [Max60] takes this information to solve ∇F = ~0 by successive approx-
imations. Namely, the algorithm starts with any educated guess for the representation
points and applies successively the following formulas (in the indicated order)
(2.24)

bj =
aj + aj+1

2
for j = 1, 2, . . . , M − 1 and aj =

∫

Ij
xg(x) dx

∫

Ij
xg(x) dx

for j = 1, 2, . . . , M.

Note that the second set of equations solves (2.23) equated to 0. The algorithm ends
when the values of the bj ’s and aj ’s stabilize with certain precision. A drawback of the
algorithm is that it could converge to a critical point different from one in which the
absolute minimum of F is attained. One can cook some counterexamples of this kind
[Gal06] choosing a distribution function g with some valleys but anyway one trusts the
educated initial guess should avoid this problem.

Suggested Readings. As you see, from the mathematical point of view, quantization is not a

big deal. Probably you do not need extra bibliography. I only dare to repeat that in [You14] you

can find the odd terminology used by engineers.

2.1.3 Data approximation

In practice, Theorem 2.1.1 allows to reconstruct a band limited function from their sampled
values but as we mentioned in connection with Papoulis-Gerchberg algorithm and (2.8),
its practical efficiency is objectionable in several situations. On the other hand, after
quantization and digital processing very rarely it is judicious to assume that the resulting
data are exact values of a band limited function.

Here we approach D/A conversion in a simple general mathematical form: We have
discrete (digital) data and we want to approximate them with a somewhat smooth function.
We restrict ourselves to 1D samples, as before, then have in mind sound signals rather than
images.

You know how to do it, finite samples, simple functions like polynomials. . . connect
the dots, literally. It is interpolation from basic courses of numerical analysis. You have
some interpolation nodes x0 < x1 < · · · < xn and you want to find a polynomial P such
that P (xj) = yj for some given yj . There is a nice theorem, with a short beautiful proof,
providing the error with respect to the purported smooth function connecting the dots.



50 CHAPTER 2. INTRODUCTION TO DIGITAL SIGNALS

Theorem 2.1.3. Given x0 < x1 < · · · < xn and f ∈ Cn+1([x0, xn]) there exists a unique
polynomial P of degree at most n such that P (xj) = f(xj). For each x ∈ [x0, xn] there
exists ξ ∈ (x0, xn) such that

(2.25) f(x) − P (x) =
f (n+1)(ξ)

(n + 1)!

n
∏

j=0

(x − xj).

Proof. The existence of P follows taking P =
∑

f(xj)Lk where Lk is the Lagrange polyno-
mial Lk(x) =

∏

j 6=k(x − xk)/(xj − xk) that verifies Lk(xj) = 0 for j 6= k and Lk(xk) = 1.
The uniqueness follows because a polynomial of degree at most n with n + 1 zeros is
identically zero.

For x = xj , (2.25) is trivial. In the rest of the cases, for x ∈ [x0, xn] fixed different from
the interpolation points, define g : [x0, xn] −→ R by

(2.26) g(t) = f(t) − P (t) −
(

f(x) − P (x)
)

n
∏

j=0

t − xj

x − xj

.

It satisfies g(x0) = · · · = g(xn) = g(x) = 0 and applying n + 1 times Rolle’s theorem we
conclude g(n+1)(ξ) = 0 (isn’t it beautiful?) and it gives the result because P (n+1) = 0 and
(n + 1)! is the (n + 1)-derivative of

∏

(t − xj).

The (n + 1)! grows to the speed of light (even faster because somebody said that the
latter is constant). Then probably you expect that for “smooth” data the more (degree)
the merrier. Let us check what happens with f(x) = (1 + 8x2)−1 in [−1, 1] when we take
N equally spaced nodes with N = 5, 10 and 15. Behold the results!

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

N = 5

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

N = 10

-1 -0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

N = 20

For N = 50 the error has peaks of order 105. You are seeing the so-called Runge’s phe-
nomenon [KC96]. the rough idea under this weird situation is that for an analytic function
with bounded convergence radius the Taylor coefficients behave like a power (by the root
test) then you should not expect too much from the fraction in (2.25) and especially near
the extremes the product involves a factorial in the numerator.

Definitively, it is not a good idea to use large degree polynomials to approximate func-
tions even if they are C∞. What about using low degree polynomials?

A first approach is joining the dots as kids, using straight lines (the same method
to define the length of rectifiable curve, if you prefer a more scientific precedent). Not
bad but we get corners. It is up to us to decide what kind of regularity we want but
some people would say that in graphical representations one can see at first glance first
derivatives (growth, monotonicity) and second derivatives (curvature). Let us focus then



2.1. SAMPLING AND A/D, D/A CONVERSION 51

on C2
(

[x0, xn]
)

interpolation. With something piecewise linear we get a continuous result,
with quadratic we get C1 and we need piecewise cubic to reach C2. Given the interpolation
nodes x0 < x1 < · · · < xn and their images yj , we define the space

(2.27) C2
n =

{

f ∈ C2(

[x0, xn]
)

: f(xj) = yj , 0 ≤ j ≤ n and f ′′(x0) = f ′′(xn) = 0
}

.

The functions in this space that coincide with a polynomial of degree at least 3 in each
interval [xj , xj+1] are called cubic splines, the adjective natural is added to indicate the
boundary condition f ′′(x0) = f ′′(xn) = 0. There are other possibilities not discussed here.

How do we know that we can find a (natural) cubic spline for any interpolation nodes
and corresponding values? It is a theorem but a simple count suggests that it is true:
Each polynomial of degree at most three has 4 coefficients and we have one of them for
each interval [xj , xj+1] then we have in total 4n unknowns. On the other hand, in the
inner nodes s ∈ C2 imposes s(x−

j ) = s(x+
j ) = yj , s′(x−

j ) = s′(x+
j ) and s′′(x−

j ) = s′′(x+
j )

that make 4(n − 1) linear equations. At the boundary nodes s(x0) = y0, s(xn) = yn,
s′′(x0) = s′′(xn) = 0 give 4 more linear equations. A linear system with as many equations
as unknowns is very likely to have a unique solution. This is the case for cubic splines
and indeed the resulting linear system suits special known algorithms of numerical linear
algebra that allow to deal with a large number of nodes. In the following proof we exemplify
the situation in the case of equally spaced nodes. With little changes, it extends to the
general case [SB02, §2.4.2].

Theorem 2.1.4. Given x0 < x1 < · · · < xn and {yj}n
j=0, there exists a unique cubic

spline s ∈ C2
n.

Proof (for equally spaced nodes). After a linear change it suffices to consider xj = j. Let
us say that the restriction of s to the interval [j, j + 1] is Sj(t + j) where Sj : [0, 1] −→ R

is the polynomial

(2.28) Sj(t) = sj
1t3 + sj

2t2 + sj
3t + sj

4 with 0 ≤ j < n.

The upper indexes, of course, do not indicate powers here.
Let us write the conditions mentioned above. Firstly, s must join the interpolation

points (xj , yj) then for 0 ≤ j < n

sj
4 = yj ,(2.29)

sj
1 + sj

2 + sj
3 + sj

4 = yj+1.(2.30)

On the other hand, s ∈ C2 imposes S′
j(0) = S′

j−1(1) and S′′
j (0) = S′′

j−1(1). Equivalently,
for 0 < j < n

sj
3 = 3sj−1

1 + 2sj−1
2 + sj−1

3 ,(2.31)

2sj
2 = 6sj−1

1 + 2sj−1
2 .(2.32)

Finally, the boundary values of the second derivative give

2s0
2 = 0,(2.33)

6sn−1
1 + 2sn−1

2 = 0.(2.34)



52 CHAPTER 2. INTRODUCTION TO DIGITAL SIGNALS

In principle the linear system (2.29)–(2.34) seems messy but it becomes quite simple if
we employ as unknowns the values Dj = s′(j) that coincide with both sides of (2.31).

Subtracting (2.30) and (2.29), it follows sj
1 + sj

2 + sj
3 = yj+1 − yj and on the other hand

Dj+1 + Dj = (3sj
1 + 2sj

2 + sj
3) + sj

3. Therefore sj
1 = Dj+1 + Dj − 2(yj+1 − yj). In the same

way we can get sj
2. Summing up, if we find Dj we shall have proved that the linear system

(2.29)–(2.34) has the solution

(2.35)

{

sj
1 = Dj+1 + Dj − 2(yj+1 − yj), sj

3 = Dj

sj
2 = −Dj+1 − 2Dj + 3(yj+1 − yj), sj

4 = yj .

To get an equation for Dj , we employ (2.32). Substituting (2.35) we obtain

(2.36) Dj−1 + 4Dj + Dj+1 = 3(yj+1 − yj−1),

for 0 < j < n. For j = 0 and j = n it has to be modified according (2.33) and (2.34) to

(2.37) 2D0 + D1 = 3(y1 − y0) and Dn−1 + 2Dn = 3(yn − yn−1).

The linear system (2.36)–(2.37) has a tridiagonal matrix, one having nonzero elements
only on the main diagonal and on the neighboring diagonals above and below. It is easy
to see that it is nonsingular (for instance applying Gaussian elimination or computing the
determinant with an inductive argument [Mui60]). There are very efficient methods to
solve linear systems with this kind of matrices [SB02]. Once we know that Dj are uniquely

determined, the same apply for the coefficients sj
k thanks to (2.35).

We now have a theorem that states that cubic splines exist and digging in the proof they
are easy to compute numerically. Are they useful? Have we avoided with them the large
wobbles of Runge’s phenomenon? The answer is absolutely yes. It turns out that cubic
splines are the “less curved” function connecting the interpolation points. In mathematical
terms

Theorem 2.1.5. Let s be the unique spline in C2
n. Then for any other function f ∈ C2

n

we have ‖s′′‖2 ≤ ‖f ′′‖2 with equality only if s = f .

Proof. We have

(2.38) ‖f ′′‖2
2 = ‖f ′′ − s′′‖2

2 + ‖s′′‖2
2 + 2

∫ xn

x0

s′′(f ′′ − s′′).

If the integral is zero, we get the first part of the result. Let us check this point. On each
interval [xj , xj+1] the spline s is a polynomial sj , integrating by parts on each of these
intervals

(2.39)

∫ xn

x0

s′′(f ′′ − s′′) =
n−1
∑

j=0

(

f ′(xj+1)s′′(xj+1) − f ′(xj)s′′(xj)
)

−
n−1
∑

j=0

∫ xj+1

xj

s′′′
j (f ′ − s′).

The first sum telescopes to 0. The last integral is also zero because s′′′
j is constant and

f − s vanishes at xj and xj+1.



2.1. SAMPLING AND A/D, D/A CONVERSION 53

If ‖s′′‖2 = ‖f ′′‖2 then (2.38) gives ‖f ′′ −s′′‖2 = 0 and f and s may differ in a quadratic
function but f ′′(x0) = s′′(x0) = 0, f(x0) = s(x0), f(x1) = s(x1) imply that they actually
coincide.

Let us try a couple of numerical examples. Consider 2N + 1 nodes in [0, 1] and impose
s(xj) = 0 except for the central point s(xN ) = 0.2. For N = 4 and N = 5 (9 and 11
nodes), we obtain

0.2 0.4 0.6 0.8 1

0.05
0.1

0.15
0.2

Nine nodes

0.2 0.4 0.6 0.8 1

0.05
0.1

0.15
0.2

Eleven nodes

In both cases we see that the first and the last pieces are almost flat. For N = 4 we have
s′(0) ≈ −6 · 10−3 and for N = 5 we have s′(0) ≈ 1.6 · 10−3.

After this little long distance influence, one may wonder whether there exists a nontriv-
ial compactly supported cubic spline b, meaning that it is identically zero outside an interval
determined by two nodes xj1

< xj2
, hence it must hold b′′(xjk

) = b′(xjk
) = b(xjk

) = 0. As
before, we restrict ourselves to the case of equally spaced nodes. Some calculations show
that there is no solution for j2 − j1 < 4. On the other hand, for xj = j − 2, 0 ≤ j ≤ n = 4
we have
(2.40)

b(t) = Qj(t − xj) if xj ≤ t ≤ xj+1 with

{

Q1(t) = 1
6 t3, Q3(t) = Q2(1 − t),

Q2(t) = 1
6(t + 1)3 − 2

3 t3, Q4(t) = Q1(1 − t),

that vanishes to order 3 at the end nodes and can be safely extended as zero outside its
support. The graphics of the pieces Qj composing this spline and of the spline itself are

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

Q1 Q4

Q1 and Q4

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

Q2 Q3

Q2 and Q3

-2 -1 1 2

0.2
0.4
0.6

The spline b

This cubic spline is, except for scaling, the only one supported in three equally spaced
consecutive nodes. The splines like this, having minimal support for a given regularity
are called B-splines. What is the big deal about them? It is related to applications.
Let us say that we have to interpolate f at a huge number of consecutive integer nodes
x0 < x1 < · · · < xn. It requires solving the linear system indicated in the proof of
Theorem 2.1.4. Moving a little a value yj , as we have seen, has little influence except for
few nearby nodes, then one may consider a cheap alternative that does not require any
numerical linear algebra

(2.41) sf (x) =
∑

j

f(xj)b(t − xj)



54 CHAPTER 2. INTRODUCTION TO DIGITAL SIGNALS

where we use integer translated copies of b as a basis (the “B” in “B-splines” stands for
“basis”). As b only overlaps with four copies, we have the formula

(2.42) sf (x) =
4

∑

k=1

Qk(t − xj)f(xj+3−k) for xj ≤ t ≤ xj+1 with 0 < j < n − 1.

We have to take a decision about what happens on the boundary j = 0 and j = n − 1. A
natural one is to keep (2.42) in these cases introducing two artificial nodes x−1 and xn+1

at which we assume f takes the linear extrapolated values i.e., f(x−1) = 2f(x0) − f(x1)
and f(xn+1) = 2f(xn) − f(xn−1).

Note that each evaluation requires only 4 multiplications by the pieces of the B-spline,
instead of using n + 1 coefficients coming from a previously solved linear system. The
drawback is that (2.42) does not perform actual interpolation. At the nodes we have

(2.43) sf (xj) =
4

∑

k=1

Qk(0)f(xj+3−k) =
f(xj−1) + 4f(xj) + f(xj+1)

6
.

What is the point of having a hyper-speed non-interpolating formula like (2.42)? A
possible answer is that after quantization we have already introduced errors everywhere
and imposing error free interpolation of error affected data is in some occasions to use a
sledgehammer to crack a nut. Moreover for smooth data, B-splines give a good approxi-
mation to spline exact approximation. For instance, if we interpolate f(x) = cos(2πx) in
[0, 1] with n = 10 the maximal error is like 2 · 10−2 and with B-splines 6 · 10−2. Increasing
n to 20 the figures are 5 · 10−3 and 1.6 · 10−2 and for n = 40, 10−3 and 4 · 10−3. It is fair
to mention that the error in the cubic spline interpolation accumulates near the endpoints
and in the inner point the approximation is by far better. This is because f ′′(0), f ′′(1) 6= 0
while natural splines satisfy s′′(0) = s′′(1) = 0. Anyway, the error using B-splines is small
taking into account the simplicity of the method.

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

n = 10, B-splines

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

n = 10, interpolation

0.2 0.4 0.6 0.8 1

-5e-3

-4e-3

-3e-3

-2e-3

-1e-3

1e-3

n = 20, interpolation error

To emphasize that this is practical, let us consider an example related to GIMP (the
free, cross-platform and open-source competitor of Adobe Photoshop). If you try to scale an
image with it, under the name “Quality” there is a little menu to choose None, Linear, Cubic

and Sinc. By default it is selected Cubic that, according to the documentation, “produces
the best results”. Why on earth are there several possibilities for this simple operation? In
principle to enlarge a photo making the sides six times longer is just passing the color of
the point (x, y) to the point (6x, 6y). Yes, it is but f(~x) = 6~x is a bijection when applied
on R

2 and not when applied on Z
2 and the pixels are labeled by integers. The result would

be an image plenty of holes. OK, let us take the units six times bigger, in this way we




