Deadline: December 1st

Let ω_{1} and ω_{2} be linearly independent (at each point) 1-forms on a manifold of dimension 2 . Let A_{1} and A_{2} be functions such that $d \omega_{1}=A_{1} \omega_{1} \wedge \omega_{2}$ and $d \omega_{2}=A_{2} \omega_{1} \wedge \omega_{2}$, and define the 1-form $\theta=-A_{1} \omega_{1}-A_{2} \omega_{2}$. Given a function f, consider now the same construction starting with $\widetilde{\omega}_{1}=\cos f \omega_{1}-\sin f \omega_{2}$ and $\widetilde{\omega}_{2}=\sin f \omega_{1}+\cos f \omega_{2}$ to get $\widetilde{\theta}$. Prove that $\widetilde{\theta}=\theta+d f$.

Solution. Most of you have done long calculations. This short solution does not include new ideas, it just organizes the notation in a more efficient way.

We have (if you are not familiar with differential forms think about it, it is easy)

$$
d \widetilde{\omega}_{1}=d(\cos f) \wedge \omega_{1}+\cos f d \omega_{1}-d(\sin f) \wedge \omega_{2}-\sin f d \omega_{2}
$$

Let B_{1}, B_{2} be such that $d f=B_{1} \omega_{1}+B_{2} \omega_{2}$. Expanding $d(\cos f)$ and $d(\sin f)$ and substituting $d \omega_{1}$ and $d \omega_{2}$, we get

$$
d \widetilde{\omega}_{1}=\left(\cos f\left(A_{1}-B_{1}\right)-\sin f\left(A_{2}-B_{2}\right)\right) \omega_{1} \wedge \omega_{2}
$$

and a similar formula holds for $d \widetilde{\omega}_{2}$ formally replacing f by $f-\pi / 2$, i.e.

$$
d \widetilde{\omega}_{2}=\left(\sin f\left(A_{1}-B_{1}\right)+\cos f\left(A_{2}-B_{2}\right)\right) \omega_{1} \wedge \omega_{2}
$$

Note that the trigonometric coefficients appearing in the big parentheses correspond to the matrix G_{f} of a rotation of angle f and they are the same coefficients relating $\widetilde{\omega}_{i}$ and ω_{i}. Then we can write

$$
\widetilde{\theta}=-\widetilde{A}_{1} \widetilde{\omega}_{1}-\widetilde{A}_{2} \widetilde{\omega}_{2}=-G_{f}\binom{A_{1}-B_{1}}{A_{2}-B_{2}} \cdot G_{f}\binom{\omega_{1}}{\omega_{2}}
$$

$\underset{\sim}{\text { w }}$ where - indicates the usual scalar product. Since it is preserved by rotations, we have that $\widetilde{\theta}=-\left(A_{1}-B_{1}\right) \omega_{1}-\left(A_{2}-B_{2}\right) \omega_{2}=\theta+d f$ as expected.

