Deadline: November 19th

Prove that $r^{4} \dot{\theta}^{2}+r^{4} \dot{\varphi}^{2} \sin ^{2} \theta$ remains constant along any geodesic of the Schwarzschild metric.

Solution. (Most of you have done more or less long calculations. I include here a short proof for illustration not involving explicit second derivatives of the variables. The notation p (generalized momentum) is taken from Physics.

The Lagrangian corresponding to the Schwarzschild metric is

$$
\mathcal{L}=\left(1-\frac{2 G M}{r}\right) \dot{t}^{2}-\left(1-\frac{2 G M}{r}\right)^{-1} \dot{r}^{2}-r^{2} \dot{\theta}^{2}-r^{2} \sin ^{2} \theta \dot{\varphi}^{2}
$$

We have

$$
p_{\theta}:=\frac{\partial \mathcal{L}}{\partial \dot{\theta}}=-2 r^{2} \dot{\theta} \quad \text { and } \quad p_{\varphi}:=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}=-2 r^{2} \sin ^{2} \theta \dot{\varphi}
$$

The Euler-Lagrange equations prove

$$
\dot{p_{\theta}}=\frac{\partial \mathcal{L}}{\partial \theta}=-2 r^{2} \sin \theta \cos \theta \dot{\varphi}^{2} \quad \text { and } \quad \dot{p_{\varphi}}=\frac{\partial \mathcal{L}}{\partial \varphi}=0
$$

The key observation is that $4 r^{4} \dot{\theta}^{2}+4 r^{4} \dot{\varphi}^{2} \sin ^{2} \theta=p_{\theta}^{2}+p_{\varphi}^{2} / \sin ^{2} \theta$. Then

$$
4 \frac{d}{d \lambda}\left(r^{4} \dot{\theta}^{2}+r^{4} \dot{\varphi}^{2} \sin ^{2} \theta\right)=2 p_{\theta} \dot{p}_{\theta}+2 \frac{p_{\varphi} \dot{p}_{\varphi}}{\sin ^{2} \theta}-2 p_{\varphi}^{2} \frac{\dot{\theta}}{\sin ^{3} \theta}=0
$$

where the last equality follows easily substituting the values of $p_{\theta}, \dot{p}_{\theta}, p_{\varphi}$ and \dot{p}_{φ}.

