Deadline: October 15th

Compute the induced metric (by the usual \mathbb{R}^{3} metric) on the sphere S^{2} when we use the coordinate chart $\left(S^{2}-\{N\}, p_{N}\right)$ where p_{N} the stereographic projection from the north pole N.

Solution. The inverse of the stereographic chart is

$$
(x, y) \longmapsto(X, Y, Z)=\left(\frac{2 x}{D}, \frac{2 y}{D}, 1-\frac{2}{D}\right) \quad \text { with } \quad D=1+x^{2}+y^{2}
$$

Then

$$
d X=\frac{2 D-4 x^{2}}{D^{2}} d x-\frac{4 x y}{D^{2}} d y, \quad d Y=\frac{2 D-4 y^{2}}{D^{2}} d x-\frac{4 x y}{D^{2}} d y, \quad d Z=\frac{4 x}{D^{2}} d x+\frac{4 y}{D^{2}} d y
$$

and the induced metric is

$$
\left(\frac{2 D-4 x^{2}}{D^{2}} d x-\frac{4 x y}{D^{2}} d y\right)^{2}+\left(-\frac{4 x y}{D^{2}} d y+\frac{2 D-4 y^{2}}{D^{2}} d x\right)^{2}+\left(\frac{4 x}{D^{2}} d x+\frac{4 y}{D^{2}} d y\right)^{2}
$$

where we are using the classic notations (the squares really mean tensor products with itself).
The coefficient of $(d x)^{2}$ is

$$
\left(\frac{2 D-4 x^{2}}{D^{2}}\right)^{2}+\left(\frac{4 x y}{D^{2}}\right)^{2}+\left(\frac{4 x}{D^{2}}\right)^{2}=\frac{4 D^{2}-16 x^{2} D+16 x^{2}\left(x^{2}+y^{2}+1\right)}{D^{4}}=\frac{4}{D^{2}}
$$

By the symmetry $x \leftrightarrow y$ this is also the coefficient of $(d y)^{2}$. There are not cross terms $d x d y$ because

$$
-2\left(2 D-4 x^{2}\right) 4 x y-8 x y\left(2 D-4 y^{2}\right)+32 x y=8 x y\left(-2 D+4 x^{2}-2 D+4 y^{2}+4\right)=0
$$

Then we obtain finally,

$$
4 D^{-2}\left((d x)^{2}+(d y)^{2}\right)=4\left(1+x^{2}+y^{2}\right)^{-2}\left((d x)^{2}+(d y)^{2}\right)
$$

