Let $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}, n>2$, a self-adjoint linear map with a double eigenvalue $\lambda_{1}=\lambda_{2}$ (we assume that the rest are simple), let V be the corresponding 2-dimensional eigenspace and $W=V^{\perp}$. We saw in class that $\left.L\right|_{V}=\lambda_{1} \operatorname{Id}$ (note that $V \cong \mathbb{R}^{2}$). As L, and hence $\left.L\right|_{W}$, is self-adjoint, we have an orthonormal basis ${ }^{1}$ of eigenvectors $\left\{\vec{v}_{i}\right\}_{i=3}^{n} \in W$. Given such vectors, $\left.L\right|_{W}$ is determined by their images $\left\{\lambda_{i} \vec{v}_{i}\right\}_{i=3}^{n}$. Reciprocally, $\left.L\right|_{W}$ determines the eigenvalues $\left\{\lambda_{i}\right\}_{i=3}^{n}$ and the orthonormal eigenvectors $\left\{\lambda_{i} \vec{v}_{i}\right\}_{i=3}^{n}$, up to the sign and the ordering.

Summing up, to define L we have to choose the eigenvalues and the orthonormal vectors to generate W (note that V is determined by W).

Data	degrees of freedom
$n-1$ distinct eigenvalues $\lambda_{1}, \lambda_{3}, \lambda_{4}, \ldots, \lambda_{n} \in \mathbb{R}$	$n-1$
$n-2$ orthonormal vectors $\vec{v}_{3}, \vec{v}_{4}, \ldots, \vec{v}_{n} \in \mathbb{R}^{n}$	$(n-1)+(n-2)+\cdots+2$

The explanation of the last cell is that \vec{v}_{3} is in S^{n-1} (dimension $n-1$), \vec{v}_{4} is in the intersection of S^{n-1} with the hyperplane $\vec{v}_{3} \cdot \vec{x}=\overrightarrow{0}$, that is the same as (diffeomorphic to) S^{n-2} and successively each new vector has to lie on a new hyperplane, decreasing the dimension by 1 .

Adding these values, we get

$$
\operatorname{dim} M=(n-1)+(n-1)+(n-2)+\cdots+2=\frac{n(n+1)}{2}-2 .
$$

Note: Some of you sent some references and asked me some questions. I am composing a document with complementary information and with some references to basic algebraic geometry. I shall post it on my website.

[^0]
[^0]: ${ }^{1}$ Just in case you do not remember linear algebra, note that $\left\langle L \vec{v}_{i}, \vec{v}_{j}\right\rangle=\lambda_{i}\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle,\left\langle\vec{v}_{i}, L \vec{v}_{j}\right\rangle=\lambda_{j}\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle$ implies $\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=0$ for $i \neq j$ if $\left\langle L \vec{v}_{i}, \vec{v}_{j}\right\rangle=\left\langle\vec{v}_{i}, L \vec{v}_{j}\right\rangle$ because $\lambda_{i} \neq \lambda_{j}$.

