
Cryptography. UAM 2010-2011 1

Primality tests

Pseudoprimes. Recall that n is a pseudoprime to the base a coprime to n if an−1 ≡ 1
(mod n) but n is composite.

The following program makes a list of pseudoprimes to the base 2. Change 2000 by the
upper limit of the list.

#
pseudoprimes to the base 2
#
for n in range (3 ,2000 ,2):

if Mod(2,n)^(n -1)==1:
if is_prime(n)== False:

print n, ’passes the test but is not prime ’

Preserving 2000 the obtained list is short:

341 passes the test but is not prime

561 passes the test but is not prime

645 passes the test but is not prime

1105 passes the test but is not prime

1387 passes the test but is not prime

1729 passes the test but is not prime

1905 passes the test but is not prime

and it is even shorter if we impose n to be also pseudoprimes to the base 3
#
pseudoprimes to the base 2 and 3
#
for n in range (5 ,2000 ,2):

if (Mod(2,n)^(n -1)==1) and (Mod(3,n)^(n -1)==1):
if is_prime(n)== False:

print n, ’passes the test but is not prime ’

1105 passes the test but is not prime

1729 passes the test but is not prime

A variation is considering a list of bases
#
pseudoprimes to the bases of a list
#

def pseud(n):
for k in list:

if Mod(k,n)^(n-1) != 1:
return False

return True

list =[2,3,5,7]
for n in range (5 ,50000 ,2):

if (is_prime(n)== False) and (pseud(n)== True):
print n, ’passes the test but is not prime ’

Cryptography. UAM 2010-2011 2

The result is again meagre although the upper limit is now 50000.

29341 passes the test but is not prime

46657 passes the test but is not prime

Strong pseudoprimes. Given n odd we can write n− 1 = 2kq with q odd.
The following lines of code compute q and k for a given n

def q_and_k(n):
q = n-1
k = 0
while Mod(q ,2)==0:

k += 1
q = q/2

return q,k

Running
print q_and_k (23)
print q_and_k (57)
print q_and_k (65537)

we get
(11, 1)
(7, 3)
(1, 16)

meaning
23− 1 = 21 · 11
57− 1 = 23 · 7
65537− 1 = 216

A strong pseudoprime to the base a is an odd composite number n such that either aq ≡ 1
(mod n) or ∃ 0 ≤ t < k such that a2tq ≡ −1 (mod n).

With the following program we check if a number n passes to test to be a strong pseudoprime
to the base a.

def strong_pseud(n,a):
(q,k) = q_and_k(n)
b = Mod(a,n)^q
if b==1:

return True

for i in range(k):
if b==-1:

return True
b = Mod(b,n)^2

return False

For instance, the output of
print strong_pseud (172947529 ,17)
print strong_pseud (172947529 ,23)

is True and False. We have 172947529 = 307 · 613 · 919.

Cryptography. UAM 2010-2011 3

Miller-Rabin test. This is a test broadly employed in practice. It simply checks if an odd
number passes the test for strongs pseudoprime to many bases a.

These bases are commonly chosen as the first primes or as random numbers.
In the second version it is known that assuming a conjecture in analytic number theory

(the Generalized Riemann Hypothesis) there are not composite numbers n passing the test for
more than 2(log n)2.

This two flavors of the test are contained in the following functions:

#
Miller -Rabin
#
def miller_rabin(n,secur):

for p in primes_first_n(secur):
Small primes
if Mod(n,p)==0:

if n==p:
return ’Prime’

return ’Composite ’
Check strong pseudoprimes
if strong_pseud(n,p)== False:

return ’Composite ’
return ’likely prime’

def miller_rabin2(n,secur):
a = 0
for i in range(secur):

a = 2+ZZ.random_element(n-3)
if Mod(n,a)==0:

return ’Composite ’
if strong_pseud(n,a)== False:

return ’Composite ’
return ’likely prime’

The parameter secur indicates the number of bases taken in consideration.

With secur = 2 we get a couple of faliures of the primality tests for n < 50000
secur = 2
for n in range (3 ,50000 ,2):

if (is_prime(n)== False)and(miller_rabin2(n,secur)==’likely prime’):
print n, ’passes the test but is not prime ’

5461 passes the test but is not prime

31621 passes the test but is not prime

and these exceptions disappear taking secur = 3.
For secur = 9 it can be checked that there are not exceptions less than 3.8 · 1018. In fact

the first exception is 3825123056546413051 = 149491 · 747451 · 34233211 that can be ruled out
with secur = 12.

Cryptography. UAM 2010-2011 4

Although its efficiency in practice, Miller-Rabin test is not a deterministic primality test.
Its output is ‘composite’ or ‘very likely prime’.

There are some deterministic tests, the most important is the cyclotomic test (Adleman-
Pomerance-Rumely 1983) that runs in time (log n)O(log log log n). It is not very simple and
requires methods of algebraic number theory.

Commonly the best option (regarding to performance) is to apply very sophisticated pri-
mality test only when we have tried direct division for some number and Miller-Rabin test
because they allow to rule out the most of the composite number with almost no effort.

