
v1.23 - 02/17/08 SAGE For Newbies 1/150

SAGE For Newbies

by Ted Kosan

Copyright © 2007 by Ted Kosan

 This work is licensed under the Creative Commons
Attribution-ShareAlike 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/3.0/

v1.23 - 02/17/08 SAGE For Newbies 2/150

Table of Contents

 1 Preface..8
 1.1 Dedication...8
 1.1 Acknowledgments...8
 1.2 Support Group..8

 2 Introduction..9
 2.1 What Is A Mathematics Computing Environment?......................................9
 2.2 What Is SAGE?..10
 2.3 Accessing SAGE As A Web Service..12

 2.3.1 Accessing SAGE As A Web Service Using Scenario 1.........................13
 2.4 Entering Source Code Into A SAGE Cell..16

 3 SAGE Programming Fundamentals..20
 3.1 Objects, Values, And Expressions...20
 3.2 Operators..21
 3.3 Operator Precedence..22
 3.4 Changing The Order Of Operations In An Expression...............................23
 3.5 Variables...23
 3.6 Statements..25
 3.6.1 The print Statement..25
 3.7 Strings..27
 3.8 Comments...27
 3.9 Conditional Operators..28
 3.10 Making Decisions With The if Statement...30
 3.11 The and, or, And not Boolean Operators..32
 3.12 Looping With The while Statement..34
 3.13 Long-Running Loops, Infinite Loops, And Interrupting Execution..........36
 3.14 Inserting And Deleting Worksheet Cells..37
 3.15 Introduction To More Advanced Object Types...37

 3.15.1 Rational Numbers..37
 3.15.2 Real Numbers..38
 3.15.3 Objects That Hold Sequences Of Other Objects: Lists And Tuples...39
 3.15.3.1 Tuple Packing And Unpacking..40

 3.16 Using while Loops With Lists And Tuples..41
 3.17 The in Operator..42
 3.18 Looping With The for Statement..42
 3.19 Functions..43
 3.20 Functions Are Defined Using the def Statement......................................43
 3.21 A Subset Of Functions Included In SAGE..45
 3.22 Obtaining Information On SAGE Functions...52
 3.23 Information Is Also Available On User-Entered Functions.......................53

v1.23 - 02/17/08 SAGE For Newbies 3/150

 3.24 Examples Which Use Functions Included With SAGE..............................54
 3.25 Using srange() And zip() With The for Statement....................................55
 3.26 List Comprehensions..56

 4 Object Oriented Programming..58
 4.1 Object Oriented Mind Re-wiring..58
 4.2 Attributes And Behaviors..58
 4.3 Classes (Blueprints That Are Used To Create Objects)..............................59
 4.4 Object Oriented Programs Create And Destroy Objects As Needed..........59
 4.5 Object Oriented Program Example..60

 4.5.1 Hellos Object Oriented Program Example (No Comments)................60
 4.5.2 Hellos Object Oriented Program Example (With Comments).................61
 4.6 SAGE Classes And Objects...65
 4.7 Obtaining Information On SAGE Objects...65
 4.8 The List Object's Methods..67
 4.9 Extending Classes With Inheritence...68
 4.10 The object Class, The dir() Function, And Built-in Methods....................70
 4.11 The Inheritance Hierarchy Of The sage.rings.integer.Integer Class.......71
 4.12 The "Is A" Relationship...73
 4.13 Confused?...73

 5 Miscellaneous Topics..74
 5.1 Referencing The Result Of The Previous Operation...................................74
 5.2 Exceptions..74
 5.3 Obtaining Numeric Results..75
 5.4 Style Guide For Expressions...76
 5.5 Built-in Constants...76
 5.6 Roots...78
 5.7 Symbolic Variables...78
 5.8 Symbolic Expressions...79

 5.9 Expanding And Factoring...80
 5.10 Miscellaneous Symbolic Expression Examples.....................................81
 5.11 Passing Values To Symbolic Expressions..81

 5.12 Symbolic Equations and The solve() Function...82
 5.13 Symbolic Mathematical Functions...83
 5.14 Finding Roots Graphically And Numerically With The find_root() Method
...84
 5.15 Displaying Mathematical Objects In Traditional Form............................85

 5.15.1 LaTeX Is Used To Display Objects In Traditional Mathematics Form
...86

 5.16 Sets...86

 6 2D Plotting..88
 6.1 The plot() And show() Functions..88

 6.1.1 Combining Plots And Changing The Plotting Color.............................90

v1.23 - 02/17/08 SAGE For Newbies 4/150

 6.1.2 Combining Graphics With A Graphics Object......................................91
 6.2 Advanced Plotting With matplotlib...92

 6.2.1 Plotting Data From Lists With Grid Lines And Axes Labels................93
 6.2.2 Plotting With A Logarithmic Y Axis...93
 6.2.3 Two Plots With Labels Inside Of The Plot..94

 7 SAGE Usage Styles..96
 7.1 The Speed Usage Style...96
 7.2 The OpenOffice Presentation Usage Style...96

 8 High School Math Problems (most of the problems are still in
development)..97

 8.1 Pre-Algebra...97
 8.1.1 Equations...97
 8.1.2 Expressions..97
 8.1.3 Geometry...97
 8.1.4 Inequalities..97
 8.1.5 Linear Functions..97
 8.1.6 Measurement...97
 8.1.7 Nonlinear Functions..97
 8.1.8 Number Sense And Operations...98

 8.1.8.1 Express an integer fraction in lowest terms.................................98
 8.1.9 Polynomial Functions...99

 8.2 Algebra...99
 8.2.1 Absolute Value Functions...99
 8.2.2 Complex Numbers...99
 8.2.3 Composite Functions...99
 8.2.4 Conics..99
 8.2.5 Data Analysis...99
 9 Discrete Mathematics: Elementary Number And Graph Theory100
 9.1.1 Equations...100

 9.1.1.1 Express a symbolic fraction in lowest terms..............................100
 9.1.1.2 Determine the product of two symbolic fractions.......................102
 9.1.1.3 Solve a linear equation for x...102
 9.1.1.4 Solve a linear equation which has fractions...............................103

 9.1.2 Exponential Functions...105
 9.1.3 Exponents..105
 9.1.4 Expressions..105
 9.1.5 Inequalities..105
 9.1.6 Inverse Functions..105
 9.1.7 Linear Equations And Functions..106
 9.1.8 Linear Programming..106
 9.1.9 Logarithmic Functions...106
 9.1.10 Logistic Functions..106
 9.1.11 Matrices...106
 9.1.12 Parametric Equations..106

v1.23 - 02/17/08 SAGE For Newbies 5/150

 9.1.13 Piecewise Functions..106
 9.1.14 Polynomial Functions...106
 9.1.15 Power Functions..107
 9.1.16 Quadratic Functions..107
 9.1.17 Radical Functions..107
 9.1.18 Rational Functions...107
 9.1.19 Sequences..107
 9.1.20 Series...107
 9.1.21 Systems of Equations...107
 9.1.22 Transformations...107
 9.1.23 Trigonometric Functions...107

 9.2 Precalculus And Trigonometry...108
 9.2.1 Binomial Theorem..108
 9.2.2 Complex Numbers...108
 9.2.3 Composite Functions...108
 9.2.4 Conics..108
 9.2.5 Data Analysis...108
 10 Discrete Mathematics: Elementary Number And Graph Theory108
 10.1.1 Equations...108
 10.1.2 Exponential Functions...109
 10.1.3 Inverse Functions..109
 10.1.4 Logarithmic Functions...109
 10.1.5 Logistic Functions..109
 10.1.6 Matrices And Matrix Algebra..109
 10.1.7 Mathematical Analysis...109
 10.1.8 Parametric Equations..109
 10.1.9 Piecewise Functions..109
 10.1.10 Polar Equations..110
 10.1.11 Polynomial Functions...110
 10.1.12 Power Functions..110
 10.1.13 Quadratic Functions..110
 10.1.14 Radical Functions..110
 10.1.15 Rational Functions...110
 10.1.16 Real Numbers..110
 10.1.17 Sequences..110
 10.1.18 Series...110
 10.1.19 Sets..111
 10.1.20 Systems of Equations...111
 10.1.21 Transformations...111
 10.1.22 Trigonometric Functions...111
 10.1.23 Vectors...111

 10.2 Calculus..111
 10.2.1 Derivatives...111
 10.2.2 Integrals...111
 10.2.3 Limits...112
 10.2.4 Polynomial Approximations And Series...112

v1.23 - 02/17/08 SAGE For Newbies 6/150

 10.3 Statistics...112
 10.3.1 Data Analysis...112
 10.3.2 Inferential Statistics..112
 10.3.3 Normal Distributions...112
 10.3.4 One Variable Analysis..112
 10.3.5 Probability And Simulation..112
 10.3.6 Two Variable Analysis..112

 11 High School Science Problems...114
 11.1 Physics..114

 11.1.1 Atomic Physics...114
 11.1.2 Circular Motion..114
 11.1.3 Dynamics..114
 11.1.4 Electricity And Magnetism..114
 11.1.5 Fluids...114
 11.1.6 Kinematics...114
 11.1.7 Light...115
 11.1.8 Optics...115
 11.1.9 Relativity..115
 11.1.10 Rotational Motion..115
 11.1.11 Sound...115
 11.1.12 Waves...115
 11.1.13 Thermodynamics..115
 11.1.14 Work...115
 11.1.15 Energy..115
 11.1.16 Momentum...116
 11.1.17 Boiling..116
 11.1.18 Buoyancy..116
 11.1.19 Convection...116
 11.1.20 Density...116
 11.1.21 Diffusion...116
 11.1.22 Freezing...116
 11.1.23 Friction..116
 11.1.24 Heat Transfer...117
 11.1.25 Insulation...117
 11.1.26 Newton's Laws...117
 11.1.27 Pressure...117
 11.1.28 Pulleys..117

 12 Fundamentals Of Computation...118
 12.1 What Is A Computer?..118
 12.2 What Is A Symbol?..118
 12.3 Computers Use Bit Patterns As Symbols..119
 12.4 Contextual Meaning...122
 12.5 Variables...122
 12.6 Models..124

v1.23 - 02/17/08 SAGE For Newbies 7/150

 12.7 Machine Language...125
 12.8 Compilers And Interpreters..128
 12.9 Algorithms..129
 12.10 Computation...131
 12.11 Diagrams Can Be Used To Record Algorithms.....................................133

 12.12 Calculating The Sum Of The Numbers Between 1 And 10...............133
 12.13 The Mathematics Part Of Mathematics Computing Systems...............135

 13 Setting Up A SAGE Server...136
 13.1 An Introduction To Internet-based Technologies................................136
 13.1.1 How do multiple computers communicate with each other?..........136
 13.1.2 The TCP/IP protocol suite..137
 13.1.3 Clients and servers..139
 13.1.4 DHCP...139
 13.1.5 DNS..140
 13.1.6 Processes and ports...141
 13.1.7 Well known ports, registered ports, and dynamic ports..................145

 13.1.7.1 Well known ports (0 - 1023)..145
 13.1.7.2 Registered ports (1024 - 49151)...147
 13.1.7.3 Dynamic/private ports (49152 - 65535)....................................147

 13.1.8 The SSH (Secure SHell) service ...147
 13.1.9 Using scp to copy files between machines on the network.............148

 13.2 SAGE's Architecture (in development)...148
 13.3 Linux-Based SAGE Distributions..150
 13.4 The VMware Virtual Machine Distribution Of SAGE (Mostly For Windows
Users)..150

v1.23 - 02/17/08 SAGE For Newbies 8/150

 1 Preface

 1.1 Dedication
This book is dedicated to Steve Yegge and his blog entry "Math Every
Day" (http://steve.yegge.googlepages.com/math-every-day).

 1.1 Acknowledgments
The following people have provided feedback on this book (if I forgot to include
your name on this list, please email me at ted.kosan at gmail.com):

Dave Dobbs

David Joyner

Greg Landweber

Jeremy Pedersen

William Stein

Steve Vonn

Joe Wetherell

 1.2 Support Group
The support group for this book is called sage-support and it can be accessed
at:

http://groups.google.com/group/sage-support . Please place "[Newbies book]" in
the title of your email when you post to this group.

1

2

3
4

5

6
7

8

9

10

11

12

13

14

15

16
17

18
19

file:///C:/ted/docs/%20http://steve.yegge.googlepages.com/math-every-day
http://groups.google.com/group/sage-newbie

v1.23 - 02/17/08 SAGE For Newbies 9/150

 2 Introduction
SAGE is an open source mathematics computing environment (MCE) for
performing symbolic, algebraic, and numerical computations. Mathematics
computing environments are complex and it takes a significant amount of time
and effort to become proficient at using one. The amount of power that a
mathematics computing environment makes available to a user, however, is well
worth the effort needed to learn one. It will take a beginner a while to become
an expert at using SAGE, but fortunately one does not need to be a SAGE expert
in order to begin using it to solve problems.

 2.1 What Is A Mathematics Computing Environment?
A mathematics computing environment is a set of computer programs that are
able to automatically perform a wide range of mathematics calculation
algorithms. Calculation algorithms exist for almost all areas of mathematics and
new algorithms are being developed all the time.

A significant number of mathematics computing environments have been created
since the 1960s and the following list contains some of the more popular ones:

http://en.wikipedia.org/wiki/Comparison_of_computer_algebra_systems

Some environments are highly specialized and some are general purpose. Some
allow mathematics to be displayed and entered in traditional form (which is what
is found in most math textbooks), some are able to display traditional form
mathematics but need to have it input as text, and some are only able to have
mathematics displayed and entered as text.

As an example of the difference between traditional mathematics form and text
form, here is a formula which is displayed in traditional form:

and here is the same formula in text form:

A == x^2 + 4*h*x
Most mathematics computing environments contain some kind of mathematics-
oriented high-level programming language. This allows software programs to be
developed which have access to the mathematics algorithms which are included
in the environment. Some of these mathematics-oriented programming
languages were created specifically for the environment they work in while
others are built around an existing programming language.

20

21
22
23
24
25
26
27
28

29

30
31
32
33

34
35

36

37
38
39
40
41

42
43

44

45

46
47
48
49
50
51

http://en.wikipedia.org/wiki/Comparison_of_computer_algebra_systems

v1.23 - 02/17/08 SAGE For Newbies 10/150

Some mathematics computing environments are proprietary and need to be
purchased while others are open source and available for free. Both kinds of
environments possess similar core capabilities, but they usually differ in other
areas.

Proprietary environments tend to be more polished than open source
environments and they often have graphical user interfaces that make inputting
and manipulating mathematics in traditional form relatively easy. However,
proprietary environments also have drawbacks. One drawback is that there is
always a chance that the company that owns it may go out of business and this
may make the environment unavailable for further use. Another drawback is
that users are unable to enhance a proprietary environment because the
environment's source code is not made available to users.

Open source mathematics computing environments usually do not have graphical
user interfaces, but their user interfaces are adequate for most purposes and the
environment's source code will always be available to whomever wants it. This
means that people can use the environment for as long as there is interest in it
and they can also enhance it as desired.

 2.2 What Is SAGE?
SAGE is an open source mathematics computing environment that inputs
mathematics in textual form and displays it in either textual form or traditional
form. While most mathematics computing environments are self-contained
entities, SAGE takes the umbrella-like approach of providing some algorithms
itself and some by wrapping around other mathematics computing environments.
This strategy allows SAGE to provide the power of multiple mathematics
computing environments within an architecture that is easily able to evolve to
meet future needs.

SAGE is written in the powerful and very popular Python programming language
and the mathematics-oriented programming language that SAGE makes
available to users is an extension of Python. This means that expert SAGE users
must also be expert Python programmers. Some knowledge of the Python
programming language is so critical to being able to successfully use SAGE that
a user's knowledge of Python can be used to help determine their level of SAGE
expertise. (see Table 1)

52
53
54
55

56
57
58
59
60
61
62
63

64
65
66
67
68

69

70
71
72
73
74
75
76
77

78
79
80
81
82
83
84

v1.23 - 02/17/08 SAGE For Newbies 11/150

Level Knowledge

SAGE Expert Knows Python well and SAGE well.

SAGE Novice Knows Python but has only used SAGE for a short while.

SAGE Newbie Does not know Python but has been exposed to at least 1
programming language.

Programming
Newbie

Does not know how a computer works and has never
programmed before.

Table 1: SAGE user experience levels

This book is for SAGE Newbies. It assumes the reader has been exposed to at
least 1 programming language, but has never programmed in Python (if your
understanding of how computer programming works needs refreshing, you may
want to read through the Fundamentals Of Computing section of this book.) This
book will teach you enough Python to begin solving problems with SAGE. It will
help you to become a SAGE Novice, but you will need to learn Python from books
that are dedicated to it before you can become a SAGE Expert.

If you are a programming newbie, this book will probably be too advanced for
you. I have written a series of free books called The Professor and Pat
Programming Series (http://professorandpat.org) and they are designed for
programming newbies. If you are a programming newbie and are interested in
learning how to use SAGE, you might be interested in working through the
Professor and Pat Programming books first and then come back to this book
when you are finished with them.

The SAGE website (sagemath.org) contains more information about SAGE along
with other SAGE resources.

85
86
87
88
89
90
91

92
93
94
95
96
97
98

99
100

http://sagemath.org/
http://professorandpat.org/

v1.23 - 02/17/08 SAGE For Newbies 12/150

 2.3 Accessing SAGE As A Web Service
The ways in which SAGE can be used are as flexible as its architecture. Most
SAGE beginners, however, will first use SAGE as a web service which is accessed
using a web browser. Any copy of SAGE can be configured to provide this web
service. Drawing 2.1 shows 3 SAGE web service scenarios:

Drawing 2.1: Three SAGE web service scenarios.

Sage
ServerInternet

Scenario 1:
Sage web service
available on
the Internet.

Sage
Server

Scenario 2:
Sage web service
available on a
Local Area Network.

Network
Switch

Scenario 3:
Sage web service
available on the same
computer that the
browser is running on.

Personal
Computer

Sage
Server

Browser

Browser
Browser

Browser
Browser

Browser
Browser

Browser

Browser

101

102
103
104
105

v1.23 - 02/17/08 SAGE For Newbies 13/150

 2.3.1 Accessing SAGE As A Web Service Using Scenario 1
SAGE currently works best with the Firefox web browser and if you do not yet
have Firefox installed on your computer, it can be obtained at
http://mozilla.com/firefox.

The SAGE development team provides a public SAGE web service at
(http://sagenb.com) and this service can also be accessed from the top of the
SAGE homepage. We will now walk through the steps that are needed to sign up
for an account on this public SAGE web service.

Open a Firefox browser window and enter the following into the URL bar:

http://sagenb.com

The service will then display a Welcome page (see Drawing 2.2)

The SAGE web service is called a SAGE Notebook because it simulates the kind
of notebook that mathematicians traditionally use to perform mathematical
calculations. Before you can access the Notebook, you must first sign up for a
Notebook account. Select the Sign up for a new SAGE Notebook account
link and a registration page will be displayed. (see Drawing 2.3)

Drawing 2.2: SAGE Welcome screen.

106
107
108

109
110
111
112

113

114

115

116
117
118
119
120

http://www.sagenb.com/
http://mozilla.com/firefox

v1.23 - 02/17/08 SAGE For Newbies 14/150

Enter a username and password in the Username and Password text boxes and
then press the Register Now button. A page will then be displayed that
indicates that the registration information was received and that a confirmation
message was sent to the email address that you provided.

Open this email and select the link that it contains. This will complete the
registration process and then you may go back to the Notebook's Welcome page
and log in.

After successfully logging into your Notebook account, a worksheet
management page will be displayed. (see Drawing 2.4)

Drawing 2.3: Signup page.

Drawing 2.4: Worksheet management page.

121
122
123
124

125
126
127

128
129

v1.23 - 02/17/08 SAGE For Newbies 15/150

Physical mathematics notebooks contain worksheets and therefore SAGE's
virtual notebook contains worksheets too. The worksheet management page
allows worksheets to be created, deleted, published on the Internet, etc. Since
this is a newly created Notebook, it does not contain any worksheets yet.

Create a new worksheet now by selecting the New Worksheet link. A
worksheet can either use special mathematics fonts to display mathematics in
traditional form or it can use images of these fonts. If the computer you are
working on does not have mathematics fonts installed, the worksheet will display
a message which indicates that it will use its built-in image fonts as an
alternative. (see Drawing 2.5)

The image fonts are not as clear as normal mathematics fonts, but they are
adequate for most purposes. Later you can install mathematics fonts on your
computer if you would like, but for now just press the Hide this Message
button and a page which contains a blank worksheet will be shown. (see Drawing
2.6)

Drawing 2.5: jsMath No TeXfonts alert.

130
131
132
133

134
135
136
137
138
139

140
141
142
143
144

v1.23 - 02/17/08 SAGE For Newbies 16/150

Worksheets contain 1 or more cells which are used to enter source code that will
be executed by SAGE. Cells have rectangles drawn around them as shown in
Figure 6 and they are able to grow larger as more text is entered into them.
When a worksheet is first created, an initial cell is placed at the top of its work
area and this is where you will normally begin entering text.

 2.4 Entering Source Code Into A SAGE Cell
Lets begin exploring SAGE by using it as a simple calculator. Place your mouse
cursor inside of the cell that is at the top of your worksheet. Notice that the
cursor is automatically placed against the left side of a new cell. You must
always begin each line of SAGE source code at the left side of a cell with no
indenting (unless you are instructed to do otherwise).

Type the following text, but do not press the enter key:

2 + 3

your worksheet should now look like Drawing 2.7.

Drawing 2.6: Blank worksheet.

Worksheet cell

145
146
147
148
149

150

151
152
153
154
155

156

157

158

v1.23 - 02/17/08 SAGE For Newbies 17/150

At this point you have 2 choices. You can either press the enter key <enter> or
you can hold down the shift key and press the enter key <shift><enter>. If
you simply press the enter key, the cell will expand and drop the cursor down to
the next line so you can continue entering source code.

If you press shift and enter, however, the Worksheet will take all the source
code that has been typed into the cell and send it to the SAGE server through the
network so the server can execute the code. When SAGE is given source code
to execute, it will first process it using software called the SAGE preprocessor.
The preprocessor converts SAGE source code into Python source code so that it
can be executed using the Python environment that SAGE is built upon.

The converted source code is then passed to the Python environment where it is
compiled into a special form of machine language called Python bytecode. The
bytecode is then executed by a program that emulates a hardware CPU and this
program is called the Python interpreter.

Sometimes the server is able to execute the code quickly and sometimes it will
take a while. While the code is being executed by the server, the Worksheet will
display a small green vertical bar beneath the cell towards the left side of the
window as shown in Drawing 2.8.

Drawing 2.7: Entering text into a cell.

159
160
161
162

163
164
165
166
167
168

169
170
171
172

173
174
175
176

v1.23 - 02/17/08 SAGE For Newbies 18/150

When the server is finished executing the source code, the green bar will
disappear. If a displayable result was generated, this result is sent back to the
Worksheet and the Worksheet then displays it in the area that is directly beneath
the cell that the request was submitted from.

Press shift and enter in your cell now and in a few moments you should see a
result that looks like Drawing 2.9.

If code was submitted for execution from the bottom cell in the Notebook, a

Drawing 2.8: Executing the text in a cell.

Green bar indicates that the
Sage server is currently
executing the code that was
submitted from the above cell
by pressing <shift><enter>.

Drawing 2.9: The results of execution are displayed.

177
178
179
180

181
182

183

v1.23 - 02/17/08 SAGE For Newbies 19/150

blank cell is automatically added beneath this cell when the server has finished
executing the code.

Now enter the source code that is shown in the second cell in Drawing 2.10 and
execute it.

Drawing 2.10: A more complex calculation

184
185

186
187

v1.23 - 02/17/08 SAGE For Newbies 20/150

 3 SAGE Programming Fundamentals

 3.1 Objects, Values, And Expressions
The source code lines

2 + 3

and

5 + 6*21/18 - 2^3

are both called expressions and the following is a definition of what an
expression is:

An expression in a programming language is a combination of values,
variables, operators, and functions that are interpreted (evaluated)
according to the particular rules of precedence and of association
for a particular programming language, which computes and then
produces another value. The expression is said to evaluate to that
value. As in mathematics, the expression is (or can be said to have)
its evaluated value; the expression is a representation of that
value. (http://en.wikipedia.org/wiki/Expression_(programming))

In a computer, a value is a pattern of bits in one or more memory locations that
mean something when interpreted using a given context. In SAGE, patterns of
bits in memory that have meaning are called objects. SAGE itself is built with
objects and the data that SAGE programs process are also represented as
objects. Objects are explained in more depth in Chapter 4.

In the above expressions, 2, 3, 5, 6, 21, and 18 are objects that are interpreted
using a context called the sage.rings.integer.Integer context. Contexts that
can be associated with objects are called types and an object that is of type
sage.rings.integer.Integer is used to represent integers.

There is a command in SAGE called type() which will return the type of any
object that is passed to it. Lets have the type() command tell us what the type of
the objects 3 and 21 are by executing the following code: (Note: from this point
forward, the source code that is to be entered into a cell, and any results that
need to be displayed, will be given without using a graphic worksheet screen
capture.)

type(3)
|
 <type 'sage.rings.integer.Integer'>

188

189

190

191

192

193

194
195

196
197
198
199
200
201
202
203

204
205
206
207
208

209
210
211
212

213
214
215
216
217
218

219
220
221

http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Expression_(programming)
http://en.wikipedia.org/wiki/Function_(programming)
http://en.wikipedia.org/wiki/Operator_(programming)
http://en.wikipedia.org/wiki/Variable
http://en.wikipedia.org/wiki/Value_(computer_science)
http://en.wikipedia.org/wiki/Programming_language

v1.23 - 02/17/08 SAGE For Newbies 21/150

type(21)
|
 <type 'sage.rings.integer.Integer'>

The way that a person tells the type() command what object they want to see the
type information for is by placing the object within the parentheses which are to
the right of the the name 'type'.

 3.2 Operators
In the above expressions, the characters +, −, *, /, ^ are called operators and
their purpose is to tell SAGE what operations to perform on the objects in an
expression. For example, in the expression 2 + 3, the addition operator + tells
SAGE to add the integer 2 to the integer 3 and return the result. Since both the
objects 2 and 3 are of type sage.rings.integer.Integer, the result that is obtained
by adding them together will also be an object of type sage.rings.integer.Integer.

The subtraction operator is −, the multiplication operator is *, / is the
division operator, % is the remainder operator, and ^ is the exponent
operator. SAGE has more operators in addition to these and more information
about them can be found in Python documentation.

The following examples show the −, *, /,%, and ^ operators being used:

5 - 2
|

3

3*4
|

12

30/3
|

10

8%5
|

3

2^3
|

8

The − character can also be used to indicate a negative number:

222
223
224

225
226
227

228

229
230
231
232
233
234

235
236
237
238

239

240
241
242

243
244
245

246
247
248

249
250
251

252
253
254

255

v1.23 - 02/17/08 SAGE For Newbies 22/150

-3
|
 -3

Subtracting a negative number results in a positive number:

- -3
|
 3

 3.3 Operator Precedence
When expressions contain more than 1 operator, SAGE uses a set of rules called
operator precedence to determine the order in which the operators are applied
to the objects in the expression. Operator precedence is also referred to as the
order of operations. Operators with higher precedence are evaluated before
operators with lower precedence. The following table shows a subset of SAGE's
operator precedence rules with higher precedence operators being placed higher
in the table:

^ Exponents are evaluated right to left.

*,%,/ Then multiplication, remainder, and division operations are evaluated left
to right.

+, − Finally, addition and subtraction are evaluated left to right.

Lets manually apply these precedence rules to the multi-operator expression we
used earlier. Here is the expression in source code form:

5 + 6*21/18 - 2^3

And here it is in traditional form:

According to the precedence rules, this is the order in which SAGE evaluates the
operations in this expression:

5 + 6*21/18 - 2^3
5 + 6*21/18 - 8
5 + 126/18 - 8
5 + 7 - 8
12 - 8
4
Starting with the first expression, SAGE evaluates the ^ operator first which

256
257
258

259

260
261
262

263

264
265
266
267
268
269
270

271

272
273

274

275
276

277

278

279
280

281
282
283
284
285
286

287

v1.23 - 02/17/08 SAGE For Newbies 23/150

results in the 8 in the expression below it. In the second expression, the *
operator is executed next, and so on. The last expression shows that the final
result after all of the operators have been evaluated is 4.

 3.4 Changing The Order Of Operations In An Expression
The default order of operations for an expression can be changed by grouping
various parts of the expression within parentheses. Parentheses force the code
that is placed inside of them to be evaluated before any other operators are
evaluated. For example, the expression 2 + 4*5 evaluates to 22 using the
default precedence rules:

2 + 4*5
|
 22

If parentheses are placed around 4 + 5, however, the addition is forced to be
evaluated before the multiplication and the result is 30:

(2 + 4)*5
|
 30

Parentheses can also be nested and nested parentheses are evaluated from the
most deeply nested parentheses outward:

((2 + 4)*3)*5
|
 90

Since parentheses are evaluated before any other operators, they are placed at
the top of the precedence table:

() Parentheses are evaluated from the inside out.

^ Then exponents are evaluated right to left.

*,%,/ Then multiplication, remainder, and division operations are evaluated left
to right.

+, − Finally, addition and subtraction are evaluated left to right.

 3.5 Variables
A variable is a name that can be associated with a memory address so that
humans can refer to bit pattern symbols in memory using a name instead of a
number. One way to create variables in SAGE is through assignment and it

288
289
290

291

292
293
294
295
296

297
298
299

300
301

302
303
304

305
306

307
308
309

310
311

312

313

314
315

316

317

318
319
320

v1.23 - 02/17/08 SAGE For Newbies 24/150

consists of placing the name of a variable you would like to create on the left side
of an equals sign '=' and an expression on the right side of the equals sign.
When the expression returns an object, the object is assigned to the variable.

In the following example, a variable called box is created and the number 7 is
assigned to it:

box = 7
|

Notice that unlike earlier examples, a displayable result is not returned to the
worksheet because the result was placed in the variable box. If you want to see
the contents of box, type its name into a blank cell and then evaluate the cell:

box
|
 7

As can be seen in this example, variables that are created in a given cell in a
worksheet are also available to the other cells in a worksheet. Variables exist in
a worksheet as long as the worksheet is open, but when the worksheet is closed,
the variables are lost. When the worksheet is reopened, the variables will need
to be created again by evaluating the cells they are assigned in. Variables can be
saved before a worksheet is closed and then loaded when the worksheet is
opened again, but this is an advanced topic which will be covered later.

SAGE variables are also case sensitive. This means that SAGE takes into account
the case of each letter in a variable name when it is deciding if two or more
variable names are the same variable or not. For example, the variable name
Box and the variable name box are not the same variable because the first
variable name starts with an upper case 'B' and the second variable name starts
with a lower case 'b'.

Programs are able to have more than 1 variable and here is a more sophisticated
example which uses 3 variables:

a = 2
|

b = 3
|

a + b
|
 5

321
322
323

324
325

326
327

328
329
330

331
332
333

334
335
336
337
338
339
340

341
342
343
344
345
346

347
348

349
350

351
352

353
354
355

v1.23 - 02/17/08 SAGE For Newbies 25/150

answer = a + b
|

answer
|
 5

The part of an expression that is on the right side of an equals sign '=' is always
evaluated first and the result is then assigned to the variable that is on the left
side of the equals sign.

When a variable is passed to the type() command, the type of the object that the
variable is assigned to is returned:

a = 4
type(a)
|
 <type 'sage.rings.integer.Integer'>

Data types and the type command will be covered more fully later.

 3.6 Statements
Statements are the part of a programming language that is used to encode
algorithm logic. Unlike expressions, statements do not return objects and they
are used because of the various effects they are able to produce. Statements can
contain both expressions and statements and programs are constructed by using
a sequence of statements.

 3.6.1 The print Statement
If more than one expression in a cell generates a displayable result, the cell will
only display the result from the bottommost expression. For example, this
program creates 3 variables and then attempts to display the contents of these
variables:

a = 1
b = 2
c = 3
a
b
c
|
 3

In SAGE, programs are executed one line at a time, starting at the topmost line
of code and working downwards from there. In this example, the line a = 1 is

356
357

358
359
360

361
362
363

364
365

366
367
368
369

370

371

372
373
374
375
376

377

378
379
380
381

382
383
384
385
386
387
388
389

390
391

v1.23 - 02/17/08 SAGE For Newbies 26/150

executed first, then the line b = 2 is executed, and so on. Notice, however, that
even though we wanted to see what was in all 3 variables, only the content of the
last variable was displayed.

SAGE has a statement called print that allows the results of expressions to be
displayed regardless of where they are located in the cell. This example is
similar to the previous one except print statements are used to display the
contents of all 3 variables:

a = 1
b = 2
c = 3
print a
print b
print c
|
 1
 2
 3

The print statement will also print multiple results on the same line if commas
are placed between the expressions that are passed to it:

a = 1
b = 2
c = 3*6
print a,b,c
|
 1 2 18

When a comma is placed after a variable or object which is being passed to the
print statement, it tells the statement not to drop the cursor down to the next
line after it is finished printing. Therefore, the next time a print statement is
executed, it will place its output on the same line as the previous print
statement's output.

Another way to display multiple results from a cell is by using semicolons ';'. In
SAGE, semicolons can be placed after statements as optional terminators, but
most of the time one will only see them used to place multiple statements on the
same line. The following example shows semicolons being used to allow
variables a, b, and c to be initialized on one line:

a=1;b=2;c=3
print a,b,c
|

1 2 3

392
393
394

395
396
397
398

399
400
401
402
403
404
405
406
407
408

409
410

411
412
413
414
415
416

417
418
419
420
421

422
423
424
425
426

427
428
429
430

v1.23 - 02/17/08 SAGE For Newbies 27/150

The next example shows how semicolons can be also used to output multiple
results from a cell:

a = 1
b = 2
c = 3*6
a;b;c
|

1
2
18

 3.7 Strings
A string is a type of object that is used to hold text-based information. The
typical expression that is used to create a string object consists of text which is
enclosed within either double quotes or single quotes. Strings can be
referenced by variables just like numbers can and strings can also be displayed
by the print statement. The following example assigns a string object to the
variable 'a', prints the string object that 'a' references, and then also displays its
type:

a = "Hello, I am a string."
print a
type(a)
|
 Hello, I am a string.
 <type 'str'>

 3.8 Comments
Source code can often be difficult to understand and therefore all programming
languages provide the ability for comments to be included in the code.
Comments are used to explain what the code near them is doing and they are
usually meant to be read by a human looking at the source code. Comments are
ignored when the program is executed.

There are two ways that SAGE allows comments to be added to source code. The
first way is by placing a pound sign '#' to the left of any text that is meant to
serve as a comment. The text from the pound sign to the end of the line the
pound sign is on will be treated as a comment. Here is a program that contains
comments which use a pound sign:

#This is a comment.
x = 2 #Set the variable x equal to 2.
print x

431
432

433
434
435
436
437
438
439
440

441

442
443
444
445
446
447
448

449
450
451
452
453
454

455

456
457
458
459
460

461
462
463
464
465

466
467
468

v1.23 - 02/17/08 SAGE For Newbies 28/150

|
 2

When this program is executed, the text that starts with a pound sign is ignored.

The second way to add comments to a SAGE program is by enclosing the
comments in a set of triple quotes. This option is useful when a comment is too
large to fit on one line. This program shows a triple quoted comment:

"""
This is a longer comment and it uses
more than one line. The following
code assigns the number 3 to variable
x and then it prints x.
"""

x = 3
print x
|
 3

 3.9 Conditional Operators
A conditional operator is an operator that is used to compare two objects.
Expressions that contain conditional operators return a boolean object and a
boolean object is one that can either be True or False. Table 2 shows the
conditional operators that SAGE uses:

Operator Description

 x == y Returns True if the two objects are equal and False if they are not
equal. Notice that == performs a comparison and not an assignment
like = does.

 x <> y Returns True if the objects are not equal and False if they are equal.

 x != y Returns True if the objects are not equal and False if they are equal.

 x < y Returns True if the left object is less than the right object and False if
the left object is not less than the right object.

 x <= y Returns True if the left object is less than or equal to the right object
and False if the left object is not less than or equal to the right object.

 x > y Returns True if the left object is greater than the right object and False
if the left object is not greater than the right object.

 x >= y Returns True if the left object is greater than or equal to the right
object and False if the left object is not greater than or equal to the
right object.

Table 2: Conditional Operators

469
470

471

472
473
474

475
476
477
478
479
480

481
482
483
484

485

486
487
488
489

v1.23 - 02/17/08 SAGE For Newbies 29/150

The following examples show each of the conditional operators in Table 2 being
used to compare objects that have been placed into variables x and y:

Example 1.
x = 2
y = 3

print x, "==", y, ":", x == y
print x, "<>", y, ":", x <> y
print x, "!=", y, ":", x != y
print x, "<", y, ":", x < y
print x, "<=", y, ":", x <= y
print x, ">", y, ":", x > y
print x, ">=", y, ":", x >= y
|
 2 == 3 : False
 2 <> 3 : True
 2 != 3 : True
 2 < 3 : True
 2 <= 3 : True
 2 > 3 : False
 2 >= 3 : False
Example 2.
x = 2
y = 2

print x, "==", y, ":", x == y
print x, "<>", y, ":", x <> y
print x, "!=", y, ":", x != y
print x, "<", y, ":", x < y
print x, "<=", y, ":", x <= y
print x, ">", y, ":", x > y
print x, ">=", y, ":", x >= y
|
 2 == 2 : True
 2 <> 2 : False
 2 != 2 : False
 2 < 2 : False
 2 <= 2 : True
 2 > 2 : False
 2 >= 2 : True

Example 3.
x = 3
y = 2

490
491

492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

510
511
512

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

528
529
530

v1.23 - 02/17/08 SAGE For Newbies 30/150

print x, "==", y, ":", x == y
print x, "<>", y, ":", x <> y
print x, "!=", y, ":", x != y
print x, "<", y, ":", x < y
print x, "<=", y, ":", x <= y
print x, ">", y, ":", x > y
print x, ">=", y, ":", x >= y
|
 3 == 2 : False
 3 <> 2 : True
 3 != 2 : True
 3 < 2 : False
 3 <= 2 : False
 3 > 2 : True
 3 >= 2 : True

Conditional operators are placed at a lower level of precedence than the other
operators we have covered to this point:

() Parentheses are evaluated from the inside out.

^ Then exponents are evaluated right to left.

*,%,/ Then multiplication, remainder, and division operations are evaluated left
to right.

+, − Then addition and subtraction are evaluated left to right.

==,<>,!=,<,<=,>,>= Finally, conditional operators are evaluated.

 3.10 Making Decisions With The if Statement
All programming languages provide the ability to make decisions and the most
commonly used statement for making decisions in SAGE is the if statement.

A simplified syntax specification for the if statement is as follows:

if <expression>:
 <statement>
 <statement>
 <statement>
 .
 .
 .

The way an if statement works is that it evaluates the expression to its

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

546
547

548

549

550
551

552

553

554

555
556

557

558
559
560
561
562
563
564

565

v1.23 - 02/17/08 SAGE For Newbies 31/150

immediate right and then looks at the object that is returned. If this object is
"true", the statements that are inside the if statement are executed. If the
object is "false", the statements inside of the if are not executed.

In SAGE, an object is "true" if it is nonzero or nonempty and it is "false" if it is
zero or empty. An expression that contains one or more conditional operators
will return a boolean object which will be either True or False.

The way that statements are placed inside of a statement is by putting a colon ':'
at the end of the statement's header and then placing one or more statements
underneath it. The statements that are placed underneath an enclosing
statement must each be indented one or more tabs or spaces from the left side
of the enclosing statement. All indented statements, however, must be indented
the same way and the same amount. One or more statements that are indented
like this are referred to as a block of code.

The following program uses an if statement to determine if the number in
variable x is greater than 5. If x is greater than 5, the program will print
"Greater" and then "End of program".

x = 6

print x > 5

if x > 5:
 print x
 print "Greater"

print "End of program"
|
 True
 6
 Greater
 End of program

In this program, x has been set to 6 and therefore the expression x > 5 is true.
When this expression is printed, it prints the boolean object True because 6 is
greater than 5.

When the if statement evaluates the expression and determines it is True, it then
executes the print statements that are inside of it and the contents of variable x
are printed along with the string "Greater". If additional statements needed to
be placed within the if statement, they would have been added underneath the
print statements at the same level of indenting.

Finally, the last print statement prints the string "End of program" regardless of

566
567
568

569
570
571

572
573
574
575
576
577
578

579
580
581

582

583

584
585
586

587
588
589
590
591
592

593
594
595

596
597
598
599
600

601

v1.23 - 02/17/08 SAGE For Newbies 32/150

what the if statement does.

Here is the same program except that x has been set to 4 instead of 6:

x = 4

print x > 5

if x > 5:
 print x
 print "Greater."

print "End of program."
|
 False
 End of program.

This time the expression x > 4 returns a False object which causes the if
statement to not execute the statements that are inside of it.

 3.11 The and, or, And not Boolean Operators
Sometimes one wants to check if two or more expressions are all true and the
way to do this is with the and operator:

a = 7
b = 9
print a < 5 and b < 10
print a > 5 and b > 10
print a < 5 and b > 10
print a > 5 and b < 10
if a > 5 and b < 10:
 print "These expressions are both true."
|

False
False
False
True
These expressions are both true.

At other times one wants to determine if at least one expression in a group is
true and this is done with the or operator:

a = 7
b = 9
print a < 5 or b < 10

602

603

604

605

606
607
608

609
610
611
612

613
614

615

616
617

618
619
620
621
622
623
624
625
626
627
628
629
630
631

632
633

634
635
636

v1.23 - 02/17/08 SAGE For Newbies 33/150

print a > 5 or b > 10
print a > 5 or b < 10
print a < 5 or b > 10

if a < 5 or b < 10:
 print "At least one of these expressions is true."
|

True
True
True
False
At least one of these expressions is true.

Finally, the not operator can be used to change a True result to a False result,
and a False result to a True result:

a = 7
print a > 5
print not a > 5
|

True
False

Boolean operators are placed at a lower level of precedence than the other
operators we have covered to this point:

() Parentheses are evaluated from the inside out.

^ Then exponents are evaluated right to left.

*,%,/ Then multiplication, remainder, and division operations are evaluated left
to right.

+, − Then addition and subtraction are evaluated left to right.

==,<>,!=,<,<=,>,>= Then conditional operators are evaluated.

not The boolean operators are evaluated last.

and

or

637
638
639

640
641
642
643
644
645
646
647

648
649

650
651
652
653
654
655

656
657

658

659

660
661

662

663

664

665

666

v1.23 - 02/17/08 SAGE For Newbies 34/150

 3.12 Looping With The while Statement
Many kinds of machines, including computers, derive much of their power from
the principle of repeated cycling. SAGE provides a number of ways to implement
repeated cycling in a program and these ways range from straight-forward to
subtle. We will begin discussing looping in SAGE by starting with the straight-
forward while statement.

The syntax specification for the while statement is as follows:

while <expression>:
 <statement>
 <statement>
 <statement>
 .
 .
 .

The while statement is similar to the if statement except it will repeatedly
execute the statements it contains as long as the expression to the right of its
header is true. As soon as the expression returns a False object, the while
statement skips the statements it contains and execution continues with the
statement that immediately follows the while statement (if there is one).

The following example program uses a while loop to print the integers from 1 to
10:

Print the integers from 1 to 10.

x = 1 #Initialize a counting variable to 1 outside of the loop.

while x <= 10:
 print x
 x = x + 1 #Increment x by 1.
|

1
2
3
4
5
6
7
8
9
10

In this program, a single variable called x is created. It is used to tell the print

667

668
669
670
671
672

673

674
675
676
677
678
679
680

681
682
683
684
685

686
687

688

689

690
691
692
693
694
695
696
697
698
699
700
701
702
703

704

v1.23 - 02/17/08 SAGE For Newbies 35/150

statement which integer to print and it is also used in the expression that
determines if the while loop should continue to loop or not.

When the program is executed, 1 is placed into x and then the while statement is
entered. The expression x <= 10 becomes 1 <= 10 and, since 1 is less than or
equal to 10, a boolean object containing True is returned by the expression.

The while statement sees that the expression returned a true object and
therefore it executes all of the statements inside of itself from top to bottom.

The print statement prints the current contents of x (which is 1) then x = x + 1 is
executed.

The expression x = x + 1 is a standard expression form that is used in many
programming languages. Each time an expression in this form is evaluated, it
increases the variable it contains by 1. Another way to describe the effect this
expression has on x is to say that it increments x by 1.

In this case x contains 1 and, after the expression is evaluated, x contains 2.

After the last statement inside of a while statement is executed, the while
statement reevaluates the expression to the right of its header to determine
whether it should continue looping or not. Since x is 2 at this point, the
expression returns True and the code inside the while statement is executed
again. This loop will be repeated until x is incremented to 11 and the expression
returns False.

The previous program can be adjusted in a number of ways to achieve different
results. For example, the following program prints the integers from 1 to 100 by
increasing the 10 in the expression which is at the right side of the while header
to 100. A comma has been placed after the print statement so that its output is
displayed on the same line until it encounters the right side of the window.

Print the integers from 1 to 100.

x = 1

while x <= 100:
 print x,
 x = x + 1 #Increment x by 1.
|

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100

705
706

707
708
709

710
711

712
713

714
715
716
717

718

719
720
721
722
723
724

725
726
727
728
729

730

731

732
733
734
735
736
737
738
739
740

v1.23 - 02/17/08 SAGE For Newbies 36/150

The following program prints the odd integers from 1 to 99 by changing the
increment value in the increment expression from 1 to 2:

Print the odd integers from 1 to 99.

x = 1

while x <= 100:
 print x,
 x = x + 2 #Increment x by 2.
|
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Finally, this program prints the numbers from 1 to 100 in reverse order:

Print the integers from 1 to 100 in reverse order.

x = 100
while x >= 1:
 print x,
 x = x - 1 #Decrement x by 1.
|
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77
76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53
52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29
28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
1

In order to achieve this result, this program had to initialize x to 100, check to
see if x was greater than or equal to 1 (x >= 1) to continue looping, and
decrement x by subtracting 1 from it instead of adding 1 to it.

 3.13 Long-Running Loops, Infinite Loops, And
Interrupting Execution

It is easy to create a loop that will execute a large number of times, or even an
infinite number of times, either on purpose or by mistake. When you execute a
program that contains an infinite loop, it will run until you tell SAGE to
interrupt its execution. This is done by selecting the Action menu which is
near the upper left part of the worksheet and then selecting the Interrupt menu
item. Programs with long-running loops can be interrupted this way too. In both
cases, the vertical green execution bar will indicate that the program is currently
executing and the green bar will disappear after the program has been
interrupted.

741
742

743

744

745
746
747
748
749
750

751

752

753

754
755
756
757
758
759
760
761
762

763
764
765

766
767

768
769
770
771
772
773
774
775
776

v1.23 - 02/17/08 SAGE For Newbies 37/150

This program contains an infinite loop:

#Infinite loop example program.

x = 1
while x < 10:
 answer = x + 1
|

Since the contents of x is never changed inside the loop, the expression x < 10
always evaluates to True which causes the loop to continue looping.

Execute this program now and then interrupt it using the worksheet's Interrupt
command. Sometimes simply interrupting the worksheet is not enough to stop
execution and then you will need to select Action -> Restart worksheet. When
a worksheet is restarted, however, all variables are set back to their initial
conditions so the cells that assigned values to these variables will each need to
be executed again.

 3.14 Inserting And Deleting Worksheet Cells
If you need to insert a new worksheet cell between two existing worksheet cells,
move your mouse cursor between the two cells just above the bottom one and a
horizontal blue bar will appear. Click on this blue bar and a new cell will be
inserted into the worksheet at that point.

If you want to delete a cell, delete all of the text in the cell so that it is empty.
Make sure the cursor is in the now empty cell and then press the backspace key
on your keyboard. The cell will then be deleted.

 3.15 Introduction To More Advanced Object Types
Up to this point, we have only used objects of type 'sage.rings.integer.Integer'
and of type 'str'. However, SAGE includes a large number of mathematical and
nonmathematical object types that can be used for a wide variety of purposes.
The following sections introduce two additional mathematical object types and
two nonmathematical object types.

 3.15.1 Rational Numbers
Rational numbers are held in objects of type sage.rings.rational.Rational. The
following example prints the type of the rational number 1/2, assigns 1/2 to
variable x, prints x, and then displays the type of the object that x references:

print type(1/2)
x = 1/2
print x
type(x)

777

778

779
780
781
782

783
784

785
786
787
788
789
790

791

792
793
794
795

796
797
798

799

800
801
802
803
804

805
806
807
808
809
810
811

v1.23 - 02/17/08 SAGE For Newbies 38/150

|
 <type 'sage.rings.rational.Rational'>
 1/2
 <type 'sage.rings.rational.Rational'>

The following code was entered into a separate cell in the worksheet after the
previous code was executed. It shows two rational numbers being added
together and the result, which is also a rational number, being assigned to the
variable y:

y = x + 3/4
print y
type(y)
|
 5/4
 <type 'sage.rings.rational.Rational'>

If a rational number is added to an integer number, the result is placed into an
object of type sage.rings.rational.Rational:

x = 1 + 1/2
print x
type(x)
|
 3/2
 <type 'sage.rings.rational.Rational'>

 3.15.2 Real Numbers
Real numbers are held in objects of type sage.rings.real_mpfr.RealNumber.
The following example prints the type of the real number .5, assigns .5 to
variable x, prints x, and then displays the type of the object that x references:

print type(.5)
x = .5
print x
type(x)
|
 <type 'sage.rings.real_mpfr.RealNumber'>
 0.500000000000000
 <type 'sage.rings.real_mpfr.RealNumber'>

The following code was entered in a separate cell in the worksheet after the
previous code was executed. It shows two real numbers being added together
and the result, which is also a real number, being assigned to the variable y:

y = x + .75

812
813
814
815

816
817
818
819
820
821
822
823
824
825

826
827

828
829
830
831
832
833

834
835
836
837
838
839
840
841
842
843
844

845
846
847
848

v1.23 - 02/17/08 SAGE For Newbies 39/150

print y
type(y)
|
 1.25000000000000
 <type 'sage.rings.real_mpfr.RealNumber'>

If a real number is added to a rational number, the result is placed into an object
of type sage.rings.real_mpfr.RealNumber:

x = 1/2 + .75
print x
type(x)
|
 1.25000000000000
 <type 'sage.rings.real_mpfr.RealNumber'>

 3.15.3 Objects That Hold Sequences Of Other Objects: Lists
And Tuples

The list object type is designed to hold other objects in an ordered collection or
sequence. Lists are very flexible and they are one of the most heavily used
object types in SAGE. Lists can hold objects of any type, they can grow and
shrink as needed, and they can be nested. Objects in a list can be accessed by
their position in the list and they can also be replaced by other objects. A list's
ability to grow, shrink, and have its contents changed makes it a mutable object
type.

One way to create a list is by placing 0 or more objects or expressions inside of a
pair of square braces. The following program begins by printing the type of a
list. It then creates a list that contains the numbers 50, 51, 52, and 53, assigns it
to the variable x, and prints x.

Next, it prints the objects that are in positions 0 and 3, replaces the 53 at
position 3 with 100, prints x again, and finally prints the type of the object that x
refers to:

print type([])
x = [50,51,52,53]
print x
print x[0]
print x[3]
x[3] = 100
print x
type(x)
|

<type 'list'>

849
850
851
852
853

854
855

856
857
858
859
860
861

862
863
864
865
866
867
868

869
870
871
872

873
874
875

876
877
878
879
880
881
882
883
884
885

v1.23 - 02/17/08 SAGE For Newbies 40/150

[50, 51, 52, 53]
50
53
[50, 51, 52, 100]
<type 'list'>

Notice that the first object in a list is placed at position 0 instead of position 1
and that this makes the position of the last object in the list 1 less than the
length of the list. Also notice that an object in a list is accessed by placing a pair
of square brackets, which contain its position number, to the right of a variable
that references the list.

The next example shows that different types of objects can be placed into a list:

x = [1, 1/2, .75, 'Hello', [50,51,52,53]]
print x
|

[1, 1/2, 0.750000000000000, 'Hello', [50, 51, 52, 53]]

Tuples are also sequences and are similar to lists except they are immutable.
They are created using a pair of parentheses instead of a pair of square
brackets and being immutable means that once a tuple object has been created,
it cannot grow, shrink, or change the objects it contains.

The following program is similar to the first example list program, except it uses
a tuple instead of a list, it does not try to change the object in position 4, and it
uses the semicolon technique to display multiple results instead of print
statements:

print type(())
x = (50,51,52,53)
x;x[0];x[3];x;type(x)
|

<type 'tuple'>
(50, 51, 52, 53)
50
53
(50, 51, 52, 53)
<type 'tuple'>

 3.15.3.1 Tuple Packing And Unpacking
When multiple values separated by commas are assigned to a single variable, the
values are automatically placed into a tuple and this is called tuple packing:

t = 1,2

886
887
888
889
890

891
892
893
894
895

896

897
898
899
900

901
902
903
904

905
906
907
908

909
910
911
912
913
914
915
916
917
918

919
920

921

v1.23 - 02/17/08 SAGE For Newbies 41/150

t
|

(1, 2)

When a tuple is assigned to multiple variables which are separated by commas,
this is called tuple unpacking:

a,b,c = (1,2,3)
a;b;c
|

1
2
3

A requirement with tuple unpacking is that the number of objects in the tuple
must match the number of variables on the left side of the equals sign.

 3.16 Using while Loops With Lists And Tuples
Statements that loop can be used to select each object in a list or a tuple in turn
so that an operation can be performed on these objects. The following program
uses a while loop to print each of the objects in a list:

#Print each object in the list.
x = [50,51,52,53,54,55,56,57,58,59]
y = 0
while y <= 9:
 print x[y]
 y = y + 1
|

50
51
52
53
54
55
56
57
58
59

A loop can also be used to search through a list. The following program uses a
while loop and an if statement to search through a list to see if it contains the
number 53. If 53 is found in the list, a message is printed.

922
923
924

925
926

927
928
929
930
931
932

933
934

935

936
937
938

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

956
957
958

v1.23 - 02/17/08 SAGE For Newbies 42/150

#Determine if 53 is in the list.
x = [50,51,52,53,54,55,56,57,58,59]
y = 0
while y <= 9:
 if x[y] == 53:
 print "53 was found in the list at position", y
 y = y + 1
|

53 was found in the list at position 3

 3.17 The in Operator
Looping is such a useful capability that SAGE even has an operator called in that
loops internally. The in operator is able to automatically search a list to
determine if it contains a given object. If it finds the object, it will return True
and if it doesn't find the object, it will return False. The following programs
shows both cases:

print 53 in [50,51,52,53,54,55,56,57,58,59]
print 75 in [50,51,52,53,54,55,56,57,58,59]
|

True
False

The not operator can also be used with the in operator to change its result:

print 53 not in [50,51,52,53,54,55,56,57,58,59]
print 75 not in [50,51,52,53,54,55,56,57,58,59]
|

False
True

 3.18 Looping With The for Statement
The for statement uses a loop to index through a list or tuple like the while
statement does, but it is more flexible and automatic. Here is a simplified syntax
specification for the for statement:

for <target> in <object>:
<statement>
<statement>
<statement>
.
.
.

959
960
961
962
963
964
965
966
967

968

969
970
971
972
973

974
975
976
977
978

979

980
981
982
983
984

985

986
987
988

989
990
991
992
993
994
995

v1.23 - 02/17/08 SAGE For Newbies 43/150

In this syntax, <target> is usually a variable and <object> is usually an object
that contains other objects. In the remainder of this section, lets assume that
<object> is a list. The for statement will select each object in the list in turn,
assign it to <target>, and then execute the statements that are inside its
indented code block. The following program shows a for statement being used
to print all of the items in a list:

for x in [50,51,52,53,54,55,56,57,58,59]:
 print x
|

50
51
52
53
54
55
56
57
58
59

 3.19 Functions
Programming functions are statements that consist of named blocks of code
that can be executed one or more times by being called from other parts of the
program. Functions can have objects passed to them from the calling code and
they can also return objects back to the calling code. An example of a function is
the type() command which we have been using to determine the types of objects.

Functions are one way that SAGE enables code to be reused. Most programming
languages allow code to be reused in this way, although in other languages these
type of code reuse statements are sometimes called subroutines or
procedures.

Function names use all lower case letters. If a function name contains more than
one word (like calculatesum) an underscore can be placed between the words to
improve readability (calculate_sum).

 3.20 Functions Are Defined Using the def Statement
The statement that is used to define a function is called def and its syntax
specification is as follows:

def <function name>(arg1, arg2, ... argN):
 <statement>
 <statement>

996
997
998
999
1000
1001

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

1015

1016
1017
1018
1019
1020

1021
1022
1023
1024

1025
1026
1027

1028

1029
1030

1031
1032
1033

v1.23 - 02/17/08 SAGE For Newbies 44/150

 <statement>
 .
 .
 .

The def statement contains a header which includes the function's name along
with the arguments that can be passed to it. A function can have 0 or more
arguments and these arguments are placed within parentheses. The statements
that are to be executed when the function is called are placed inside the function
using an indented block of code.

The following program defines a function called addnums which takes two
numbers as arguments, adds them together, and returns their sum back to the
calling code using a return statement:

def addnums(num1, num2):
 """
 Returns the sum of num1 and num2.
 """
 answer = num1 + num2
 return answer

#Call the function and have it add 2 to 3.
a = addnums(2, 3)
print a

#Call the function and have it add 4 to 5.
b = addnums(4, 5)
print b
|
5
9

The first time this function is called, it is passed the numbers 2 and 3 and these
numbers are assigned to the variables num1 and num2 respectively. Argument
variables that have objects passed to them during a function call can be used
within the function as needed.

Notice that when the function returns back to the caller, the object that was
placed to the right of the return statement is made available to the calling code.
It is almost as if the function itself is replaced with the object it returns. Another
way to think about a returned object is that it is sent out of the left side of the
function name in the calling code, through the equals sign, and is assigned to the
variable. In the first function call, the object that the function returns is being
assigned to the variable 'a' and then this object is printed.

1034
1035
1036
1037

1038
1039
1040
1041
1042

1043
1044
1045

1046
1047
1048
1049
1050
1051

1052
1053
1054

1055
1056
1057
1058
1059
1060

1061
1062
1063
1064

1065
1066
1067
1068
1069
1070
1071

v1.23 - 02/17/08 SAGE For Newbies 45/150

The second function call is similar to the first call, except it passes different
numbers (4, 5) to the function.

 3.21 A Subset Of Functions Included In SAGE
SAGE includes a large number of pre-written functions that can be used for a
wide variety of purposes. Table 3 contains a subset of these functions and a
longer list of functions can be found in SAGE's documentation. A more complete
list of functions can be found in the SAGE Reference Manual.

1072
1073

1074

1075
1076
1077
1078

http://sagemath.org/doc/html/ref/genindex.html

v1.23 - 02/17/08 SAGE For Newbies 46/150

Function Name Description

abs Return the absolute value of the argument.

acos The arccosine function.

add Returns the sum of a sequence of numbers (NOT strings) plus the
value of parameter 'start'. When the sequence is empty, returns
start.

additive_order Return the additive order of x.

asin The arcsine function.

atan The arctangent function.

binomial Return the binomial coefficient.

ceil The ceiling function.

combinations A combination of a multiset (a list of objects which may contain the
same object several times) mset is an unordered selection without
repetitions and is represented by a sorted sublist of mset. Returns
the set of all combinations of the multiset mset with k elements.

complex Create a complex number from a real part and an optional
imaginary part. This is equivalent to (real + imag*1j) where imag
defaults to 0.

cos The cosine function.

cosh The hyperbolic cosine function.

coth The hyperbolic cotangent function.

csch The hyperbolic cosecant function.

denominator Return the denominator of x.

derivative The derivative of f.

det Return the determinant of x.

diff The derivative of f.

dir Return an alphabetized list of names comprising (some of) the
attributes of the given object, and of attributes reachable from it.

divisors Returns a list of all positive integer divisors.

dumps Dump obj to a string s. To recover obj, use loads(s).

e The base of the natural logarithm.

eratosthenes Return a list of the primes <= n.

exists If S contains an element x such that P(x) is True, this function
returns True and the element x. Otherwise it returns False and
None.

exp The exponential function, exp(x) = e^x.

expand Returns the expanded form of a polynomial.

factor Returns the factorization of the integer n as a sorted list of tuples
(p,e).

factorial Compute the factorial of n, which is the product of 1 * 2 * 3 ... (n-1)
n.

v1.23 - 02/17/08 SAGE For Newbies 47/150

fibonacci Returns then n-th Fibonacci number.

fibonacci_sequence Returns an iterator over the Fibonacci sequence, for all fibonacci
numbers f_n from n = start up to (but not including) n = stop.

fibonacci_xrange Returns an iterator over all of the Fibonacci numbers in the given
range, including f_n = start up to, but not including, f_n = stop.

find_root Numerically find a root of f on the closed interval [a,b (or [b,a]) if
possible, where f is a function in the one variable.

floor The floor function.

forall If P(x) is true every x in S, return True and None. If there is some
element x in S such that P is not True, return False and x.

forget Forget the given assumption, or call with no arguments to forget
all assumptions. Here an assumption is some sort of symbolic
constraint.

function Create a formal symbolic function with the name *s*.

gaussian_binomial Return the gaussian binomial.

gcd The greatest common divisor of a and b.

generic_power The m-th power of a, where m is a non-negative.

get_memory_usage Return memory usage.

hex Return the hexadecimal representation of an integer or long
integer.

imag Return the imaginary part of x.

imaginary Return the imaginary part of a complex number.

integer_ceil Return the ceiling of x.

integer_floor Return the largest integer <= x.

integral Return an indefinite integral of an object x.

integrate The integral of f.

interval Integers between a and b inclusive (a and b integers).

is_AlgebraElement Return True if x is of type AlgebraElement.

is_commutative

is_ComplexNumber

is_even Return whether or not an integer x is even, e.g., divisible by 2.

is_Functor

is_Infinite

is_Integer

is_odd Return whether or not x is odd. This is by definition the
complement of is_even.

is_power_of_two This function returns True if and only if n is a power of 2

is_prime Returns True if x is prime, and False otherwise.

is_prime_power Returns True if x is a prime power, and False otherwise.

v1.23 - 02/17/08 SAGE For Newbies 48/150

is_pseudoprime Returns True if x is a pseudo-prime, and False otherwise.

is_RealNumber Return True if x is of type RealNumber, meaning that it is an
element of the MPFR real field with some precision.

is_Set Returns true if x is a SAGE Set.

is_square Returns whether or not n is square, and if n is a square also
returns the square root. If n is not square, also returns None.

is_SymbolicExpression

isqrt Return an integer square root, i.e., the floor of a square root.

laplace Attempts to compute and return the Laplace transform of self.

latex Use latex(...) to typeset a SAGE object.

lcm The least common multiple of a and b, or if a is a list and b is
omitted the least common multiple of all elements of v.

len Returns the number of items of a sequence or mapping.

lim Return the limit as the variable v approaches a from the given
direction.

limit Return the limit as the variable v approaches a from the given
direction.

list list() -> new list, list(sequence) -> new list initialized from
sequence's items

list_plot list_plot takes a single list of data, in which case it forms a list of
tuples (i,di) where i goes from 0 to len(data)-1 and di is the ith data
value, and puts points at those tuple values. list_plot also takes a
list of tuples (dxi, dyi) where dxi is the ith data representing the x-
value, and dyi is the ith y-value if plotjoined=True, then a line
spanning all the data is drawn instead.

load Load SAGE object from the file with name filename, which will
have an .sobj extension added if it doesn't have one. NOTE: There
is also a special SAGE command (that is not available in Python)
called load that you use by typing sage: load filename.sage

loads Recover an object x that has been dumped to a string s using s =
dumps(x).

log The natural logarithm of the real number 2.

matrix Create a matrix.

max With a single iterable argument, return its largest item. With two
or more arguments, return the largest argument.

min With a single iterable argument, return its smallest item. With two
or more arguments, return the smallest argument.

minimal_polynomial Return the minimal polynomial of x.

mod

mrange Return the multirange list with given sizes and type.

mul Return the product of the elements in the list x.

next_prime The next prime greater than the integer n.

next_prime_power The next prime power greater than the integer n. If n is a prime

v1.23 - 02/17/08 SAGE For Newbies 49/150

norm Return the norm of x.

normalvariate Normal distribution.

nth_prime

number_of_arrangements Returns the size of arrangements(mset,k).

number_of_combinations Returns the size of combinations(mset,k).

number_of_derangements Returns the size of derangements(mset).

number_of_divisors Return the number of divisors of the integer n.

number_of_permutations Returns the size of permutations(mset).

numerator Return the numerator of x.

numerical_integral Returns the numerical integral of the function on the interval from
xmin to xmax and an error bound.

numerical_sqrt Return a square root of x.

oct Return the octal representation of an integer or long integer.

order Return the order of x. If x is a ring or module element, this is the
additive order of x.

parametric_plot parametric_plot takes two functions as a list or a tuple and make a
plot with the first function giving the x coordinates and the second
function giving the y coordinates.

parent Return x.parent() if defined, or type(x) if not.

permutations A permutation is represented by a list that contains exactly the
same elements as mset, but possibly in different order.

pg Permutation groups. In SAGE a permutation is represented as
either a string that defines a permutation using disjoint cycle
notation, or a list of tuples, which represent disjoint cycles.

pi The ratio of a circle's circumference to its diameter.

plot

pow With two arguments, equivalent to x^y. With three arguments,
equivalent to (x^y) % z, but may be more efficient (e.g. for longs)

power_mod The m-th power of a modulo the integer n.

prange List of all primes between start and stop-1, inclusive.

previous_prime The largest prime < n.

previous_prime_power The largest prime power < n.

prime_divisors The prime divisors of the integer n, sorted in increasing order.

prime_factors The prime divisors of the integer n, sorted in increasing order.

prime_powers List of all positive primes powers between start and stop-1,
inclusive.

primes Returns an iterator over all primes between start and stop-1,
inclusive.

primes_first_n Return the first n primes.

prod Return the product of the elements in the list x.

quo Return the quotient object x/y, e.g., a quotient of numbers or of a

v1.23 - 02/17/08 SAGE For Newbies 50/150

polynomial ring x by the ideal generated by y, etc.

quotient Return the quotient object x/y, e.g., a quotient of numbers or of a
polynomial ring x by the ideal generated by y, etc.

random Returns a random number in the interval [0, 1].

random_prime Returns a random prime p between 2 and n (i.e. 2 <= p <= n).

randrange Choose a random item from range(start, stop[, step]).

range Returns a list containing an arithmetic progression of integers.

rational_reconstruction This function tries to compute x/y, where x/y is rational number.

real Return the real part of x.

reduce Apply a function of two arguments cumulatively to the items of a
sequence, from left to right, so as to reduce the sequence to a
single value.

repr Return the canonical string representation of the object.

reset Delete all user defined variables, reset all globals variables back to
their default state, and reset all interfaces to other computer
algebra systems. If vars is specified, just restore the value of vars
and leave all other variables alone (i.e., call restore).

restore Restore predefined global variables to their default values.

round Round a number to a given precision in decimal digits (default 0
digits). This always returns a real double field element.

sample Chooses k unique random elements from a population sequence.

save Save obj to the file with name filename, which will have an .sobj
extension added if it doesn't have one. This will *replace* the
contents of filename.

save_session Save all variables that can be saved wto the given filename.

search Return (True,i) where i is such that v[i] == x if there is such an i,
or (False,j) otherwise, where j is the position that a should be
inserted so that v remains sorted.

search_doc Full text search of the SAGE HTML documentation for lines
containing s.

search_src Search sage source code for lines containing s.

sec The secant function.

sech The hyperbolic secant function.

seed

seq A mutable list of elements with a common guaranteed universe,
which can be set immutable.

set Build an unordered collection of unique elements.

show Show a graphics object x.

show_default Set the default for showing plots using the following commands:
plot, parametric_plot, polar_plot, and list_plot.

shuffle

sigma Return the sum of the k-th powers of the divisors of n.

v1.23 - 02/17/08 SAGE For Newbies 51/150

simplify Simplify the expression f.

sin The sine function.

sinh The hyperbolic sine function.

sleep

slice Create a slice object. This is used for extended slicing (e.g.
a[0:10:2]).

slide Use latex(...) to typeset a SAGE object. Use %slide instead to
typeset slides.

solve Algebraically solve an equation or system of equations for given
variables.

sorted

sqrt The square root function. This is a symbolic square root.

square_free_part Return the square free part of x, i.e., a divisor z such that x = z
y^2, for a perfect square y^2.

srange Return list of numbers \code{a, a+step, ..., a+k*step}, where a
+k*step < b and a+(k+1)*step > b. The type of the entries in the
list are the type of the starting value.

str Return a nice string representation of the object.

subfactorial Subfactorial or rencontres numbers, or derangements: number of
permutations of n elements with no fixed points.

sum Returns the sum of a sequence of numbers (NOT strings) plus the
value of parameter 'start'

super Typically used to call a cooperative superclass method.

symbolic_expression

sys This module provides access to some objects used or maintained
by the interpreter and to functions that interact strongly with the
interpreter.

tan The tangent function.

tanh The hyperbolic tangent function.

taylor Expands self in a truncated Taylor or Laurent series in the variable
v around the point a, containing terms through (x - a)^n.

transpose

trial_division Return the smallest prime divisor <= bound of the positive integer
n, or n if there is no such prime.

two_squares Write the integer n as a sum of two integer squares if possible;
otherwise raise a ValueError.

type Returns an object's type.

union Return the union of x and y, as a list.

uniq Return the sublist of all elements in the list x that is sorted and is
such that the entries in the sublist are unique.

valuation The exact power of p>0 that divides the integer m.

var Create a symbolic variable with the name *s*.

v1.23 - 02/17/08 SAGE For Newbies 52/150

vars Without arguments, equivalent to locals(). With an argument,
equivalent to object.__dict__.

vector Return a vector over R with given entries.

version Return the version of SAGE.

view Compute a latex representation of each object in objects. NOTE:
In notebook mode this function simply embeds a png image in the
output

walltime Return the wall time.

xgcd Returns triple of integers (g,s,t) such that g = s*a+t*b = gcd(a,b).

xinterval Iterator over the integers between a and b, inclusive.

xrange Like range(), but instead of returning a list, returns an object that
generates the numbers in the range on demand.

zip Return a list of tuples, where each tuple contains the i-th element
from each of the argument sequences.

Table 3: Subset of SAGE functions

 3.22 Obtaining Information On SAGE Functions
Table 3 includes a list of functions along with a short description of what each
one does. This is not enough information, however, to show how to actually use
these functions. One way to obtain additional information on any function is to
type its name followed by a question mark '?' into a worksheet cell then press the
<tab> key:

is_even?<tab>
|
File: /opt/sage-2.7.1-debian-32bit-i686-
Linux/local/lib/python2.5/site-packages/sage/misc/functional.py
Type: <type 'function'>
Definition: is_even(x)
Docstring:

 Return whether or not an integer x is even, e.g., divisible by 2.

 EXAMPLES:
 sage: is_even(-1)
 False
 sage: is_even(4)
 True
 sage: is_even(-2)
 True

A gray window will then be shown which contains the following information
about the function:

1079

1080
1081
1082
1083
1084

1085
1086
1087
1088
1089
1090
1091

1092

1093
1094
1095
1096
1097
1098
1099

1100
1101

v1.23 - 02/17/08 SAGE For Newbies 53/150

File: Gives the name of the file that contains the source code that implements
the function. This is useful if you would like to locate the file to see how the
function is implemented or to edit it.

Type: Indicates the type of the object that the name passed to the information
service refers to.

Definition: Shows how the function is called.

Docstring: Displays the documentation string that has been placed into the
source code of this function.

You may obtain help on any of the functions listed in Table 3, or the SAGE
reference manual, using this technique. Also, if you place two question marks
'??' after a function name and press the <tab> key, the function's source code
will be displayed.

 3.23 Information Is Also Available On User-Entered
Functions

The information service can also be used to obtain information on user-entered
functions and a better understanding of how the information service works can
be gained by trying this at least once.

If you have not already done so in your current worksheet, type in the addnums
function again and execute it:

def addnums(num1, num2):
 """
 Returns the sum of num1 and num2.
 """
 answer = num1 + num2
 return answer

#Call the function and have it add 2 to 3.
a = addnums(2, 3)
print a
|
5

Then obtain information on this newly-entered function using the technique from
the previous section:

addnums?<tab>
|

1102
1103
1104

1105
1106

1107

1108
1109

1110
1111
1112
1113

1114
1115

1116
1117
1118

1119
1120

1121
1122
1123
1124
1125
1126

1127
1128
1129
1130
1131

1132
1133

1134
1135

v1.23 - 02/17/08 SAGE For Newbies 54/150

File: /home/sage/sage_notebook/worksheets/root/9/code/8.py
Type: <type 'function'>
Definition: addnums(num1, num2)
Docstring:

 Returns the sum of num1 and num2.

This shows that the information that is displayed about a function is obtained
from the function's source code.

 3.24 Examples Which Use Functions Included With SAGE
The following short programs show how some of the functions listed in Table 3
are used:

#Determine the sum of the numbers 1 through 10.
add([1,2,3,4,5,6,7,8,9,10])
|

55

#Cosine of 1 radian.
cos(1.0)
|

0.540302305868140

#Determine the denominator of 15/64.
denominator(15/64)
|

64

#Obtain a list that contains all positive
#integer divisors of 20.
divisors(20)
|

[1, 2, 4, 5, 10, 20]

#Determine the greatest common divisor of 40 and 132.
gcd(40,132)
|

4

#Determine the product of 2, 3, and 4.
mul([2,3,4])
|

24

#Determine the length of a list.

1136
1137
1138
1139

1140

1141
1142

1143

1144
1145
1146
1147
1148
1149
1150

1151
1152
1153
1154

1155
1156
1157
1158

1159
1160
1161
1162
1163

1164
1165
1166
1167

1168
1169
1170
1171

1172

v1.23 - 02/17/08 SAGE For Newbies 55/150

a = [1,2,3,4,5,6,7]
len(a)
|

7

#Create a list which contains the integers 0 through 10.
a = srange(11)
a
|

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

#Create a list which contains real numbers between
#0.0 and 10.5 in steps of .5.
a = srange(11,step=.5)
a
|

[0.0000000, 0.5000000, 1.000000, 1.500000, 2.000000, 2.500000,
3.000000, 3.500000, 4.000000, 4.500000, 5.000000, 5.500000,
6.000000, 6.500000, 7.000000, 7.500000, 8.000000, 8.500000,
9.000000, 9.500000, 10.00000, 10.50000]

#Create a list which contains the integers -5 through 5.
a = srange(-5,6)
a
|

[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]

#The zip() function takes multiple sequences and groups
#parallel members inside tuples in an output list. One
#application this is useful for is creating points from
#table data so they can be plotted.
a = [1,2,3,4,5]
b = [6,7,8,9,10]
c = zip(a,b)
c
|

[(1, 6), (2, 7), (3, 8), (4, 9), (5, 10)]

 3.25 Using srange() And zip() With The for Statement
Instead of manually creating a sequence for use by a for statement, srange() can
be used to create the sequence automatically:

for t in srange(6):
 print t,
|

1173
1174
1175
1176

1177
1178
1179
1180
1181

1182
1183
1184
1185
1186
1187
1188
1189
1190

1191
1192
1193
1194
1195

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205

1206

1207
1208

1209
1210
1211

v1.23 - 02/17/08 SAGE For Newbies 56/150

0 1 2 3 4 5

The for statement can also be used to loop through multiple sequences in
parallel using the zip() function:

t1 = (0,1,2,3,4)
t2 = (5,6,7,8,9)
for (a,b) in zip(t1,t2):
 print a,b
|

0 5
1 6
2 7
3 8
4 9

 3.26 List Comprehensions
Up to this point we have seen that if statements, for loops, lists, and
functions are each extremely powerful when used individually and together.
What is even more powerful, however, is a special statement called a list
comprehension which allows them to be used together with a minimum amount
of syntax.

Here is the simplified syntax for a list comprehension:

[expression for variable in sequence [if condition]]
What a list comprehension does is to loop through a sequence placing each
sequence member into the specified variable in turn. The expression also
contains the variable and, as each member is placed into the variable, the
expression is evaluated and the result is placed into a new list. When all of the
members in the sequence have been processed, the new list is returned.

In the following example, t is the variable, 2*t is the expression, and [1,2,3,4,5]
is the sequence:

a = [2*t for t in [0,1,2,3,4,5]]
a
|

[0, 2, 4, 6, 8, 10]

Instead of manually creating the sequence, the srange() function is often used to
create it automatically:

1212

1213
1214

1215
1216
1217
1218
1219
1220
1221
1222
1223
1224

1225

1226
1227
1228
1229
1230

1231

1232

1233
1234
1235
1236
1237

1238
1239

1240
1241
1242
1243

1244
1245

v1.23 - 02/17/08 SAGE For Newbies 57/150

a = [2*t for t in srange(6)]
a
|

[0, 2, 4, 6, 8, 10]

An optional if statement can also be used in a list comprehension to filter the
results that are placed in the new list:

a = [b^2 for b in range(20) if b % 2 == 0]
a
|

[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

In this case, only results that are evenly divisible by 2 are placed in the output
list.

1246
1247
1248
1249

1250
1251

1252
1253
1254
1255

1256
1257

v1.23 - 02/17/08 SAGE For Newbies 58/150

 4 Object Oriented Programming
The purpose of this chapter is to introduce the main concepts behind how
object oriented SAGE code works and how it is used to solve problems. It
assumes that you have little or no Object Oriented Programming (OOP)
experience and it is going to give you enough of an understanding of OOP so that
you can more effectively use SAGE objects to solve problems.

Do not worry too much if this OOP stuff does not completely sink in right away
because you can use SAGE objects to solve problems without yet having the skill
needed to program objects from scratch yourself. Having said that, this chapter
does show how to program an object from scratch so you can better understand
how SAGE's pre-built objects work.

 4.1 Object Oriented Mind Re-wiring
In my opinion, one of the more difficult things you will do in the area of
programming is to make the mental switch from the procedural programming
paradigm to the object oriented programming paradigm. The problem is not that
object oriented programming is necessarily more difficult than procedural
programming. The problem is that it is so different in its approach to solving
programming problems that some mental re-wiring is going to have to happen
before you truly "get it". This mental re-wiring is a process that happens very
slowly as you write object oriented programs and dig deeper into object oriented
books in an effort to really understand what OOP is all about.

Right from the beginning you will see that there is something very special and
powerful going on, but it will elude your efforts to firmly grasp it. When you do
finally "get it" it will usually not come all at once like a bright light going on. It is
more like a dim light that you can sense glowing in the back of your mind that
brightens very slowly. For each new programming problem you encounter, the
front part of your mind will still produce a procedural plan to solve it. However
you will begin to notice that this glow in the back of your mind will present
object oriented strategies (dim at first, but slowly increasing in clarity) that will
also solve the problem and these object oriented strategies are so interesting
that over time you will find yourself paying more and more attention to them.
Eventually a time will come when many programming problems will trigger the
production of rich object oriented strategies for solving them from the now
bright object oriented part of your mind.

 4.2 Attributes And Behaviors
Object oriented programming is a software design philosophy where software is
made to work similar to the way that objects in the physical world work. All
physical objects have attributes and behaviors. One example is a typical office
chair which has color, number of wheels, and material type as attributes and

1258

1259
1260
1261
1262
1263

1264
1265
1266
1267
1268

1269

1270
1271
1272
1273
1274
1275
1276
1277
1278

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291

1292

1293
1294
1295
1296

v1.23 - 02/17/08 SAGE For Newbies 59/150

spin, roll, and set height as behaviors.

Software objects are made to work like physical objects and so they also have
attributes and behaviors. A software object's attributes are held in special
variables called instance variables and its behaviors are determined by code
which is held in methods (which are also called member functions). Methods
are similar to standard functions except they are associated with objects instead
of "floating around free". In SAGE, instance variables and methods are often
referred to as just attributes.

After an object is created, it is used by sending it messages, which means to
call or invoke its methods. In the case of the chair, we could imagine sending it
a chair.spin(3) message which would tell the chair to spin 3 times, or a
chair.setHeight(32) message which would tell the chair to set its height to 32
centimeters.

 4.3 Classes (Blueprints That Are Used To Create Objects)
A class can be thought of as a blueprint that is used to construct objects and it
is conceptually similar to a house blueprint. An architect uses a blueprint to
precisely define exactly how a given house should be constructed, what materials
should be used, what its various dimensions should be, etc. After the blueprint is
finished, it can be used to construct one house or many houses because the
blueprint contains the information that describes how to create a house, it is not
the house itself. A programmer creating a class is very similar to an architect
creating a house blueprint except that the architect uses a drafting table or a
CAD system to develop a blueprint while a programmer uses a text editor or an
IDE (Integrated Development Environment) to develop a class.

 4.4 Object Oriented Programs Create And Destroy Objects
As Needed

The following analogy describes how software objects are created and destroyed
as needed in object oriented program. Creating an object is also called
instantiating it because the class (blueprint) that defines the object is being
used to create an object instance. The act of destroying an object and reclaiming
the memory and other resources it was using is called garbage collection.

Imagine that a given passenger jet can operate in a manner which is similar an
object oriented program and that the jet is being prepared to fly across the
Atlantic ocean from New York to London. Just before takeoff, the blueprints for
every part of the aircraft are brought to the tarmac and given to a team of
workers who will use them to very quickly construct all of the components
needed to build the aircraft. As each component is constructed, it is attached to
the proper place on the aircraft and in a short time the aircraft is complete and
ready to use. The passengers are loaded onto the jet and and it takes off.

1297

1298
1299
1300
1301
1302
1303
1304

1305
1306
1307
1308
1309

1310

1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

1321
1322

1323
1324
1325
1326
1327

1328
1329
1330
1331
1332
1333
1334
1335

v1.23 - 02/17/08 SAGE For Newbies 60/150

After the plane leaves the ground, the landing gear are disintegrated (garbage
collected) because they are not needed during the flight and hauling them across
the Atlantic ocean would just waste costly fuel. There is no need to worry,
however, because the landing gear will be reconstructed using the proper
blueprints (classes) just before landing in London

A few minutes after takeoff the pilot receives notification that the company that
manufactured the aircraft's jet engines has just released a new model that is
15% more fuel efficient than the ones that the aircraft is currently using and the
airline is going to upgrade the aircraft's engines while the plane is in flight. The
airline sends the blueprints for the new engines over the network to the plane
and these are used to construct (instantiate) three of the new engines. After the
new engines are constructed, the three old engines are shut down one at a time,
replaced with a new engine, and disintegrated. The engine upgrade goes
smoothly and the passengers are not even aware that the upgrade took place.

This flight just happens to have an important world figure on board and halfway
through the flight a hostile aircraft is encountered which orders our pilot to
change his course. Instead of complying with this demand, however, the pilot
retrieves a set of blueprints from the blueprint library for a 50mm machine gun
turret, has 4 of these turrets constructed , and then has them attached to the
plane's top, bottom, nose, and tail sections. A few blasts from one of these guns
is enough to deter the hostile aircraft and it quickly moves away, eventually
dropping off of the radar screen. The rest of the flight is uneventful. As the
aircraft approaches London, the machine gun turrets are disintegrated, a new
set of landing gear are constructed using the landing gear blueprints, and the
plane safely lands. After the passengers are in the terminal, the whole plane is
disintegrated.

 4.5 Object Oriented Program Example
The following two sections cover a simple object oriented program called Hellos.
The first section presents a version of the program which does not contain any
comments so the code itself is easier to see. The second section contains a fully-
commented version of the program along with a detailed description of how the
program works.

 4.5.1 Hellos Object Oriented Program Example (No
Comments)

class Hellos:

 def __init__(self, mess):
 self.message = mess

1336
1337
1338
1339
1340

1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

1362

1363
1364
1365
1366
1367

1368

1369
1370

v1.23 - 02/17/08 SAGE For Newbies 61/150

 def print_message(self):
 print"The message is: ", self.message

 def say_goodbye(self):
 print "Goodbye!"

 def print_hellos(self, total):
 count = 1
 while count <= total:
 print"Hello ", count
 count = count + 1

 print " "

obj1 = Hellos("Are you having fun yet?")
obj2 = Hellos("Yes I am!")

obj1.print_message()
obj2.print_message()
print " "

obj1.print_hellos(3)
obj2.print_hellos(5)

obj1.say_goodbye()
obj2.say_goodbye()
|

The message is: Are you having fun yet?
The message is: Yes I am!

Hello 1
Hello 2
Hello 3

Hello 1
Hello 2
Hello 3
Hello 4
Hello 5

Goodbye!
Goodbye!

 4.5.2 Hellos Object Oriented Program Example (With

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381

1382

1383
1384
1385

1386
1387
1388

1389
1390

1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

1409

v1.23 - 02/17/08 SAGE For Newbies 62/150

Comments)
We will now look at the Hellos program in more detail. This version of the
program has had comments added to it. The line numbers and colons on the left
side of the program are not part of the program itself and they have been added
to make referencing different parts of the program easier.

 1:class Hellos:
 2: """
 3: Hellos is a 'class' and a class is a blueprint for creating
 4: objects. Classes consist of instance variables (attributes)
 5: and methods (behaviors).
 6: """
 7:
 8: def __init__(self, mess):
 9: """
10: __init__ is a special kind of built-in method called a
11: constructor. A constructor method is only invoked once
12: when an object is being created and its job is to complete
13: the construction of the object. After the object has
14: been created its constructors are no longer used. The
15: purpose of this constructor is to create an instance
16: variable called 'message' and then initialize it with a
17: string.
18: """
19:
20: """
21: This code creates an instance variable. Every object
22: instance created from this class 'blueprint' will have
23: its own unique copy of any instance variables. Instance
24: variables hold an object's attributes (or state).
25: The self variable here holds a reference to the current
26: object.
27: """
28: self.message = mess;
29:
30:
31:
32: def print_message(self):
33: """
34: print_message is an instance method that gives objects
35: created using this class their 'print message' behavior.
36: """
37: print"The message is: ", self.message
38:
39:
40:

1410

1411
1412
1413
1414

1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454

v1.23 - 02/17/08 SAGE For Newbies 63/150

41: def say_goodbye(self):
42: """
43: say_goodbye is an instance method that gives objects
44: created using this class their 'say goodby' behavior.
45: """
46: print "Goodbye!"
47:
48:
49:
50: def print_hellos(self, total):
51: """
52: print_hellos is an instance method that takes the number
53: of Hellos to print as an argument and it prints this many
54: Hellos to the screen.
55: """
56: count = 1
57: while count <= total:
58: print"Hello ", count
59: count = count + 1
60:
61: print " "
62:
63:
64:"""
65:The following code creates two separate Hellos objects (instances)
66:which are referenced by the variables obj1 and obj2 respectively.
67:A unique String parameter is passed to each object when it is
68:instantiated and this String is used to initialize the object's
69:state.
70:
71:After the objects are created, messages are sent to them by
72:calling their methods in order to have them perform behaviors.
73:This is done by 'picking an object up' by its reference (lets
74:say obj1) placing a dot after this reference and then typing the
75:name of an object's method that you want to invoke.
76:"""
77:
78:obj1 = Hellos("Are you having fun yet?")
79:obj2 = Hellos("Yes I am!")
80:
81:obj1.print_message()
82:obj2.print_message()
83:print " "
84:
85:obj1.print_hellos(3)
86:obj2.print_hellos(5)
87:

1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501

v1.23 - 02/17/08 SAGE For Newbies 64/150

88:obj1.say_goodbye()
89:obj2.say_goodbye()

On line 1 the class Hellos is defined using a class statement and by convention
class names start with a capital letter. If the class name consists of multiple
words, then the first letter of each word is capitalized and all other letters are
typed in lower case (for example, HelloWorld). The class begins on line 1 and
ends on line 61, which is the last line of indented code it contains. All methods
and instance variables that are part of a class need to be inside the class's
indented code block.

The Hellos class contains one constructor method on line 8, one instance
variable which is created on line 28, and three instance methods on lines 32,
41, and 50 respectively. The purpose of instance variables are to give an object
unique attributes that differentiate it from other objects that are created from a
given class The purpose of instance methods are to give each object its
behaviors. All methods in an object have access to that object's instance
variables and these instance variables can be accessed by the code in these
methods. Instance variable names follow the same convention that function
names do.

The method on line 8 is a special method called a constructor. A constructor
method is only invoked when an object is being created and its purpose is to
complete the construction of the object. After the object has been created, its
constructor is no longer used. The purpose of the constructor on line 8 is to
initialize each Hellos object's message instance variable with a string that is
passed to it when a new object of type Hellos is created (see lines 78 and 79).

All instance methods have an argument passed to them which contains a
reference to the specific object that the method was called from. This argument
is always placed into the leftmost argument position and, by convention, the
variable that is placed in this position is called self. The self variable is then
used to create and access that specific object's instance variables.

On line 28, the code self.message = mess takes the object that was passed into
the constructor's mess variable and assigns it to an instance variable called
message. An instance variable is created via assignment just like normal
variables are. The dot operator '.' is used to access an object's instance
variables by placing it between a variable which holds a reference to the object
and the instance variable's name (like self.message or obj1.message).

The methods on lines 32, 41, and 50 give objects created using the Hellos class
their behaviors. The print_message() method provides the behavior of printing
the string that is present in the object's message instance variable and the
say_goodbye() method provides the behavior of printing the string "Goodbye!"
The print_hellos() method takes an integer number as a parameter and it prints

1502
1503

1504
1505
1506
1507
1508
1509
1510

1511
1512
1513
1514
1515
1516
1517
1518
1519

1520
1521
1522
1523
1524
1525

1526
1527
1528
1529
1530

1531
1532
1533
1534
1535
1536

1537
1538
1539
1540
1541

v1.23 - 02/17/08 SAGE For Newbies 65/150

the word 'Hello' that many times. The naming convention for methods is the
same as the one used for function names.

The code below the Hellos class creates two separate objects (instances) which
are then assigned to the variables obj1 and obj2 respectively. An object is
created by typing its class name followed by a pair of parentheses. Any
arguments that are placed within the parentheses will be passed to the
constructor method.

When the Hellos class is called, a string is passed to its constructor method and
this string is used to initialize the object's state. An object's state is determined
by the contents of its instance variables. If any of an object's instance variables
are changed, then the object's state has been changed too. Since Hellos objects
only have one instance variable called message, their state is determined by this
variable.

After objects are created, their behaviors are requested by calling their methods.
This is done by "picking an object up" by a variable that references it (lets say
obj1), placing a dot after this variable, and then typing the name of one of the
object's methods that you want to invoke, followed by its arguments in
parentheses.

 4.6 SAGE Classes And Objects
While SAGE's functions contain many capabilities, most of SAGE's capabilities
are contained in classes and the objects that are instantiated from these
classes. SAGE's classes and objects represent a significant amount of
information which will take a while to explain. However, the easier material will
be presented first so that you can start working with SAGE objects as soon as
possible.

 4.7 Obtaining Information On SAGE Objects
Type the following code into a cell and execute it:

x = 5
print type(x)
|

<type 'sage.rings.integer.Integer'>

We have already used the type() function to determine the type of an integer, but
now we can explain what a type is in more detail. Enter
sage.rings.integer.Integer followed by a question mark '?' into a new cell and
then press the <tab> key:

sage.rings.integer.Integer?<tab>

1542
1543

1544
1545
1546
1547
1548

1549
1550
1551
1552
1553
1554

1555
1556
1557
1558
1559

1560

1561
1562
1563
1564
1565
1566

1567

1568

1569
1570
1571
1572

1573
1574
1575
1576

1577

v1.23 - 02/17/08 SAGE For Newbies 66/150

|
File:/opt/sage-2.7.1-debian-32bit-i686-
Linux/local/lib/python2.5/site-packages/sage/rings/integer.so
Type: <type 'sage.rings.integer.Integer'>
Definition: sage.rings.integer.Integer([noargspec])

Docstring:

 The class{Integer} class represents arbitrary precision
 integers. It derives from the class{Element} class, so
 integers can be used as ring elements anywhere in SAGE.

 begin{notice}
 The class class{Integer} is implemented in Pyrex,
 as a wrapper of the GMP mpz_t integer type.
 end{notice}

This information indicates that sage.rings.integer.Integer is really a class that is
able to create Integer objects. Also, if you place two questions marks '??' after a
class name and press the <tab> key, the class's source code will be displayed.

Now, in a separate cell type x. and then press the <tab> key:

x.<tab>
|
x.additive_order x.gcd x.numerator
x.base_base_extend x.inverse_mod x.ord
x.inverse_of_unit x.order x.parent
x.base_extend x.is_nilpotent x.plot
x.base_extend_canonical x.is_one x.powermodm_ui
x.is_perfect_power x.powermod x.quo_rem
x.base_extend_recursive x.is_power x.rename
x.base_ring x.is_power_of x.reset_name
x.binary x.is_prime x.save
x.category x.is_prime_power x.set_si
x.ceil x.is_pseudoprime x.set_str
x.coprime_integers x.is_square x.sqrt
x.crt x.is_squarefree x.sqrt_approx
x.db x.is_unit x.square_free_part
x.degree x.is_zero x.str
x.denominator x.isqrt x.substitute
x.digits x.jacobi x.test_bit
x.div x.kronecker x.val_unit
x.lcm x.subs x.valuation
x.divides x.leading_coefficient x.version
x.dump x.list x.xgcd
x.dumps x.mod x.parent

1578
1579
1580
1581
1582

1583

1584
1585
1586

1587
1588
1589
1590

1591
1592
1593

1594

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618

v1.23 - 02/17/08 SAGE For Newbies 67/150

x.exact_log x.multiplicative_order x.plot
x.factor x.next_prime x.rename
x.factorial x.next_probable_prime x.reset_name
x.floor x.nth_root x.powermodm_ui

A gray window will be displayed which contains all of the methods that the object
contains. If any of these methods is selected with the mouse, its name will be
placed into the cell after the dot operator as a convenience. For now, select the
is_prime method. When its name is placed into the cell, type a question mark '?'
after it and press the <tab> key in order to obtain information on this method:

x.is_prime?
|
File: /opt/sage-2.7.1-debian-32bit-i686-Linux/local/lib/python/
site-packages/sage/rings/integer/pyx
Type: <type 'builtin_function_or_method '>
Definition: x.is_prime()

Docstring:

 Retuns True if self is prime

 EXAMPLES:
 sage: z = 2^31 - 1
 sage: z.is_prime()
 True
 sage: z = 2^31
 sage: z.is_prime()
 False

The Definition section indicates that the is_prime() method is called without
passing any arguments to it and the Docstring section indicates that the method
will return True if the object is prime. The following code shows the variable x
(which still contains 5) being used to call the is_prime() method:

x.is_prime()
|

True

 4.8 The List Object's Methods
Lists are objects and therefore they contain methods that provide useful
capabilities:

a = []
a.<tab>

1619
1620
1621
1622

1623
1624
1625
1626
1627

1628
1629
1630
1631
1632
1633

1634

1635

1636
1637
1638
1639
1640
1641
1642

1643
1644
1645
1646

1647
1648
1649

1650

1651
1652

1653
1654

v1.23 - 02/17/08 SAGE For Newbies 68/150

|
a.append a.extend a.insert a.remove a.sort
a.count a.index a.pop a.reverse

The following programs demonstrate some of a list object's methods:

Append an object to the end of a list.
a = [1,2,3,4,5,6]
print a
a.append(7)
print a
|
[1, 2, 3, 4, 5, 6]
[1, 2, 3, 4, 5, 6, 7]

Insert an object into a list.
a = [1,2,4,5]
print a
a.insert(2,3)
print a
|
[1, 2, 4, 5]
[1, 2, 3, 4, 5]

Sort the contents of a list.
a = [8,2,7,1,6,4]
print a
a.sort()
print a
|
[8, 2, 7, 1, 6, 4]
[1, 2, 4, 6, 7, 8]

 4.9 Extending Classes With Inheritence
Object technologies are subtle and powerful. They possess a number of
mechanisms for dealing with complexity and class inheritance is one of them.
Class inheritance is the ability of a class to obtain or inherit all of the instance
variables and methods of another class (called a parent class, super class, or
base class) using a minimal amount of code. A class that inherits from a parent
class is called a child class or sub class. This means that a child class can do
everything its parent can do along with any additional functionality that is
programmed into the child.

The following program demonstrates class inheritance by having a Person class
inherit from the built-in object class and having an ArmyPrivate class inherit

1655
1656
1657

1658

1659
1660
1661
1662
1663
1664
1665
1666

1667
1668
1669
1670
1671
1672
1673
1674

1675
1676
1677
1678
1679
1680
1681
1682

1683

1684
1685
1686
1687
1688
1689
1690
1691

1692
1693

v1.23 - 02/17/08 SAGE For Newbies 69/150

from the Person class:

class Person(object):
def __init__(self):

self.rank = "I am just a Person, I have no rank."

def __str__(self):
return "str: " + self.rank

def __repr__(self):
return "repr: " + self.rank

class ArmyPrivate(Person):
def __init__(self):

self.rank = "ArmyPrivate."

a = object()
print type(a)

b = Person()
print type(b)

c = ArmyPrivate()
print type(c)
|

<type 'object'>
<class '__main__.Person'>
<class '__main__.ArmyPrivate'>

After the classes have been created, this program instantiates an object of type
object which is assigned to variable 'a', an object of type Person which is
assigned to variable 'b', and an object of type ArmyPrivate which is assigned to
variable 'c'.

The following code can be used to display the inheritance hierarchy of any
object. If it is executed in a separate cell after the above program has been
executed, the inheritance hierarchy of the ArmyPrivate class is displayed (don't
worry about trying to understand how this code works. Just use it for
now.):

#Display the inheritance hierarchy of an object. Note: don't worry
#about trying to understand how this program works. Just use it for
#now.
def class_hierarchy(cls, indent):

1694

1695
1696
1697
1698
1699
1700

1701
1702

1703
1704
1705

1706
1707

1708
1709

1710
1711
1712
1713
1714
1715

1716
1717
1718
1719

1720
1721
1722
1723
1724

1725
1726
1727
1728

v1.23 - 02/17/08 SAGE For Newbies 70/150

 print '.'*indent, cls
 for supercls in cls.__bases__:
 class_hierarchy(supercls, indent+1)

def instance_hierarchy(inst):
 print 'Inheritance hierarchy of', inst
 class_hierarchy(inst.__class__, 3)

z = ArmyPrivate()

instance_hierarchy(z)
|

Inheritance hierarchy of str: ArmyPrivate
... <class '__main__.ArmyPrivate'>
.... <class '__main__.Person'>
..... <type 'object'>

The instance_hierarchy function will display the inheritance hierarchy of any
object that is passed to it. In this case, an ArmyPrivate object was instantiated
and passed to the instance_hierarchy function and the object's inheritance
hierarchy was displayed. Notice that the topmost class in the hierarchy, which is
the object class, was printed last and that Person inherits from object and
ArmyPrivate inherits from Person.

 4.10 The object Class, The dir() Function, And Built-in
Methods

The object class is built into SAGE and it contains a small number of useful
methods. These methods are so useful that many SAGE classes inherit from the
object class either 1) directly or 2) indirectly by inheriting from a class that
inherits from the object class. Lets begin our discussion of the inheritance
program by looking at the methods that are included in the object class. The
dir() function lists all of an object's attributes (which means both its instance
variables and its methods) and we can use it to see which methods an object of
type object contains:

dir(a)
|

['__class__', '__delattr__', '__doc__',
'__getattribute__','__hash__','__init__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__','__setattr__', '__str__']

Names which begin and end with double underscores '__' are part of SAGE and
the underscores make it unlikely that these names will conflict with programmer
defined names. The Person class inherits all of these attributes from the object
class, but it only uses some of them. When a method is inherited from a parent

1729
1730
1731

1732
1733
1734

1735

1736
1737
1738
1739
1740
1741

1742
1743
1744
1745
1746
1747

1748
1749

1750
1751
1752
1753
1754
1755
1756
1757

1758
1759
1760
1761
1762

1763
1764
1765
1766

v1.23 - 02/17/08 SAGE For Newbies 71/150

class, the child class can either use the parent's implementation of that method
or it can redefine it so that it behaves differently than the parent's version.

As discussed earlier, the __init__ method is a constructor and it helps to complete
construction of each new object that is created using the class it is in. The
Person class redefines the __init__ method so that it creates an instance variable
called rank and assigns the string "I am just a Person, I have no rank" to it.

The __ repr__ and __str__ methods are also redefined in the Person class. The
__repr__ method returns a string representation of the object it is a part of:

b
|

repr: I am just a Person, I have no rank.

The __str__ function also returns a string representation of the object it is a part
of, but only when it is passed to statements like print:

print b
|

str: I am just a Person, I have no rank.
The __str__ method is usually used to provide a more user friendly string than the
__repr__ method does but in this example, very similar strings are returned.

 4.11 The Inheritance Hierarchy Of The
sage.rings.integer.Integer Class

The following code displays the inheritance hierarchy of the
sage.rings.integer.Integer class:

#Display the inheritance hierarchy of an object. Note: don't worry
#about trying to understand how this program works. Just use it for
#now.
def class_hierarchy(cls, indent):
 print '.'*indent, cls
 for supercls in cls.__bases__:
 class_hierarchy(supercls, indent+1)

def instance_hierarchy(inst):
 print 'Inheritance hierarchy of', inst
 class_hierarchy(inst.__class__, 3)

instance_hierarchy(1)
|

1767
1768

1769
1770
1771
1772

1773
1774

1775
1776
1777
1778

1779
1780

1781
1782
1783

1784
1785

1786
1787

1788
1789

1790
1791
1792
1793
1794
1795
1796

1797
1798
1799

1800
1801

v1.23 - 02/17/08 SAGE For Newbies 72/150

Inheritance hierarchy of 1
... <type 'sage.rings.integer.Integer'>
.... <type 'sage.structure.element.EuclideanDomainElement'>
..... <type 'sage.structure.element.PrincipalIdealDomainElement'>
...... <type 'sage.structure.element.DedekindDomainElement'>
....... <type 'sage.structure.element.IntegralDomainElement'>
........ <type 'sage.structure.element.CommutativeRingElement'>
......... <type 'sage.structure.element.RingElement'>
.......... <type 'sage.structure.element.ModuleElement'>
........... <type 'sage.structure.element.Element'>
............ <type 'sage.structure.sage_object.SAGEObject'>
............. <type 'object'>

In the following explanation, I am going to leave out the beginning
"sage.xxx.xxx..." part of the class names to save space. The output from the
instance_hierarchy function indicates that the number 1 is an object of type
Integer. It then shows that Integer inherits from EuclideanDomainElement,
EuclideanDomainElement inherits from PrincipalIdealDomainElement, etc.
 At the top of the hierarchy (which is at the bottom of the list) SAGEObject
inherits from object.

Here is the inheritance hierarchy for two other commonly used SAGE objects:

instancehierarchy(1/2)
|

Inheritance hierarchy of 1/2
... <type 'sage.rings.rational.Rational'>
.... <type 'sage.structure.element.FieldElement'>
..... <type 'sage.structure.element.CommutativeRingElement'>
...... <type 'sage.structure.element.RingElement'>
....... <type 'sage.structure.element.ModuleElement'>
........ <type 'sage.structure.element.Element'>
......... <type 'sage.structure.sage_object.SAGEObject'>
.......... <type 'object'>

instancehierarchy(1.2)
|

Inheritance hierarchy of 1.20000000000000
... <type 'sage.rings.real_mpfr.RealNumber'>
.... <type 'sage.structure.element.RingElement'>
..... <type 'sage.structure.element.ModuleElement'>
...... <type 'sage.structure.element.Element'>
....... <type 'sage.structure.sage_object.SAGEObject'>
........ <type 'object'>

1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

1814
1815
1816
1817
1818
1819
1820

1821

1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832

1833
1834
1835
1836
1837
1838
1839
1840
1841

v1.23 - 02/17/08 SAGE For Newbies 73/150

 4.12 The "Is A" Relationship
Another aspect to the concept of inheritance is that, since a child class can do
anything its parent can do, it can be used any place its parent object can be
used. Take a look at the inheritance hierarchy of the Integer class. This
hierarchy indicates that Integer is a EuclideanDomainElement and
EuclideanDomainElement is a PrincipalIdealDomainElement and
PrincipalIdealDomainElement is a DedekindDomainElement etc. until
finally SAGEObject is an object (just like almost all the other classes are in
SAGE since the object class is the root class from which they all descend). A
more general way to look at this is to say a child class can be used any place any
of its ancestor classes can be used.

 4.13 Confused?
This chapter was probably confusing for you but again, don't worry about that.
The rest of this book will contain examples which show how objects are used in
SAGE and the more you see objects being used, the more comfortable you will
become with them.

1842

1843
1844
1845
1846
1847
1848
1849
1850
1851
1852

1853

1854
1855
1856
1857

v1.23 - 02/17/08 SAGE For Newbies 74/150

 5 Miscellaneous Topics

 5.1 Referencing The Result Of The Previous Operation
When working on a problem that spans multiple cells in a worksheet, it is often
desirable to reference the result of the previous operation. The underscore
symbol '_' is used for this purpose as shown in the following example:

2 + 3
|

5
_
|

5

_ + 6
|

11

a = _ * 2
a
|

22

 5.2 Exceptions
In order to assure that SAGE programs have a uniform way to handle exceptional
conditions that might occur while they are running, an exception display and
handling mechanism is built into the SAGE platform. This section covers only
displayed exceptions because exception handling is an advanced topic that is
beyond the scope of this document.

The following code causes an exception to occur and information about the
exception is then displayed:

1/0
|

Exception (click to the left for traceback):
...
ZeroDivisionError: Rational division by zero

Since 1/0 is an undefined mathematical operation, SAGE is unable to perform the
calculation. It stops execution of the program and generates an exception to
inform other areas of the program or the user about this problem. If no other
part of the program handles the exception, a text explanation of the exception is

1858

1859

1860
1861
1862

1863
1864
1865
1866
1867
1868

1869
1870
1871

1872
1873
1874
1875

1876

1877
1878
1879
1880
1881

1882
1883

1884
1885
1886
1887
1888

1889
1890
1891
1892

v1.23 - 02/17/08 SAGE For Newbies 75/150

displayed. In this case, the exception informs the user that a ZeroDivisionError
has occurred and that this was caused by an attempt to perform "rational
division by zero".

Most of the time, this is enough information for the user to locate the problem in
the source code and fix it. Sometimes, however, the user needs more
information in order to locate the problem and therefore the exception indicates
that if the mouse is clicked to the left of the displayed exception text, additional
information will be displayed:

Traceback (most recent call last):
 File "", line 1, in
 File "/home/sage/sage_notebook/worksheets/tkosan/2/code/2.py",

line 4, in
 Integer(1)/Integer(0)
 File "/opt/sage-2.8.3-linux-32bit-debian-4.0-i686-

Linux/data/extcode/sage/", line 1, in

 File "element.pyx", line 1471, in element.RingElement.__div__
 File "element.pyx", line 1485, in element.RingElement._div_c
 File "integer.pyx", line 735, in integer.Integer._div_c_impl
 File "integer_ring.pyx", line 185, in
integer_ring.IntegerRing_class._div
ZeroDivisionError: Rational division by zero

This additional information shows a trace of all the code in the SAGE library that
was in use when the exception occurred along with the names of the files that
hold the code. It allows an expert SAGE user to look at the source code if
needed in order to determine if the exception was caused by a bug in SAGE or a
bug in the code that was entered.

 5.3 Obtaining Numeric Results
One sometimes needs to obtain the numeric approximate of an object and SAGE
provides a number of ways to accomplish this. One way is to use the n()
function and another way is to use the n() method. The following example
shows both of these being used:

a = 3/4
print a
print n(a)
print a.n()
|

3/4
0.750000000000000
0.750000000000000

1893
1894
1895

1896
1897
1898
1899
1900

1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914

1915
1916
1917
1918
1919

1920

1921
1922
1923
1924

1925
1926
1927
1928
1929
1930
1931
1932

v1.23 - 02/17/08 SAGE For Newbies 76/150

The number of digits returned can be adjusted by using the digits parameter:

a = 3/4
print a.n(digits=30)
|

0.7500000000000000000000000000000

and the number of bits of precision can be adjusted by using the prec parameter:

a = 4/3
print a.n(prec=2)
print a.n(prec=3)
print a.n(prec=4)
print a.n(prec=10)
print a.n(prec=20)
|

1.5
1.2
1.4
1.3
1.3333

 5.4 Style Guide For Expressions
Always surround the following binary operators with a single space on either
side: assignment '=', augmented assignment (+=, −=, etc.), comparisons (==, <,
>, !=, <>, <=, >=, in, not in, is, is not), Booleans (and, or, not).

Use spaces around the + and − arithmetic operators and no spaces around the
* , /, %, and ^ arithmetic operators:

x = x + 1

x = x*3 − 5%2

c = (a + b)/(a − b)

Do not use spaces around the equals sign '=' when used to indicate a keyword
argument or a default parameter value:

a.n(digits=5)

 5.5 Built-in Constants
SAGE has a number of mathematical constants built into it and the following is a

1933

1934
1935
1936
1937

1938

1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950

1951

1952
1953
1954

1955
1956

1957

1958

1959

1960
1961

1962

1963

1964

v1.23 - 02/17/08 SAGE For Newbies 77/150

list of some of the more common ones:

Pi, pi: The ratio of the circumference to the diameter of a circle.

E, e: Base of the natural logarithm.

I, i: The imaginary unit quantity.

log2: The natural logarithm of the real number 2.

Infinity, infinity: Can have + or − placed before it to indicate positive or
negative infinity.

The following examples show constants being used:

a = pi.n()
b = e.n()
c = i.n()
a,b,c
|

(3.14159265358979, 2.71828182845905, 1.00000000000000*I)

r = 4
a = 2*pi*r
a,a.n()
|
(8*pi, 25.1327412287183)

Constants in SAGE are defined as global variables and a global variable is a
variable that is accessible by most SAGE code, including inside of functions and
methods. Since constants are simply variables that have a constant object
assigned to them, the variables can be reassigned if needed but then the
constant object is lost. If one needs to have a constant reassigned to the variable
it is normally associated with, the restore() function can be used. The following
program shows how the variable pi can have the object 7 assigned to it and then
have its default constant assigned to it again by passing its name inside of quotes
to the restore() function:

print pi.n()

pi = 7
print pi

restore('pi')

1965

1966

1967

1968
1969
1970

1971
1972

1973

1974
1975
1976
1977
1978
1979

1980
1981
1982
1983
1984

1985
1986
1987
1988
1989
1990
1991
1992
1993

1994

1995
1996

1997

v1.23 - 02/17/08 SAGE For Newbies 78/150

print pi.n()
|

3.14159265358979
7
3.14159265358979

If the restore() function is called with no parameters, all reassigned constants
are restored to their original values.

 5.6 Roots
The sqrt() function can be used to obtain the square root of a value, but a more
general technique is used to obtain other roots of a value. For example, if one
wanted to obtain the cube root of 8:

38
8 would be raised to the 1/3 power:

8^(1/3)
|

2

Due to the order of operations, the rational number 1/3 needs to be placed within
parentheses in order for it to be evaluated as an exponent.

 5.7 Symbolic Variables
Up to this point, all of the variables we have used have been created during
assignment time. For example, in the following code the variable w is created
and then the number 8 is assigned to it:

w = 7
w
|

7

But what if you needed to work with variables that are not assigned to any
specific values? The following code attempts to print the value of the variable z,
but z has not been assigned a value yet so an exception is returned:

print z
|

Exception (click to the left for traceback):
...
NameError: name 'z' is not defined

1998
1999
2000
2001
2002

2003
2004

2005

2006
2007
2008

2009
2010
2011
2012

2013
2014

2015

2016
2017
2018

2019
2020
2021
2022

2023
2024
2025

2026
2027
2028
2029
2030

v1.23 - 02/17/08 SAGE For Newbies 79/150

In mathematics, "unassigned variables" are used all the time. Since SAGE is
mathematics oriented software, it has the ability to work with unassigned
variables. In SAGE, unassigned variables are called symbolic variables and
they are defined using the var() function. When a worksheet is first opened, the
variable x is automatically defined to be a symbolic variable and it will remain so
unless it is assigned another value in your code.

The following code was executed on a newly-opened worksheet:

print x
type(x)
|

x
<class 'sage.calculus.calculus.SymbolicVariable'>

Notice that the variable x has had an object of type SymbolicVariable
automatically assigned to it by the SAGE environment.

If you would like to also use y and z as symbolic variables, the var() function
needs to be used to do this. One can either enter var('x,y') or var('x y'). The
var() function is designed to accept one or more variable names inside of a
string and the names can either be separated by commas or spaces.

The following program shows var() being used to initialize y and z to be
symbolic variables:

var('y,z')
y,z
|

(y, z)

After one or more symbolic variables have been defined, the reset() function can
be used to undefine them:

reset('y,z')
y,z
|

Exception (click to the left for traceback):
...
NameError: name 'y' is not defined

 5.8 Symbolic Expressions
Expressions that contain symbolic variables are called symbolic expressions.

2031
2032
2033
2034
2035
2036

2037

2038
2039
2040
2041
2042

2043
2044

2045
2046
2047
2048

2049
2050

2051
2052
2053
2054

2055
2056

2057
2058
2059
2060
2061
2062

2063

2064

v1.23 - 02/17/08 SAGE For Newbies 80/150

In the following example, b is defined to be a symbolic variable and then it is
used to create the symbolic expression 2*b:

var('b')
type(2*b)
|

<class 'sage.calculus.calculus.SymbolicArithmetic'>

As can be seen by this example, the symbolic expression 2*b was placed into an
object of type SymbolicArithmetic. The expression can also be assigned to a
variable:

m = 2*b
type(m)
|

<class 'sage.calculus.calculus.SymbolicArithmetic'>

The following program creates two symbolic expressions, assigns them to
variables, and then performs operations on them:

m = 2*b
n = 3*b
m+n, m-n, m*n, m/n
|

(5*b, -b, 6*b^2, 2/3)

Here is another example that multiplies two symbolic expressions together:

m = 5 + b
n = 8 + b
y = m*n
y
|

(b + 5)*(b + 8)

 5.9 Expanding And Factoring
If the expanded form of the expression from the previous section is needed, it is
easily obtained by calling the expand() method (this example assumes the cells
in the previous section have been run):

z = y.expand()
z
|

b^2 + 13*b + 40

2065
2066

2067
2068
2069
2070

2071
2072
2073

2074
2075
2076
2077

2078
2079

2080
2081
2082
2083
2084

2085

2086
2087
2088
2089
2090
2091

2092
2093
2094

2095
2096
2097
2098

v1.23 - 02/17/08 SAGE For Newbies 81/150

The expanded form of the expression has been assigned to variable z and the
factored form can be obtained from z by using the factor() method:

z.factor()
|

(b + 5)*(b + 8)

By the way, a number can be factored without being assigned to a variable by
placing parentheses around it and calling its factor() method:

(90).factor()
|

2 * 3^2 * 5

 5.10 Miscellaneous Symbolic Expression Examples

var('a,b,c')

(5*a + b + 4*c) + (2*a + 3*b + c)
|

5*c + 4*b + 7*a

(a + b) - (x + 2*b)
|

-x - b + a

3*a^2 - a*(a -5)
|

3*a^2 - (a - 5)*a

_.factor()
|

a*(2*a + 5)

 5.11 Passing Values To Symbolic Expressions
If values are passed to a symbolic expressions, they will be evaluated and a
result will be returned. If the expression only has one variable, then the value
can simply be passed to it as follows:

a = x^2
a(5)
|

25

2099
2100

2101
2102
2103

2104
2105

2106
2107
2108

2109

2110
2111
2112

2113
2114
2115

2116
2117
2118

2119
2120
2121

2122
2123
2124

2125
2126
2127
2128

v1.23 - 02/17/08 SAGE For Newbies 82/150

However, if the expression has two or more variables, each variable needs to
have a value assigned to it by name:

var('y')
a = x^2 + y
a(x=2, y=3)
|

7

 5.12 Symbolic Equations and The solve() Function
In addition to working with symbolic expressions, SAGE is also able to work with
symbolic equations:

var('a')
type(x^2 == 16*a^2)
|

<class 'sage.calculus.equations.SymbolicEquation'>

As can be seen by this example, the symbolic equation x^2 == 16*a^2 was
placed into an object of type SymbolicEquation. A symbolic equation needs to
use double equals '==' so that it can be assigned to a variable using a single
equals '=' like this:

m = x^2 == 16*a^2
m, type(m)
|

(x^2 == 16*a^2, <class 'sage.calculus.equations.SymbolicEquation'>)

Many symbolic equations can be solved algebraically using the solve() function:

solve(m, a)
|

[a == -x/4, a == x/4]

The first parameter in the solve() function accepts a symbolic equation and the
second parameter accepts the symbolic variable to be solved for.

The solve() function can also solve simultaneous equations:

var('i1,i2,i3,v0')

a = (i1 - i3)*2 + (i1 - i2)*5 + 10 - 25 == 0
b = (i2 - i3)*3 + i2*1 - 10 + (i2 - i1)*5 == 0
c = i3*14 + (i3 - i2)*3 + (i3 - i1)*2 - (-3*v0) == 0

2129
2130

2131
2132
2133
2134
2135

2136

2137
2138

2139
2140
2141
2142

2143
2144
2145
2146

2147
2148
2149
2150

2151

2152
2153
2154

2155
2156

2157

2158

2159
2160
2161

v1.23 - 02/17/08 SAGE For Newbies 83/150

d = v0 == (i2 - i3)*3

solve([a,b,c,d], i1,i2,i3,v0)
|

[[i1 == 4, i2 == 3, i3 == -1, v0 == 12]]

Notice that, when more than one equation is passed to solve(), they need to be
placed into a list.

 5.13 Symbolic Mathematical Functions
SAGE has the ability to define functions using mathematical syntax. The
following example shows a function f being defined that uses x as a variable:

f(x) = x^2
f, type(f)
|

(x |--> x^2,
<class'sage.calculus.calculus.CallableSymbolicExpression'>)

Objects created this way are of type CallableSymbolicExpression which means
they can be called as shown in the following example:

f(4), f(50), f(.2)
|

(16, 2500, 0.040000000000000010)

Here is an example that uses the above CallableSymbolicExpression inside of a
loop:

a = 0
while a <= 9:
 f(a)
 a = a + 1
|

0
1
4
9
16
25
36
49
64
81

2162

2163
2164
2165

2166
2167

2168

2169
2170

2171
2172
2173
2174
2175

2176
2177

2178
2179
2180

2181
2182

2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197

v1.23 - 02/17/08 SAGE For Newbies 84/150

The following example accomplishes the same work that the previous example
did, except it uses more advanced language features:

a = srange(10)
a
|

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

for num in a:
 f(num)
|

0
1
4
9
16
25
36
49
64
81

 5.14 Finding Roots Graphically And Numerically With The
find_root() Method

Sometimes equations cannot be solved algebraically and the solve() function
indicates this by returning a copy of the input it was passed. This is shown in the
following example:

f(x) = sin(x) - x - pi/2
eqn = (f == 0)
solve(eqn, x)
|

[x == (2*sin(x) - pi)/2]

However, equations that cannot be solved algebraically can be solved both
graphically and numerically. The following example shows the above equation
being solved graphically:

show(plot(f,-10,10))
|

2198
2199

2200
2201
2202
2203

2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216

2217
2218

2219
2220
2221

2222
2223
2224
2225
2226

2227
2228
2229

2230
2231

http://en.wikipedia.org/wiki/Numerical_analysis

v1.23 - 02/17/08 SAGE For Newbies 85/150

This graph indicates that the root for this equation is a little greater than -2.5.

The following example shows the equation being solved more precisely using the
find_root() method:

f.find_root(-10,10)
|

-2.309881460010057

The -10 and +10 that are passed to the find_root() method tell it the interval
within which it should look for roots.

 5.15 Displaying Mathematical Objects In Traditional Form
Earlier it was indicated that SAGE is able to display mathematical objects in
either text form or traditional form. Up until this point, we have been using
text form which is the default. If one wants to display a mathematical object in
traditional form, the show() function can be used. The following example
creates a mathematical expression and then displays it in both text form and
traditional form:

var('y,b,c')
z = (3*y^(2*b))/(4*x^c)^2

#Display the expression in text form.
z
|

2232

2233
2234

2235
2236
2237

2238
2239

2240

2241
2242
2243
2244
2245
2246

2247
2248

2249
2250
2251

v1.23 - 02/17/08 SAGE For Newbies 86/150

3*y^(2*b)/(16*x^(2*c))

#Display the expression in traditional form.
show(z)
|

 5.15.1 LaTeX Is Used To Display Objects In Traditional
Mathematics Form

LaTex (pronounced l -tek, ā http://en.wikipedia.org/wiki/LaTeX) is a document
markup language which is able to work with a wide range of mathematical
symbols. SAGE objects will provide LaTeX descriptions of themselves when their
latex() methods are called. The LaTeX description of an object can also be
obtained by passing it to the latex() function:

a = (2*x^2)/7
latex(a)
|

\frac{{2 \cdot {x}^{2} }}{7}

When this result is fed into LaTeX display software, it will generate traditional
mathematics form output similar to the following:

2x2

7
The jsMath package which is referenced in Drawing 2.5 is the software that the
SAGE Notebook uses to translate LaTeX input into traditional mathematics form
output.

 5.16 Sets
The following example shows operations that SAGE can perform on sets:

a = Set([0,1,2,3,4])
b = Set([5,6,7,8,9,0])
a,b
|

({0, 1, 2, 3, 4}, {0, 5, 6, 7, 8, 9})

a.cardinality()
|

2252

2253
2254
2255

2256
2257
2258
2259
2260

2261
2262
2263
2264

2265
2266

2267
2268
2269

2270

2271

2272
2273
2274
2275
2276

2277
2278

http://en.wikipedia.org/wiki/LaTeX

v1.23 - 02/17/08 SAGE For Newbies 87/150

5

3 in a
|

True

3 in b
|

False

a.union(b)
|

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

a.intersection(b)
|

{0}

2279

2280
2281
2282

2283
2284
2285

2286
2287
2288

2289
2290
2291

v1.23 - 02/17/08 SAGE For Newbies 88/150

 6 2D Plotting

 6.1 The plot() And show() Functions
SAGE provides a number of ways to generate 2D plots of mathematical functions
and one of these ways is to use the plot() function in conjunction with the
show() function. The following example shows a symbolic expression being
passed to the plot() function as its first parameter. The second parameter
indicates where plotting should begin on the X axis and the third parameter
indicates where plotting should end:

a = x^2
b = plot(a, 0, 10)
type(b)
|
 <class 'sage.plot.plot.Graphics'>

Notice that the plot() function does not display the plot. Instead, it creates an
object of type sage.plot.plot.Graphics and this object contains the plot data. The
show() function can then be used to display the plot:

show(b)
|

The show() function has 4 parameters called xmin, xmax, ymin, and ymax that
can be used to adjust what part of the plot is displayed. It also has a figsize

2292

2293

2294
2295
2296
2297
2298
2299

2300
2301
2302
2303
2304

2305
2306
2307

2308
2309

2310
2311

v1.23 - 02/17/08 SAGE For Newbies 89/150

parameter which determines how large the image will be. The following example
shows xmin and xmax being used to display the plot between 0 and .05 on the X
axis. Notice that the plot() function can be used as the first parameter to the
show() function in order to save typing effort (Note: if any other symbolic
variable other than x is used, it must first be declared with the var() function):

v = 400*e^(-100*x)*sin(200*x)
show(plot(v,0,.1),xmin=0, xmax=.05, figsize=[3,3])
|

The ymin and ymax parameters can be used to adjust how much of the y axis is
displayed in the above plot:

show(plot(v,0,.1),xmin=0, xmax=.05, ymin=0, ymax=100, figsize=[3,3])
|

2312
2313
2314
2315
2316

2317
2318
2319

2320
2321

2322
2323

v1.23 - 02/17/08 SAGE For Newbies 90/150

 6.1.1 Combining Plots And Changing The Plotting Color
Sometimes it is necessary to combine one or more plots into a single plot. The
following example combines 6 plots using the show() function:

var('t')
p1 = t/4E5
p2 = (5*(t - 8)/2 - 10)/1000000
p3 = (t - 12)/400000
p4 = 0.0000004*(t - 30)
p5 = 0.0000004*(t - 30)
p6 = -0.0000006*(6 - 3*(t - 46)/2)

g1 = plot(p1,0,6,rgbcolor=(0,.2,1))
g2 = plot(p2,6,12,rgbcolor=(1,0,0))
g3 = plot(p3,12,16,rgbcolor=(0,.7,1))
g4 = plot(p4,16,30,rgbcolor=(.3,1,0))
g5 = plot(p5,30,36,rgbcolor=(1,0,1))
g6 = plot(p6,36,50,rgbcolor=(.2,.5,.7))

show(g1+g2+g3+g4+g5+g6,xmin=0, xmax=50, ymin=-.00001, ymax=.00001)
|

Notice that the color of each plot can be changed using the rgbcolor parameter.
RGB stands for Red, Green, and Blue and the tuple that is assigned to the
rgbcolor parameter contains three values between 0 and 1. The first value
specifies how much red the plot should have (between 0 and 100%), the second
value specifies how much green the plot should have, and the third value
specifies how much blue the plot should have.

2324
2325

2326
2327
2328
2329
2330
2331
2332

2333
2334
2335
2336
2337
2338

2339
2340

2341
2342
2343
2344
2345
2346

v1.23 - 02/17/08 SAGE For Newbies 91/150

 6.1.2 Combining Graphics With A Graphics Object
It is often useful to combine various kinds of graphics into one image. In the
following example, 6 points are plotted along with a text label for each plot:

"""
Plot the following points on a graph:

A (0,0)
B (9,23)
C (-15,20)
D (22,-12)
E (-5,-12)
F (-22,-4)
"""

#Create a Graphics object which will be used to hold multiple
graphics objects. These graphics objects will be displayed
on the same image.
g = Graphics()

#Create a list of points and add them to the graphics object.
points=[(0,0), (9,23), (-15,20), (22,-12), (-5,-12), (-22,-4)]
g += point(points)

#Add labels for the points to the graphics object.
for (pnt,letter) in zip(points,['A','B','C','D','E','F']):
 g += text(letter,(pnt[0]-1.5, pnt[1]-1.5))

#Display the combined graphics objects.
show(g,figsize=[5,4])
|

2347
2348
2349
2350

2351
2352
2353
2354
2355
2356
2357

2358
2359
2360
2361

2362
2363
2364

2365
2366
2367

2368
2369
2370

v1.23 - 02/17/08 SAGE For Newbies 92/150

First, an empty Graphics object is instantiated and a list of plotted points are
created using the point() function. These plotted points are then added to the
Graphics object using the += operator. Next, a label for each point is added to
the Graphics object using a for loop. Finally, the Graphics object is displayed in
the worksheet using the show() function.

Even after being displayed, the Graphics object still contains all of the graphics
that have been placed into it and more graphics can be added to it as needed.
For example, if a line needed to be drawn between points C and D, the following
code can be executed in a separate cell to accomplish this:

g += line([(-15,20), (22,-12)])
show(g)
|

 6.2 Advanced Plotting With matplotlib
SAGE uses the matplotlib (http://matplotlib.sourceforge.net) library for its
plotting needs and if one requires more control over plotting than the plot()
function provides, the capabilities of matplotlib can be used directly. While a
complete explanation of how matplotlib works is beyond the scope of this book,
this section provides examples that should help you to begin using it.

2371
2372
2373
2374
2375

2376
2377
2378
2379

2380
2381
2382

2383

2384
2385
2386
2387
2388

http://matplotlib.sourceforge.net/

v1.23 - 02/17/08 SAGE For Newbies 93/150

 6.2.1 Plotting Data From Lists With Grid Lines And Axes
Labels

x = [1921, 1923, 1925, 1927, 1929, 1931, 1933]
y = [.05, .6, 4.0, 7.0, 12.0, 15.5, 18.5]

from matplotlib.backends.backend_agg import FigureCanvasAgg as \
FigureCanvas
from matplotlib.figure import Figure
from matplotlib.ticker import *
fig = Figure()
canvas = FigureCanvas(fig)
ax = fig.add_subplot(111)
ax.xaxis.set_major_formatter(FormatStrFormatter('%d'))
ax.yaxis.set_major_locator(MaxNLocator(10))
ax.yaxis.set_major_formatter(FormatStrFormatter('%d'))
ax.yaxis.grid(True, linestyle='-', which='minor')
ax.grid(True, linestyle='-', linewidth=.5)
ax.set_title('US Radios Percentage Gains')
ax.set_xlabel('Year')
ax.set_ylabel('Radios')
ax.plot(x,y, 'go-', linewidth=1.0)
canvas.print_figure('ex1_linear.png')
|

 6.2.2 Plotting With A Logarithmic Y Axis

2389
2390

2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408

v1.23 - 02/17/08 SAGE For Newbies 94/150

x = [1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933]
y = [4.61,5.24, 10.47, 20.24, 28.83, 43.40, 48.34, 50.80]

from matplotlib.backends.backend_agg import FigureCanvasAgg as \
FigureCanvas
from matplotlib.figure import Figure
from matplotlib.ticker import *
fig = Figure()
canvas = FigureCanvas(fig)
ax = fig.add_subplot(111)
ax.xaxis.set_major_formatter(FormatStrFormatter('%d'))
ax.yaxis.set_major_locator(MaxNLocator(10))
ax.yaxis.set_major_formatter(FormatStrFormatter('%d'))
ax.yaxis.grid(True, linestyle='-', which='minor')
ax.grid(True, linestyle='-', linewidth=.5)
ax.set_title('Distance in millions of miles flown by transport
airplanes in the US')
ax.set_xlabel('Year')
ax.set_ylabel('Distance')
ax.semilogy(x,y, 'go-', linewidth=1.0)
canvas.print_figure('ex2_log.png')
|

 6.2.3 Two Plots With Labels Inside Of The Plot

2409
2410

2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

v1.23 - 02/17/08 SAGE For Newbies 95/150

x = [20,30,40,50,60,70,80,90,100]
y = [3690,2830,2130,1575,1150,875,735,686,650]
z = [120,680,1860,3510,4780,5590,6060,6340,6520]

from matplotlib.backends.backend_agg import FigureCanvasAgg as \
FigureCanvas
from matplotlib.figure import Figure
from matplotlib.ticker import *
from matplotlib.dates import *
fig = Figure()
canvas = FigureCanvas(fig)
ax = fig.add_subplot(111)
ax.xaxis.set_major_formatter(FormatStrFormatter('%d'))
ax.yaxis.set_major_locator(MaxNLocator(10))
ax.yaxis.set_major_formatter(FormatStrFormatter('%d'))
ax.yaxis.grid(True, linestyle='-', which='minor')
ax.grid(True, linestyle='-', linewidth=.5)
ax.set_title('Number of trees vs. total volume of wood')
ax.set_xlabel('Age')
ax.set_ylabel('')
ax.semilogy(x,y, 'bo-', linewidth=1.0)
ax.semilogy(x,z, 'go-', linewidth=1.0)
ax.annotate('N', xy=(550, 248), xycoords='figure pixels')
ax.annotate('V', xy=(180, 230), xycoords='figure pixels')
canvas.print_figure('ex5_log.png')
|

2430
2431
2432

2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454

v1.23 - 02/17/08 SAGE For Newbies 96/150

 7 SAGE Usage Styles
SAGE is an extremely flexible environment and therefore there are multiple ways
to use it. In this chapter, two SAGE usage styles are discussed and they are
called the Speed style and the OpenOffice Presentation style.

The Speed usage style is designed to solve problems as quickly as possible by
minimizing the amount of effort that is devoted to making results look good.
This style has been found to be especially useful for solving end of chapter
problems that are usually present in mathematics related textbooks.

The OpenOffice Presentation style is designed to allow a person with no
mathematical document creation skills to develop mathematical documents with
minimal effort. This presentation style is useful for creating homework
submissions, reports, articles, books, etc. and this book was developed using this
style.

 7.1 The Speed Usage Style
(In development...)

 7.2 The OpenOffice Presentation Usage Style
(In development...)

2455

2456
2457
2458

2459
2460
2461
2462

2463
2464
2465
2466
2467

2468

2469

2470

2471

v1.23 - 02/17/08 SAGE For Newbies 97/150

 8 High School Math Problems (most of the
problems are still in development)

 8.1 Pre-Algebra

Wikipedia entry. http://en.wikipedia.org/wiki/Pre-algebra
(In development...)

 8.1.1 Equations

Wikipedia entry. http://en.wikipedia.org/wiki/Equation
(In development...)

 8.1.2 Expressions

Wikipedia entry. http://en.wikipedia.org/wiki/Mathematical_expression
(In development...)

 8.1.3 Geometry

Wikipedia entry. http://en.wikipedia.org/wiki/Geometry
(In development...)

 8.1.4 Inequalities

Wikipedia entry. http://en.wikipedia.org/wiki/Inequality
(In development...)

 8.1.5 Linear Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Linear_functions
(In development...)

 8.1.6 Measurement

Wikipedia entry. http://en.wikipedia.org/wiki/Measurement
(In development...)

 8.1.7 Nonlinear Functions

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

http://en.wikipedia.org/wiki/Measurement
http://en.wikipedia.org/wiki/Linear_functions
http://en.wikipedia.org/wiki/Inequality
http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Mathematical_expression
http://en.wikipedia.org/wiki/Equation
http://en.wikipedia.org/wiki/Pre-algebra

v1.23 - 02/17/08 SAGE For Newbies 98/150

Wikipedia entry. http://en.wikipedia.org/wiki/Nonlinear_system
(In development...)

 8.1.8 Number Sense And Operations

Wikipedia entry. http://en.wikipedia.org/wiki/Number_sense

Wikipedia entry. http://en.wikipedia.org/wiki/Operation_(mathematics)
(In development...)

 8.1.8.1 Express an integer fraction in lowest terms
"""
Problem:
Express 90/105 in lowest terms.

Solution:
One way to solve this problem is to factor both the numerator and the
denominator into prime factors, find the common factors, and then
divide both the numerator and denominator by these factors.
"""
n = 90
d = 105
print n,n.factor()
print d,d.factor()
|

Numerator: 2 * 3^2 * 5
Denominator: 3 * 5 * 7

"""
It can be seen that the factors 3 and 5 each appear once in both the
numerator and denominator, so we divide both the numerator and
denominator by 3*5:
"""
n2 = n/(3*5)
d2 = d/(3*5)
print "Numerator2:",n2
print "Denominator2:",d2
|

Numerator2: 6
Denominator2: 7

"""
Therefore, 6/7 is 90/105 expressed in lowest terms.

2482

2483

2484
2485
2486
2487

2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499

2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511

2512
2513

http://en.wikipedia.org/wiki/Operation_(mathematics)
http://en.wikipedia.org/wiki/Number_sense
http://en.wikipedia.org/wiki/Nonlinear_system

v1.23 - 02/17/08 SAGE For Newbies 99/150

This problem could also have been solved more directly by simply
entering 90/105 into a cell because rational number objects are
automatically reduced to lowest terms:
"""
90/105
|

6/7

 8.1.9 Polynomial Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Polynomial_function
(In development...)

 8.2 Algebra

Wikipedia entry. http://en.wikipedia.org/wiki/Algebra_1
(In development...)

 8.2.1 Absolute Value Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Absolute_value
(In development...)

 8.2.2 Complex Numbers

Wikipedia entry. http://en.wikipedia.org/wiki/Complex_numbers
(In development...)

 8.2.3 Composite Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Composite_function
(In development...)

 8.2.4 Conics

Wikipedia entry. http://en.wikipedia.org/wiki/Conics
(In development...)

 8.2.5 Data Analysis

Wikipedia entry. http://en.wikipedia.org/wiki/Data_analysis

2514
2515
2516
2517
2518
2519
2520

2521

2522

2523

2524

2525

2526

2527

http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Conics
http://en.wikipedia.org/wiki/Composite_function
http://en.wikipedia.org/wiki/Complex_numbers
http://en.wikipedia.org/wiki/Absolute_value
http://en.wikipedia.org/wiki/Algebra_1
http://en.wikipedia.org/wiki/Polynomial_function

v1.23 - 02/17/08 SAGE For Newbies 100/150

(In development...)

 9 Discrete Mathematics: Elementary Number And Graph
Theory

Wikipedia entry. http://en.wikipedia.org/wiki/Discrete_mathematics
(In development...)

 9.1.1 Equations

Wikipedia entry. http://en.wikipedia.org/wiki/Equation
(In development...)

 9.1.1.1 Express a symbolic fraction in lowest terms
"""
Problem:
Express (6*x^2 - b) / (b - 6*a*b) in lowest terms, where a and b
represent positive integers.

Solution:
"""

var('a,b')
n = 6*a^2 - a
d = b - 6 * a * b
print n
print " ---------"
print d
|
 2
 6 a - a

 b - 6 a b

"""
We begin by factoring both the numerator and the denominator and then
looking for common factors:
"""
n2 = n.factor()
d2 = d.factor()
print "Factored numerator:",n2.__repr__()
print "Factored denominator:",d2.__repr__()
|

2528

2529

2530

2531
2532
2533
2534
2535

2536
2537

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548

2549
2550
2551
2552
2553
2554
2555
2556
2557

http://en.wikipedia.org/wiki/Equation
http://en.wikipedia.org/wiki/Discrete_mathematics

v1.23 - 02/17/08 SAGE For Newbies 101/150

Factored numerator: a*(6*a - 1)
Factored denominator: -(6*a - 1)*b

"""
At first, it does not appear that the numerator and denominator
contain any common factors. If the denominator is studied further,
however, it can be seen that if (1 - 6 a) is multiplied by -1,
(6 a - 1) is the result and this factor is also present
in the numerator. Therefore, our next step is to multiply both the
numerator and denominator by -1:
"""
n3 = n2 * -1
d3 = d2 * -1
print "Numerator * -1:",n3.__repr__()
print "Denominator * -1:",d3.__repr__()
|

Numerator * -1: -a*(6*a - 1)
Denominator * -1: (6*a - 1)*b

"""
Now, both the numerator and denominator can be divided by (6*a - 1)
in order to reduce each to lowest terms:
"""
common_factor = 6*a - 1
n4 = n3 / common_factor
d4 = d3 / common_factor
print n4
print " ---"
print d4
|
 - a

 b

"""
The problem could also have been solved more directly using a
SymbolicArithmetic object:
"""
z = n/d
z.simplify_rational()
|

-a/b

2558
2559

2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574

2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588

2589
2590
2591
2592
2593
2594
2595
2596

v1.23 - 02/17/08 SAGE For Newbies 102/150

 9.1.1.2 Determine the product of two symbolic fractions

Perform the indicated operation:
x

2y

2

.
4y2

3x

3

"""
Since symbolic expressions are usually automatically simplified, all
that needs to be done with this problem is to enter the expression
and assign it to a variable:
"""

var('y')
a = (x/(2*y))^2 * ((4*y^2)/(3*x))^3

#Display the expression in text form:
a
|

16*y^4/(27*x)

#Display the expression in traditional form:
show(a)
|

 9.1.1.3 Solve a linear equation for x
Solve 3x2x−8=5x−3x7

"""
Like terms will automatically be combined when this equation is
placed into a SymbolicEquation object:
"""
a = 5*x + 2*x - 8 == 5*x - 3*x + 7
a
|

7*x - 8 == 2*x + 7

"""
First, lets move the x terms to the left side of the equation by subtracting 2x
from each side. (Note: remember that the underscore '_' holds the result of the
last cell that was executed:
"""

2597

2598

2599
2600
2601
2602
2603

2604
2605

2606
2607
2608
2609

2610
2611
2612

2613

2614

2615
2616
2617
2618
2619
2620
2621
2622

2623
2624
2625
2626
2627

v1.23 - 02/17/08 SAGE For Newbies 103/150

_ - 2*x
|

5*x - 8 == 7

"""
Next, add 8 to both sides:
"""
_+8
|

5*x == 15

"""
Finally, divide both sides by 5 to determine the solution:
"""
_/5
|

x == 3

"""
This problem could also have been solved automatically using the solve()
function:
"""
solve(a,x)
|

[x == 3]

 9.1.1.4 Solve a linear equation which has fractions

Solve
16x−13

6
=3x5

2
−4−x

3

"""
The first step is to place the equation into a SymbolicEquation
object. It is good idea to then display the equation so that you can
verify that it was entered correctly:
"""
a = (16*x - 13)/6 == (3*x + 5)/2 - (4 - x)/3
a
|

(16*x - 13)/6 == (3*x + 5)/2 - (4 - x)/3

"""
In this case, it is difficult to see if this equation has been
entered correctly when it is displayed in text form so lets also
display it in traditional form:

2628
2629
2630

2631
2632
2633
2634
2635
2636

2637
2638
2639
2640
2641
2642

2643
2644
2645
2646
2647
2648
2649

2650

2651

2652
2653
2654
2655
2656
2657
2658
2659
2660

2661
2662
2663
2664

v1.23 - 02/17/08 SAGE For Newbies 104/150

"""
show(a)
|

"""
The next step is to determine the least common denominator (LCD) of
the fractions in this equation so the fractions can be removed:
"""
lcm([6,2,3])
|

6

"""
The LCD of this equation is 6 so multiplying it by 6 removes the
fractions:
"""
b = a*6
b
|

16*x - 13 == 6*((3*x + 5)/2 - (4 - x)/3)

"""
The right side of this equation is still in factored form so expand
it:
"""
c = b.expand()
c
|

16*x - 13 == 11*x + 7

"""
Transpose the 11x to the left side of the equals sign by subtracting
11x from the SymbolicEquation:
"""
d = c - 11*x
d
|

5*x - 13 == 7

"""
Transpose the -13 to the right side of the equals sign by adding 13
to the SymbolicEquation:
"""
e = d + 13
e

2665
2666
2667

2668
2669
2670
2671
2672
2673
2674

2675
2676
2677
2678
2679
2680
2681
2682

2683
2684
2685
2686
2687
2688
2689
2690

2691
2692
2693
2694
2695
2696
2697
2698

2699
2700
2701
2702
2703
2704

v1.23 - 02/17/08 SAGE For Newbies 105/150

|
5*x == 20

"""
Finally, dividing the SymbolicEquation by 5 will leave x by itself on
the left side of the equals sign and produce the solution:
"""
f = e / 5
f
|

x == 4

"""
This problem could have also be solved automatically using the
solve() function:
"""
solve(a,x)
|

[x == 4]

 9.1.2 Exponential Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Exponential_function
(In development...)

 9.1.3 Exponents

Wikipedia entry. http://en.wikipedia.org/wiki/Exponent
(In development...)

 9.1.4 Expressions

Wikipedia entry. http://en.wikipedia.org/wiki/Expression_(mathematics)
(In development...)

 9.1.5 Inequalities

Wikipedia entry. http://en.wikipedia.org/wiki/Inequality
(In development...)

 9.1.6 Inverse Functions

2705
2706

2707
2708
2709
2710
2711
2712
2713
2714

2715
2716
2717
2718
2719
2720
2721

2722

2723

2724

2725

http://en.wikipedia.org/wiki/Inequality
http://en.wikipedia.org/wiki/Expression_(mathematics)
http://en.wikipedia.org/wiki/Exponent
http://en.wikipedia.org/wiki/Exponential_function

v1.23 - 02/17/08 SAGE For Newbies 106/150

Wikipedia entry. http://en.wikipedia.org/wiki/Inverse_function
(In development...)

 9.1.7 Linear Equations And Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Linear_functions
(In development...)

 9.1.8 Linear Programming

Wikipedia entry. http://en.wikipedia.org/wiki/Linear_programming
(In development...)

 9.1.9 Logarithmic Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Logarithmic_function
(In development...)

 9.1.10 Logistic Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Logistic_function
(In development...)

 9.1.11 Matrices

Wikipedia entry. http://en.wikipedia.org/wiki/Matrix_(mathematics)
(In development...)

 9.1.12 Parametric Equations

Wikipedia entry. http://en.wikipedia.org/wiki/Parametric_equation
(In development...)

 9.1.13 Piecewise Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Piecewise_function
(In development...)

 9.1.14 Polynomial Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Polynomial_function
(In development...)

2726

2727

2728

2729

2730

2731

2732

2733

2734

http://en.wikipedia.org/wiki/Polynomial_function
http://en.wikipedia.org/wiki/Piecewise_function
http://en.wikipedia.org/wiki/Parametric_equation
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Logistic_function
http://en.wikipedia.org/wiki/Logarithmic_function
http://en.wikipedia.org/wiki/Linear_programming
http://en.wikipedia.org/wiki/Linear_functions
http://en.wikipedia.org/wiki/Inverse_function

v1.23 - 02/17/08 SAGE For Newbies 107/150

 9.1.15 Power Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Power_function
(In development...)

 9.1.16 Quadratic Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Quadratic_function
(In development...)

 9.1.17 Radical Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Nth_root
(In development...)

 9.1.18 Rational Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Rational_function
(In development...)

 9.1.19 Sequences

Wikipedia entry. http://en.wikipedia.org/wiki/Sequence
(In development...)

 9.1.20 Series

Wikipedia entry. http://en.wikipedia.org/wiki/Series_mathematics
(In development...)

 9.1.21 Systems of Equations

Wikipedia entry. http://en.wikipedia.org/wiki/System_of_equations
(In development...)

 9.1.22 Transformations

Wikipedia entry. http://en.wikipedia.org/wiki/Transformation_(geometry)
(In development...)

 9.1.23 Trigonometric Functions

2735

2736

2737

2738

2739

2740

2741

2742

http://en.wikipedia.org/wiki/Transformation_(geometry)
http://en.wikipedia.org/wiki/System_of_equations
http://en.wikipedia.org/wiki/Series_mathematics
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Rational_function
http://en.wikipedia.org/wiki/Nth_root
http://en.wikipedia.org/wiki/Quadratic_function
http://en.wikipedia.org/wiki/Power_function

v1.23 - 02/17/08 SAGE For Newbies 108/150

Wikipedia entry. http://en.wikipedia.org/wiki/Trigonometric_function
(In development...)

 9.2 Precalculus And Trigonometry

Wikipedia entry. http://en.wikipedia.org/wiki/Precalculus

http://en.wikipedia.org/wiki/Trigonometry
(In development...)

 9.2.1 Binomial Theorem

Wikipedia entry. http://en.wikipedia.org/wiki/Binomial_theorem
(In development...)

 9.2.2 Complex Numbers

Wikipedia entry. http://en.wikipedia.org/wiki/Complex_numbers
(In development...)

 9.2.3 Composite Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Composite_function
(In development...)

 9.2.4 Conics

Wikipedia entry. http://en.wikipedia.org/wiki/Conics
(In development...)

 9.2.5 Data Analysis

Wikipedia entry. http://en.wikipedia.org/wiki/Data_analysis
(In development...)

 10 Discrete Mathematics: Elementary Number And Graph
Theory

Wikipedia entry. http://en.wikipedia.org/wiki/Discrete_mathematics
(In development...)

 10.1.1 Equations

2743

2744

2745

2746

2747

2748

2749

2750

2751

http://en.wikipedia.org/wiki/Discrete_mathematics
http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Conics
http://en.wikipedia.org/wiki/Composite_function
http://en.wikipedia.org/wiki/Complex_numbers
http://en.wikipedia.org/wiki/Binomial_theorem
http://en.wikipedia.org/wiki/Trigonometry
http://en.wikipedia.org/wiki/Precalculus
http://en.wikipedia.org/wiki/Trigonometric_function

v1.23 - 02/17/08 SAGE For Newbies 109/150

Wikipedia entry. http://en.wikipedia.org/wiki/Equation
(In development...)

 10.1.2 Exponential Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Equation
(In development...)

 10.1.3 Inverse Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Inverse_function
(In development...)

 10.1.4 Logarithmic Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Logarithmic_function
(In development...)

 10.1.5 Logistic Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Logistic_function
(In development...)

 10.1.6 Matrices And Matrix Algebra

Wikipedia entry. http://en.wikipedia.org/wiki/Matrix_(mathematics)
(In development...)

 10.1.7 Mathematical Analysis

Wikipedia entry. http://en.wikipedia.org/wiki/Mathematical_analysis
(In development...)

 10.1.8 Parametric Equations

Wikipedia entry. http://en.wikipedia.org/wiki/Parametric_equation
(In development...)

 10.1.9 Piecewise Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Piecewise_function
(In development...)

2752

2753

2754

2755

2756

2757

2758

2759

2760

http://en.wikipedia.org/wiki/Piecewise_function
http://en.wikipedia.org/wiki/Parametric_equation
http://en.wikipedia.org/wiki/Mathematical_analysis
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Logistic_function
http://en.wikipedia.org/wiki/Logarithmic_function
http://en.wikipedia.org/wiki/Inverse_function
http://en.wikipedia.org/wiki/Equation
http://en.wikipedia.org/wiki/Equation

v1.23 - 02/17/08 SAGE For Newbies 110/150

 10.1.10 Polar Equations

Wikipedia entry. http://en.wikipedia.org/wiki/Polar_equation
(In development...)

 10.1.11 Polynomial Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Polynomial_function
(In development...)

 10.1.12 Power Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Power_function
(In development...)

 10.1.13 Quadratic Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Quadratic_function
(In development...)

 10.1.14 Radical Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Nth_root
(In development...)

 10.1.15 Rational Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Rational_function
(In development...)

 10.1.16 Real Numbers

Wikipedia entry. http://en.wikipedia.org/wiki/Real_number
(In development...)

 10.1.17 Sequences

Wikipedia entry. http://en.wikipedia.org/wiki/Sequence
(In development...)

 10.1.18 Series

2761

2762

2763

2764

2765

2766

2767

2768

http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Rational_function
http://en.wikipedia.org/wiki/Nth_root
http://en.wikipedia.org/wiki/Quadratic_function
http://en.wikipedia.org/wiki/Power_function
http://en.wikipedia.org/wiki/Polynomial_function
http://en.wikipedia.org/wiki/Polar_equation

v1.23 - 02/17/08 SAGE For Newbies 111/150

Wikipedia entry. http://en.wikipedia.org/wiki/Series_(mathematics)
(In development...)

 10.1.19 Sets

Wikipedia entry. http://en.wikipedia.org/wiki/Set
(In development...)

 10.1.20 Systems of Equations

Wikipedia entry. http://en.wikipedia.org/wiki/System_of_equations
(In development...)

 10.1.21 Transformations

Wikipedia entry. http://en.wikipedia.org/wiki/Transformation_(geometry)
(In development...)

 10.1.22 Trigonometric Functions

Wikipedia entry. http://en.wikipedia.org/wiki/Trigonometric_function
(In development...)

 10.1.23 Vectors

Wikipedia entry. http://en.wikipedia.org/wiki/Vector
(In development...)

 10.2 Calculus

Wikipedia entry. http://en.wikipedia.org/wiki/Calculus
(In development...)

 10.2.1 Derivatives

Wikipedia entry. http://en.wikipedia.org/wiki/Derivative
(In development...)

 10.2.2 Integrals

Wikipedia entry. http://en.wikipedia.org/wiki/Integral
(In development...)

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Calculus
http://en.wikipedia.org/wiki/Vector
http://en.wikipedia.org/wiki/Trigonometric_function
http://en.wikipedia.org/wiki/Transformation_(geometry)
http://en.wikipedia.org/wiki/System_of_equations
http://en.wikipedia.org/wiki/Set
http://en.wikipedia.org/wiki/Series_(mathematics)

v1.23 - 02/17/08 SAGE For Newbies 112/150

 10.2.3 Limits

Wikipedia entry. http://en.wikipedia.org/wiki/Limit_(mathematics)
(In development...)

 10.2.4 Polynomial Approximations And Series

Wikipedia entry. http://en.wikipedia.org/wiki/Convergent_series
(In development...)

 10.3 Statistics

Wikipedia entry. http://en.wikipedia.org/wiki/Statistics
(In development...)

 10.3.1 Data Analysis

Wikipedia entry. http://en.wikipedia.org/wiki/Data_analysis
(In development...)

 10.3.2 Inferential Statistics

Wikipedia entry. http://en.wikipedia.org/wiki/Inferential_statistics
(In development...)

 10.3.3 Normal Distributions

Wikipedia entry. http://en.wikipedia.org/wiki/Normal_distribution
(In development...)

 10.3.4 One Variable Analysis

Wikipedia entry. http://en.wikipedia.org/wiki/Univariate
(In development...)

 10.3.5 Probability And Simulation

Wikipedia entry. http://en.wikipedia.org/wiki/Probability
(In development...)

 10.3.6 Two Variable Analysis

2779

2780

2781

2782

2783

2784

2785

2786

2787

http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Univariate
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Inferential_statistics
http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Convergent_series
http://en.wikipedia.org/wiki/Limit_(mathematics)

v1.23 - 02/17/08 SAGE For Newbies 113/150

Wikipedia entry. http://en.wikipedia.org/wiki/Multivariate
(In development...)2788

http://en.wikipedia.org/wiki/Multivariate

v1.23 - 02/17/08 SAGE For Newbies 114/150

 11 High School Science Problems
(In development...)

 11.1 Physics

Wikipedia entry. http://en.wikipedia.org/wiki/Physics
(In development...)

 11.1.1 Atomic Physics

Wikipedia entry. http://en.wikipedia.org/wiki/Atomic_physics
(In development...)

 11.1.2 Circular Motion

Wikipedia entry. http://en.wikipedia.org/wiki/Circular_motion
(In development...)

 11.1.3 Dynamics

Wikipedia entry. http://en.wikipedia.org/wiki/Dynamics_(physics)
(In development...)

 11.1.4 Electricity And Magnetism

Wikipedia entry. http://en.wikipedia.org/wiki/Electricity

http://en.wikipedia.org/wiki/Magnetism
(In development...)

 11.1.5 Fluids

Wikipedia entry. http://en.wikipedia.org/wiki/Fluids
(In development...)

 11.1.6 Kinematics

Wikipedia entry. http://en.wikipedia.org/wiki/Kinematics
(In development...)

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

http://en.wikipedia.org/wiki/Kinematics
http://en.wikipedia.org/wiki/Fluids
http://en.wikipedia.org/wiki/Magnetism
http://en.wikipedia.org/wiki/Electricity
http://en.wikipedia.org/wiki/Dynamics_(physics)
http://en.wikipedia.org/wiki/Circular_motion
http://en.wikipedia.org/wiki/Atomic_physics
http://en.wikipedia.org/wiki/Physics

v1.23 - 02/17/08 SAGE For Newbies 115/150

 11.1.7 Light

Wikipedia entry. http://en.wikipedia.org/wiki/Light
(In development...)

 11.1.8 Optics

Wikipedia entry. http://en.wikipedia.org/wiki/Optics
(In development...)

 11.1.9 Relativity

Wikipedia entry. http://en.wikipedia.org/wiki/Relativity
(In development...)

 11.1.10 Rotational Motion

Wikipedia entry. http://en.wikipedia.org/wiki/Rotational_motion
(In development...)

 11.1.11 Sound

Wikipedia entry. http://en.wikipedia.org/wiki/Sound
(In development...)

 11.1.12 Waves

Wikipedia entry. http://en.wikipedia.org/wiki/Waves
(In development...)

 11.1.13 Thermodynamics

Wikipedia entry. http://en.wikipedia.org/wiki/Thermodynamics
(In development...)

 11.1.14 Work

Wikipedia entry. http://en.wikipedia.org/wiki/Mechanical_work
(In development...)

 11.1.15 Energy

2799

2800

2801

2802

2803

2804

2805

2806

http://en.wikipedia.org/wiki/Mechanical_work
http://en.wikipedia.org/wiki/Thermodynamics
http://en.wikipedia.org/wiki/Waves
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Rotational_motion
http://en.wikipedia.org/wiki/Relativity
http://en.wikipedia.org/wiki/Optics
http://en.wikipedia.org/wiki/Light

v1.23 - 02/17/08 SAGE For Newbies 116/150

Wikipedia entry. http://en.wikipedia.org/wiki/Energy
(In development...)

 11.1.16 Momentum

Wikipedia entry. http://en.wikipedia.org/wiki/Momentum
(In development...)

 11.1.17 Boiling

Wikipedia entry. http://en.wikipedia.org/wiki/Boiling
(In development...)

 11.1.18 Buoyancy

Wikipedia entry. http://en.wikipedia.org/wiki/Bouyancy
(In development...)

 11.1.19 Convection

Wikipedia entry. http://en.wikipedia.org/wiki/Convection
(In development...)

 11.1.20 Density

Wikipedia entry. http://en.wikipedia.org/wiki/Density
(In development...)

 11.1.21 Diffusion

Wikipedia entry. http://en.wikipedia.org/wiki/Diffusion
(In development...)

 11.1.22 Freezing

Wikipedia entry. http://en.wikipedia.org/wiki/Freezing
(In development...)

 11.1.23 Friction

Wikipedia entry. http://en.wikipedia.org/wiki/Friction
(In development...)

2807

2808

2809

2810

2811

2812

2813

2814

2815

http://en.wikipedia.org/wiki/Friction
http://en.wikipedia.org/wiki/Freezing
http://en.wikipedia.org/wiki/Diffusion
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Convection
http://en.wikipedia.org/wiki/Bouyancy
http://en.wikipedia.org/wiki/Boiling
http://en.wikipedia.org/wiki/Momentum
http://en.wikipedia.org/wiki/Energy

v1.23 - 02/17/08 SAGE For Newbies 117/150

 11.1.24 Heat Transfer

Wikipedia entry. http://en.wikipedia.org/wiki/Heat_transfer
(In development...)

 11.1.25 Insulation

Wikipedia entry. http://en.wikipedia.org/wiki/Insulation
(In development...)

 11.1.26 Newton's Laws

Wikipedia entry. http://en.wikipedia.org/wiki/Newtons_laws
(In development...)

 11.1.27 Pressure

Wikipedia entry. http://en.wikipedia.org/wiki/Pressure
(In development...)

 11.1.28 Pulleys

Wikipedia entry. http://en.wikipedia.org/wiki/Pulley
(In development...)

2816

2817

2818

2819

2820

http://en.wikipedia.org/wiki/Pulley
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Newtons_laws
http://en.wikipedia.org/wiki/Insulation
http://en.wikipedia.org/wiki/Heat_transfer

v1.23 - 02/17/08 SAGE For Newbies 118/150

 12 Fundamentals Of Computation

 12.1 What Is A Computer?

Many people think computers are difficult to understand because they are
complex. Computers are indeed complex, but this is not why they are difficult to
understand. Computers are difficult to understand because only a small part of a
computer exists in the physical world. The physical part of a computer is the
only part a human can see and the rest of a computer exists in a nonphysical
world which is invisible. This invisible world is the world of ideas and most of a
computer exists as ideas in this nonphysical world.

The key to understanding computers is to understand that the purpose of these
idea-based machines is to automatically manipulate ideas of all types. The name
'computer' is not very helpful for describing what computers really are and
perhaps a better name for them would be Idea Manipulation Devices or IMDs.

Since ideas are nonphysical objects, they cannot be brought into the physical
world and neither can physical objects be brought into the world of ideas. Since
these two worlds are separate from each other, the only way that physical objects
can manipulate objects in the world of ideas is through remote control via
symbols.

 12.2 What Is A Symbol?
A symbol is an object that is used to represent another object. Drawing 12.1
shows an example of a symbol of a telephone which is used to represent a
physical telephone.

Drawing 12.1: Symbol associated with a physical object.

2821

2822

2823
2824
2825
2826
2827
2828
2829

2830
2831
2832
2833

2834
2835
2836
2837
2838

2839

2840
2841
2842

v1.23 - 02/17/08 SAGE For Newbies 119/150

The symbol of a telephone shown in Drawing 12.1 is usually created with ink
printed on a flat surface (like a piece of paper). In general, though, any type of
physical matter (or property of physical matter) that is arranged into a pattern
can be used as a symbol.

 12.3 Computers Use Bit Patterns As Symbols
Symbols which are made of physical matter can represent all types of physical
objects, but they can also be used to represent nonphysical objects in the world
of ideas. (see Drawing 12.2)

Among the simplest symbols that can be formed out of physical matter are bits
and patterns of bits. A single bit can only be placed into two states which are the
on state and the off state. When written, typed, or drawn, a bit in the on state is
represented by the numeral 1 and when it is in the off state it is represented by
the numeral 0. Patterns of bits look like the following when they are written,
typed, or drawn: 101, 100101101, 0101001100101, 10010.

Drawing 12.3 shows how bit patterns can be used just as easily as any other
symbols made of physical matter to represent nonphysical ideas.

Drawing 12.2: Physical symbols can represent nonphysical ideas.

Physical world symbols Nonphysical world of ideas

Pi

5

+

2843
2844
2845
2846

2847

2848
2849
2850

2851
2852
2853
2854
2855
2856

2857
2858

v1.23 - 02/17/08 SAGE For Newbies 120/150

Other methods for forming physical matter into bits and bit patterns include:
varying the tone of an audio signal between two frequencies, turning a light on
and off, placing or removing a magnetic field on the surface of an object, and
changing the voltage level between two levels in an electronic device. Most
computers use the last method to hold bit patterns that represent ideas.

A computer's internal memory consists of numerous "boxes" called memory
locations and each memory location contains a bit pattern that can be
used to represent an idea. Most computers contain millions of memory
locations which allow them to easily reference millions of ideas at the same time.
Larger computers contain billions of memory locations. For example, a typical
personal computer purchased in 2007 contains over 1 billion memory locations.

Drawing 12.4 shows a section of the internal memory of a small computer along
with the bit patterns that this memory contains.

Drawing 12.3: Bits can also represent nonphysical ideas.

Physical world symbols Nonphysical world of ideas

10100101

101

00101100

11100101001010

10100101010

2859
2860
2861
2862
2863

2864
2865
2866
2867
2868
2869

2870
2871

v1.23 - 02/17/08 SAGE For Newbies 121/150

Each of the millions of bit pattern symbols in a computer's internal memory are
capable of representing any idea a human can think of. The large number of bit
patterns that most computers contain, however, would be difficult to keep track
of without the use of some kind of organizing system.

The system that computers use to keep track of the many bit patterns they
contain consists of giving each memory location a unique address as shown in
Drawing 12.5.

Drawing 12.4: Computer memory locations contain bit patterns.

0 1 0 0 0 1 0 1

0 1 0 1 0 0 1 1

0 1 0 0 0 0 0 1
0 1 0 0 0 1 1 1

0 1 0 0 1 1 0 1

0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 1
0 1 0 1 0 1 0 0

0 0 1 0 1 1 1 0

0 1 0 0 0 1 1 1

0 1 0 0 1 1 1 1
0 1 0 1 0 0 1 0

Each memory
location in a
computer
contains a
bit pattern.

A computer's internal
memory is placed
into “boxes” called
memory locations.
Most computers
contain millions
of memory locations.

2872
2873
2874
2875

2876
2877
2878

v1.23 - 02/17/08 SAGE For Newbies 122/150

 12.4 Contextual Meaning
At this point you may be wondering "how one can determine what the bit
patterns in a memory location, or a set of memory locations, mean?" The answer
to this question is that a concept called contextual meaning gives bit patterns
their meaning.

Context is the circumstances within which an event happens or the environment
within which something is placed. Contextual meaning, therefore, is the
meaning that a context gives to the events or things that are placed within it.

Most people use contextual meaning every day, but they are not aware of it.
Contextual meaning is a very powerful concept and it is what enables a
computer's memory locations to reference any idea that a human can think of.
Each memory location can hold a bit pattern, but a human can have that bit
pattern mean anything they wish. If more bits are needed to hold a given
pattern than are present in a single memory location, the pattern can be spread
across more than one location.

 12.5 Variables
Computers are very good at remembering numbers and this allows them to keep
track of numerous addresses with ease. Humans, however, are not nearly as

Drawing 12.5: Each memory location is given a unique
address.

0 1 0 0 0 1 0 1

0 1 0 1 0 0 1 1

0 1 0 0 0 0 0 1
0 1 0 0 0 1 1 1

0 1 0 0 1 1 0 1

0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 1
0 1 0 1 0 1 0 0

0 0 1 0 1 1 1 0

0 1 0 0 0 1 1 1

0 1 0 0 1 1 1 1
0 1 0 1 0 0 1 0

0

1

2

3

4

11

6

7

5

8

9

10

Each memory
location is given
a unique address
so the computer
can locate it.

2879

2880
2881
2882
2883

2884
2885
2886

2887
2888
2889
2890
2891
2892
2893

2894

2895
2896

v1.23 - 02/17/08 SAGE For Newbies 123/150

good at remembering numbers as computers are and so a concept called a
variable was invented to solve this problem.

A variable is a name that can be associated with a memory address so that
humans can refer to bit pattern symbols in memory using a name instead of a
number. Drawing 12.6 shows four variables that have been associated with 4
memory addresses inside of a computer.

The variable names garage_width and garage_length are referencing memory
locations that hold patterns that represent the dimensions of a garage and the
variable names x and y are referencing memory locations that might represent
numbers in an equation. Even though this description of the above variables is
accurate, it is fairly tedious to use and therefore most of the time people just say
or write something like “the variable garage_length holds the length of the
garage.”

A variable is used to symbolically represent an attribute of an object. Even
though a typical personal computer is capable of holding millions of variables,
most objects possess a greater number of attributes than the capacity of most
computers can hold. For example, a 1 kilogram rock contains approximately
10,000,000,000,000,000,000,000,000 atoms. 1 Representing even just the
positions of this rock's atoms is currently well beyond the capacity of even the
most advanced computer. Therefore, computers usually work with models of

1 "The Singularity Is Near" Ray Kurzweil, Viking.

Drawing 12.6: Using variables instead of memory addresses.

0 1 0 0 0 1 0 1

0 1 0 1 0 0 1 1

0 1 0 0 0 0 0 1
0 1 0 0 0 1 1 1

0 1 0 0 1 1 0 1

0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 1
0 1 0 1 0 1 0 0

0 0 1 0 1 1 1 0

0 1 0 0 0 1 1 1

0 1 0 0 1 1 1 1
0 1 0 1 0 0 1 0

0

1

2

3

4

11

6

7

5

8

9

10

garage_width

garage_length

x

y

Variables

2897
2898

2899
2900
2901
2902

2903
2904
2905
2906
2907
2908
2909

2910
2911
2912
2913
2914
2915
2916

v1.23 - 02/17/08 SAGE For Newbies 124/150

objects instead of complete representations of them.

 12.6 Models
A model is a simplified representation of an object that only references some of
its attributes. Examples of typical object attributes include weight, height,
strength, and color. The attributes that are selected for modeling are chosen for
a given purpose. The more attributes that are represented in the model, the
more expensive the model is to make. Therefore, only those attributes that are
absolutely needed to achieve a given purpose are usually represented in a model.
The process of selecting only some of an object's attributes when developing a
model of it is called abstraction.

The following is an example which illustrates the process of problem solving
using models. Suppose we wanted to build a garage that could hold 2 cars along
with a workbench, a set of storage shelves, and a riding lawn mower. Assuming
that the garage will have an adequate ceiling height, and that we do not want to
build the garage any larger than it needs to be for our stated purpose, how could
an adequate length and width be determined for the garage?

One strategy for determining the size of the garage is to build perhaps 10
garages of various sizes in a large field. When the garages are finished, take 2
cars to the field along with a workbench, a set of storage shelves, and a riding
lawn mower. Then, place these items into each garage in turn to see which is the
smallest one that these items will fit into without being too cramped.

The test garages in the field can then be discarded and a garage which is the
same size as the one that was chosen could be built at the desired location.
Unfortunately, 11 garages would need to be built using this strategy instead of
just one and this would be very expensive and inefficient.

A way to solve this problem less expensively is by using a model of the garage
and models of the items that will be placed inside it. Since we only want to
determine the dimensions of the garage's floor, we can make a scaled down
model of just its floor using a piece of paper.

Each of the items that will be placed into the garage could also be represented
by scaled-down pieces of paper. Then, the pieces of paper that represent the
items can be placed on top of the the large piece of paper that represents the
floor and these smaller pieces of paper can be moved around to see how they fit.
If the items are too cramped, a larger piece of paper can be cut to represent the
floor and, if the items have too much room, a smaller piece of paper for the floor
can be cut.

When a good fit is found, the length and width of the piece of paper that
represents the floor can be measured and then these measurements can be

2917

2918

2919
2920
2921
2922
2923
2924
2925
2926

2927
2928
2929
2930
2931
2932

2933
2934
2935
2936
2937

2938
2939
2940
2941

2942
2943
2944
2945

2946
2947
2948
2949
2950
2951
2952

2953
2954

v1.23 - 02/17/08 SAGE For Newbies 125/150

scaled up to the units used for the full-size garage. With this method, only a few
pieces of paper are needed to solve the problem instead of 10 full-size garages
that will later be discarded.

The only attributes of the full-sized objects that were copied to the pieces of
paper were the object's length and width. As this example shows, paper models
are significantly easier to work with than the objects they represent. However,
computer variables are even easier to use for modeling than paper or
almost any other kind of modeling mechanism.

At this point, though, the paper-based modeling technique has one important
advantage over the computer variables we have look at. The paper model was
able to be changed by moving the item models around and changing the size of
the paper garage floor. The variables we have discussed so have been given the
ability to represent an object attribute, but no mechanism has been given yet
that would allow the variable's to change. A computer without the ability to
change the contents of its variables would be practically useless.

 12.7 Machine Language
Earlier is was stated that bit patterns in a computer's memory locations can be
used to represent any ideas that a human can think of. If memory locations can
represent any idea, this means that they can reference ideas that represent
instructions which tell a computer how to automatically manipulate the
variables in its memory.

The part of a computer that follows the instructions that are in its memory is
called a Central Processing Unit (CPU) or a microprocessor. When a
microprocessor is following instructions in its memory, it is also said to be
running them or executing them.

Microprocessors are categorized into families and each microprocessor family
has its own set of instructions (called an instruction set) that is different than
the instructions that other microprocessor family's use. A microprocessor's
instruction set represents the building blocks of a language that can be used to
tell it what to do. This language is formed by placing sequences of
instructions from the instruction set into memory and it the only language
that a microprocessor is able to understand. Since this is the only language a
microprocessor is able to understand, it is called machine language. A
sequence of machine language instructions is called a computer program and a
person who creates sequences of machine language instructions in order to tell
the computer what to do is called a programmer.

We will now look at what the instruction set of a simple microprocessor looks like
along with a simple program which has been developed using this instruction
set.

2955
2956
2957

2958
2959
2960
2961
2962

2963
2964
2965
2966
2967
2968
2969

2970

2971
2972
2973
2974
2975

2976
2977
2978
2979

2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990

2991
2992
2993

v1.23 - 02/17/08 SAGE For Newbies 126/150

Here is the instruction set for the 6500 family of microprocessors:

ADC ADd memory to accumulator with Carry.
AND AND memory with accumulator.
ASL Arithmetic Shift Left one bit.
BCC Branch on Carry Clear.
BCS Branch on Carry Set.
BEQ Branch on result EQual to zero.
BIT test BITs in accumulator with memory.
BMI Branch on result MInus.
BNE Branch on result Not Equal to zero.
BPL Branch on result PLus).
BRK force Break.
BVC Branch on oVerflow flag Clear.
BVS Branch on oVerflow flag Set.
CLC CLear Carry flag.
CLD CLear Decimal mode.
CLI CLear Interrupt disable flag.
CLV CLear oVerflow flag.
CMP CoMPare memory and accumulator.
CPX ComPare memory and index X.
CPY ComPare memory and index Y.
DEC DECrement memory by one.
DEX DEcrement register S by one.
DEY DEcrement register Y by one.
EOR Exclusive OR memory with accumulator.
INC INCrement memory by one.
INX INcrement register X by one.
INY INcrement register Y by one.
JMP JuMP to new memory location.
JSR Jump to SubRoutine.
LDA LoaD Accumulator from memory.
LDX LoaD X register from memory.
LDY LoaD Y register from memory.
LSR Logical Shift Right one bit.
NOP No OPeration.
ORA OR memory with Accumulator.
PHA PusH Accumulator on stack.
PHP PusH Processor status on stack.
PLA PuLl Accumulator from stack.
PLP PuLl Processor status from stack.
ROL ROtate Left one bit.
ROR ROtate Right one bit.
RTI ReTurn from Interrupt.
RTS ReTurn from Subroutine.
SBC SuBtract with Carry.

2994

2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038

v1.23 - 02/17/08 SAGE For Newbies 127/150

SEC SEt Carry flag.
SED SEt Decimal mode.
SEI SEt Interrupt disable flag.
STA STore Accumulator in memory.
STX STore Register X in memory.
STY STore Register Y in memory.
TAX Transfer Accumulator to register X.
TAY Transfer Accumulator to register Y.
TSX Transfer Stack pointer to register X.
TXA Transfer register X to Accumulator.
TXS Transfer register X to Stack pointer.
TYA Transfer register Y to Accumulator.

The following is a small program which has been written using the 6500 family's
instruction set. The purpose of the program is to calculate the sum of the 10
numbers which have been placed into memory started at address 0200
hexadecimal.

Here are the 10 numbers in memory (which are printed in blue) along with the
memory location that the sum will be stored into (which is printed in red). 0200
here is the address in memory of the first number.

0200 01 02 03 04 05 06 07 08 - 09 0A 00 00 00 00 00
00

Here is a program that will calculate the sum of these 10 numbers:

0250 A2 00 LDX #00h
0252 A9 00 LDA #00h
0254 18 CLC
0255 7D 00 02 ADC 0200h,X
0258 E8 INX
0259 E0 0A CPX #0Ah
025B D0 F8 BNE 0255h
025D 8D 0A 02 STA 020Ah
0260 00 BRK
...

After the program was executed, the sum it calculated was stored in memory.
The sum was determined to be 37 hex (which is 55 decimal) and it is shown
here printed in red:

0200 01 02 03 04 05 06 07 08 - 09 0A 37 00 00 00 00 00
7.....

Of course, you are not expected to understand how this assembly language
program works. The purpose for showing it to you is so you can see what a

3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050

3051
3052
3053
3054

3055
3056
3057

3058
3059
3060
3061

3062
3063
3064
3065
3066
3067
3068
3069
3070
3071

3072
3073
3074

3075
3076

3077
3078

v1.23 - 02/17/08 SAGE For Newbies 128/150

program that uses a microprocessor's instruction set looks like.

Low Level Languages And High Level Languages
Even though programmers are able to program a computer using the
instructions in its instruction set, this is a tedious task. The early computer
programmers wanted to develop programs in a language that was more like a
natural language, English for example, than the machine language that
microprocessors understand. Machine language is considered to be a low level
languages because it was designed to be simple so that it could be easily
executed by the circuits in a microprocessor.

Programmers then figured out ways to use low level languages to create the
high level languages that they wanted to program in. This is when languages
like FORTRAN (in 1957), ALGOL (in 1958), LISP (in 1959), COBOL (in
1960), BASIC (in 1964) and C (1972) were created. Ultimately, a
microprocessor is only capable of understanding machine language and
therefore all programs that are written in a high level language must be
converted into machine language before they can be executed by a
microprocessor.

The rules that indicate how to properly type in code for a given programming
language are called syntax rules. If a programmer does not follow the
language's syntax rules when typing in a program, the software that transforms
the source code into machine language will become confused and then issue
what is called a syntax error.

As an example of what a syntax error might look like, consider the word 'print'.
If the word 'print' was a command in a given program language, and the
programmer typed 'pvint' instead of 'print', this would be a syntax error.

 12.8 Compilers And Interpreters
There are two types of programs that are commonly used to convert a higher
level language into machine language. The first kind of program is called a
compiler and it takes a high-level language's source code (which is usually in
typed form) as its input and converts it into machine language. After the
machine language equivalent of the source code has been generated, it can be
loaded into a computer's memory and executed. The compiled version of a
program can also be saved on a storage device and loaded into a computer's
memory whenever it is needed.

The second type of program that is commonly used to convert a high-level
language into machine language is called an interpreter. Instead of converting
source code into machine language like a compiler does, an interpreter reads the
source code (usually one line at a time), determines what actions this line of
source code is suppose to accomplish, and then it performs these actions. It then

3079

3080
3081
3082
3083
3084
3085
3086
3087

3088
3089
3090
3091
3092
3093
3094
3095

3096
3097
3098
3099
3100

3101
3102
3103

3104

3105
3106
3107
3108
3109
3110
3111
3112

3113
3114
3115
3116
3117

v1.23 - 02/17/08 SAGE For Newbies 129/150

looks at the next line of source code underneath the one it just finished
interpreting, it determines what actions this next line of code wants done, it
performs these actions, and so on.

Thousands of computer languages have been created since the 1940's, but there
are currently around 2 to 3 hundred historically important languages. Here is a
link to a website that lists a number of the historically important computer
languages: http://en.wikipedia.org/wiki/Timeline_of_programming_languages

 12.9 Algorithms
A computer programmer certainly needs to know at least one programming
language, but when a programmer solves a problem, they do it at a level that is
higher in abstraction than even the more abstract computer languages.

After the problem is solved, then the solution is encoded into a programming
language. It is almost as if a programmer is actually two people. The first
person is the problem solver and the second person is the coder.

For simpler problems, many programmers create algorithms in their minds and
encode these algorithm directly into a programming language. They switch back
and forth between being the problem solver and the coder during this process.

With more complex programs, however, the problem solving phase and the
coding phase are more distinct. The algorithm which solves a given problem is is
developed using means other than a programming language and then it is
recored in a document. This document is then passed from the problem solver
to the coder for encoding into a programming language.

The first thing that a problem solver will do with a problem is to analyze it. This
is an extremely important step because if a problem is not analyzed, then it can
not be properly solved. To analyze something means to break it down into its
component parts and then these parts are studied to determine how they work.
A well known saying is 'divide and conquer' and when a difficult problem is
analyzed, it is broken down into smaller problems which are each simpler to
solve than the overall problem. The problem solver then develops an
algorithm to solve each of the simpler problems and, when these algorithms are
combined, they form the solution to the overall problem.

An algorithm (pronounced al-gor-rhythm) is a sequence of instructions which
describe how to accomplish a given task. These instructions can be expressed in
various ways including writing them in natural languages (like English),
drawing diagrams of them, and encoding them in a programming language.

The concept of an algorithm came from the various procedures that
mathematicians developed for solving mathematical problems, like calculating

3118
3119
3120

3121
3122
3123
3124

3125

3126
3127
3128

3129
3130
3131

3132
3133
3134

3135
3136
3137
3138
3139

3140
3141
3142
3143
3144
3145
3146
3147
3148

3149
3150
3151
3152

3153
3154

http://en.wikipedia.org/wiki/Timeline_of_programming_languages

v1.23 - 02/17/08 SAGE For Newbies 130/150

the sum of 2 numbers or calculating their product.

Algorithms can also be used to solve more general problems. For example, the
following algorithm could have been followed by a person who wanted to solve
the garage sizing problem using paper models:

1) Measure the length and width of each item that will be placed into the garage
using metric units and record these measurements.

2) Divide the measurements from step 1 by 100 then cut out pieces of paper that
match these dimensions to serve as models of the original items.

3) Cut out a piece of paper which is 1.5 times as long as the model of the largest
car and 3 times wider than it to serve as a model of the garage floor.

4) Locate where the garage doors will be placed on the model of the garage floor,
mark the locations with a pencil, and place the models of both cars on top of the
model of the garage floor, just within the perimeter of the paper and between the
two pencil marks.

5) Place the models of the items on top of the model of the garage floor in the
empty space that is not being occupied by the models of the cars.

6) Move the models of the items into various positions within this empty space to
determine how well all the items will fit within this size garage.

7) If the fit is acceptable, go to step 10.

8) If there is not enough room in the garage, increase the length dimension, the
width dimension (or both dimensions) of the garage floor model by 10%, create
a new garage floor model, and go to step 4.

9) If there is too much room in the garage, decrease the length dimension, the
width dimension (or both dimensions) of the garage model by 10%, create a
new garage floor model, and go to step 4.

10) Measure the length and width dimensions of the garage floor model,
multiply these dimensions by 100, and then build the garage using these larger
dimensions.

As can be seen with this example, an algorithm often contains a significant
number of steps because it needs to be detailed enough so that it leads to the
desired solution. After the steps have been developed and recorded in a
document, however, they can be followed over and over again by people who
need to solve the given problem.

3155

3156
3157
3158

3159
3160

3161
3162

3163
3164

3165
3166
3167
3168

3169
3170

3171
3172

3173

3174
3175
3176

3177
3178
3179

3180
3181
3182

3183
3184
3185
3186
3187

v1.23 - 02/17/08 SAGE For Newbies 131/150

 12.10 Computation
It is fairly easy to understand how a human is able to follow the steps of an
algorithm, but it is more difficult to understand how computer can perform these
steps when its microprocessor is only capable of executing simple machine
language instructions.

In order to understand how a microprocessor is able to perform the steps in an
algorithm, one must first understand what computation (which is also known
as calculation) is. Lets search for some good definitions of each of these words
on the Internet and read what they have to say.”

Here are two definitions for the word computation:

1) The manipulation of numbers or symbols according to fixed rules.
Usually applied to the operations of an automatic electronic
computer, but by extension to some processes performed by minds or
brains. (www.informatics.susx.ac.uk/books/computers-and-
thought/gloss/node1.html)

2) A computation can be seen as a purely physical phenomenon
occurring inside a closed physical system called a computer. Examples
of such physical systems include digital computers, quantum
computers, DNA computers, molecular computers, analog computers or
wetware computers. (www.informatics.susx.ac.uk/books/computers-and-
thought/gloss/node1.html)

These two definitions indicate that computation is the "manipulation of
numbers or symbols according to fixed rules" and that it "can be seen as a
purely physical phenomenon occurring inside a closed physical system
called a computer." Both definitions indicate that the machines we normally
think of as computers are just one type of computer and that other types of
closed physical systems can also act as computers. These other types of
computers include DNA computers, molecular computers, analog computers, and
wetware computers (or brains).

The following two definitions for calculation shed light on the kind of rules that
normal computers, brains, and other types of computers use:

1) A calculation is a deliberate process for transforming one or more inputs into
one or more results. (en.wikipedia.org/wiki/Calculation)

2) Calculation: the procedure of calculating; determining something by mathematical
or logical methods (wordnet.princeton.edu/perl/webwn)

These definitions for calculation indicate that it "is a deliberate process for
transforming one or more inputs into one or more results" and that this is

3188

3189
3190
3191
3192

3193
3194
3195
3196

3197

3198
3199
3200
3201
3202

3203
3204
3205
3206
3207
3208

3209
3210
3211
3212
3213
3214
3215
3216

3217
3218

3219
3220

3221
3222

3223
3224

v1.23 - 02/17/08 SAGE For Newbies 132/150

done "by mathematical or logical methods". We do not yet completely
understand what mathematical and logical methods brains use to perform
calculations, but rapid progress is being made in this area.

The second definition for calculation uses the word logic and this word needs to
be defined before we can proceed:

The logic of a system is the whole structure of rules that must be
used for any reasoning within that system. Most of mathematics is
based upon a well-understood structure of rules and is considered to
be highly logical. It is always necessary to state, or otherwise have
it understood, what rules are being used before any logic can be
applied. (ddi.cs.uni-potsdam.de/Lehre/TuringLectures/MathNotions.htm
)

Reasoning is the process of using predefined rules to move from one point in a
system to another point in the system. For example, when a person adds 2
numbers together on a piece of paper, they must follow the rules of the addition
algorithm in order to obtain a correct sum. The addition algorithm's rules are its
logic and, when someone applies these rules during a calculation, they are
reasoning with the rules.

Lets now apply these concepts to the question about how a computer can
perform the steps of an algorithm when its microprocessor is only capable of
executing simple machine language instructions. When a person develops an
algorithm, the steps in the algorithm are usually stated as high-level tasks which
do not contain all of the smaller steps that are necessary to perform each task.

For example, a person might write a step that states "Drive from New York to
San Francisco." This large step can be broken down into smaller steps that
contain instructions such as "turn left at the intersection, go west for 10
kilometers, etc." If all of the smaller steps in a larger step are completed, then
the larger step is completed too.

A human that needs to perform this large driving step would usually be able to
figure out what smaller steps need to be performed in order accomplish it.
Computers are extremely stupid, however, and before any algorithm can be
executed on a computer, the algorithm's steps must be broken down into smaller
steps, and these smaller steps must be broken down into even small steps, until
the steps are simple enough to be performed by the instruction set of a
microprocessor.

Sometimes only a few smaller steps are needed to implement a larger step, but
sometimes hundreds or even thousands of smaller steps are required. Hundreds
or thousands of smaller steps will translate into hundreds or thousands of
machine language instructions when the algorithm is converted into machine

3225
3226
3227

3228
3229

3230
3231
3232
3233
3234
3235
3236

3237
3238
3239
3240
3241
3242

3243
3244
3245
3246
3247

3248
3249
3250
3251
3252

3253
3254
3255
3256
3257
3258
3259

3260
3261
3262
3263

v1.23 - 02/17/08 SAGE For Newbies 133/150

language.

If machine language was the only language that computers could be
programmed in, then most algorithms would be too large to be placed into a
computer by a human. An algorithm that is encoded into a high-level language,
however, does not need to be broken down into as many smaller steps as would
be needed with machine language. The hard work of further breaking down an
algorithm that has been encoded into a high-level language is automatically done
by either a compiler or an interpreter. This is why most of the time,
programmers use a high-level language to develop in instead of machine
language.

 12.11 Diagrams Can Be Used To Record Algorithms
Earlier it was mentioned that not only can an algorithm can be recorded in a
natural language like English but it can also be recorded using diagrams. You
may be surprised to learn, however, that a whole diagram-based language has
been created which allows all aspects of a program to be designed by 'problem
solvers', including the algorithms that a program uses. This language is call
UML which stands for Unified Modeling Language. One of UML's diagrams is
called an Activity diagram and it can be used to show the sequence of steps (or
activities) that are part of some piece of logic. The following is an example
which shows how an algorithm can be represented in an Activity diagram.

 12.12 Calculating The Sum Of The Numbers Between 1 And
10

The first thing that needs to be done with a problem before it can be analyzed
and solved is to describe it clearly and accurately. Here is a short description for
the problem we will solve with an algorithm:

Description: In this problem, the sum of the numbers between 1 and 10
inclusive needs to be determined.

Inclusive here means that the numbers 1 and 10 will be included in the sum.
Since this is a fairly simple problem we will not need to spend too much time
analyzing it. Drawing 12.7 shows an algorithm for solving this problem that has
been placed into an Activity diagram.

3264

3265
3266
3267
3268
3269
3270
3271
3272
3273

3274

3275
3276
3277
3278
3279
3280
3281
3282
3283

3284
3285
3286

3287
3288

3289
3290
3291
3292

v1.23 - 02/17/08 SAGE For Newbies 134/150

An algorithms and its Activity diagram are developed at the same time. During
the development process, variables are created as needed and their names are
usually recorded in a list along with their descriptions. The developer
periodically starts at the entry point and walks through the logic to make sure it
is correct. Simulation boxes are placed next to each variable so that they can be
use to record and update how the logic is changing the variable's values. During
a walk-through, errors are usually found and these need to be fixed by moving
flow arrows and adjusting the text that is inside of the activity rectangles.

When the point where no more errors in the logic can be found, the developer
can stop being the problem solver and pass the algorithm over to the coder so
it can be encoded into a programming language.

Drawing 12.7: Activity diagram for an algorithm.

Place 0 into
variable sum.

Place 1 into
variable count.

Add count to sum
and place result
back into sum.

Add 1
to count.

[count is not equal to 11.]

Variables
sum: holds the accumulating sum.

count: holds the current number
that is being added to sum and also
is used to determine when the
summing loop should be exited.

Logic entry point
(indicated by
solid circle).

Logic exit point
(indicated by
solid circle with
a ring around it).

Diamonds
are used for
making decisions
by branching
and for merging
back into the
flow of logic.

Statements in brackets indicate
the conditions under which a
given branch out of a logic
flow occurs.

Rounded rectangles
contain algorithm
steps/activities.

Arrows indicate
the algorithm's
flow of logic.

Variables (along with
their descriptions) are
recorded in a list as
they are created to
support the logic in
the algorithm.

An arrow that points
to an earlier part of
the diagram indicates
a loop.

Variable
simulation
boxes. 0

1

3293
3294
3295
3296
3297
3298
3299
3300

3301
3302
3303

v1.23 - 02/17/08 SAGE For Newbies 135/150

 12.13 The Mathematics Part Of Mathematics Computing
Systems

Mathematics has been described as the "science of patterns" 2. Here is a
definition for pattern:

1) Systematic arrangement...
 (http://www.answers.com/topic/pattern)

And here is a definition for system:

1) A group of interacting, interrelated, or interdependent elements
forming a complex whole.

2) An organized set of interrelated ideas or principles.
(http://www.answers.com/topic/system)

Therefore, mathematics can be though of as a science that deals with the
systematic properties of physical and nonphysical objects. The reason that
mathematics is so powerful is that all physical and nonphysical objects posses
systematic properties and therefore, mathematics is a means by which these
objects can be understood and manipulated.

The more mathematics a person knows, the more control they are able to have
over the physical world. This makes mathematics one of the most useful and
exciting areas of knowledge a person can possess.

Traditionally, learning mathematics also required learning the numerous tedious
and complex algorithms that were needed to perform written calculations with
mathematics. Usually over 50% of the content of the typical traditional math
textbook is devoted to teaching writing-based algorithms and an even higher
percentage of the time a person spends working through a textbook is spent
manually working these algorithms.

For most people, learning and performing tedious, complex written-calculation
algorithms is so difficult and mind-numbingly boring that they never get a
chance to see that the "mathematics" part of mathematics is extremely exciting,
powerful, and beautiful.

The bad news is that writing-based calculation algorithms will always be tedious,
complex, and boring. The good news is that the invention of mathematics
computing environments has significantly reduced the need for people to use
writing-based calculation algorithms.

2 Steen, Lynn Arthur. “The Science of Patterns.” Science 240 (April 1988): 611-616.

3304
3305

3306
3307

3308
3309

3310

3311
3312

3313
3314

3315
3316
3317
3318
3319

3320
3321
3322

3323
3324
3325
3326
3327
3328

3329
3330
3331
3332

3333
3334
3335
3336

1

http://www.answers.com/topic/system
http://www.answers.com/topic/pattern

v1.23 - 02/17/08 SAGE For Newbies 136/150

 13 Setting Up A SAGE Server
As indicated in a previous section, most people will first use SAGE as a web
service and the assumption was made at the beginning of this book that the
reader already had access to a SAGE server. This section is for people who want
to have their own SAGE server and it covers obtaining, installing, configuring,
and maintaining one on Windows or Linux.

Since the SAGE Notebook Server is based on Internet technologies, this section
will start by covering some of these technologies. A high-level view of SAGE's
architecture will then be given followed by a discussion of the contents of the
SAGE distribution files. Finally, setting up both Linux and Windows-based SAGE
servers will be covered.

 13.1 An Introduction To Internet-based Technologies
The Internet is currently one of the most important technologies of our
civilization and its importance will only increase in the future. In fact, the
Internet is expanding so quickly that projections show almost all computing
devices will eventually be connected to it
(https://embeddedjava.dev.java.net/resources/waves_of_the_internet_telemetry.p
df). Therefore, understanding how Internet-related technologies work is
valuable for anyone who is interested in working with computers.

Understanding the history of how the Internet was created is also valuable, but
we will not be discussing this history here because it has been well documented
elsewhere. I highly recommend that you do an Internet search on the history of
the Internet and read some of the articles you find. I assure you that it will be an
excellent investment of your time.

 13.1.1 How do multiple computers communicate with each
other?

When only 2 computers need to communicate with each other, the situation is
simple because all that is needed is to connect them together with a
communications medium (such as copper wires, fiber optic cables, or wireless
radio signals). The information that leaves one computer is sent to the other
computer and vice versa. But what about the situation where multiple
computers need to communication with each other? There are a number of ways
to solve this problem and one of the more common ways is shown in Figure 11:

Figure 11 shows multiple computers connected to what is called a Local Area
Network or LAN. A LAN consists of multiple computers that are physically
close to each other (usually in the same room or in the same building) and

3337

3338
3339
3340
3341
3342

3343
3344
3345
3346
3347

3348
3349
3350
3351
3352
3353
3354

3355
3356
3357
3358
3359

3360
3361
3362
3363
3364
3365
3366

3367
3368
3369

v1.23 - 02/17/08 SAGE For Newbies 137/150

attached to each other using some kind of communications medium. In Drawing
13.1, the computers are attached to a device called a switch with copper
Ethernet cables.

Computers on a network communicate with each other using messages and
sending a message is similar to sending a letter through the mail. The purpose
of a switch is to look at each message that is sent into it, determine which
computer the message is being sent to, and then sending the message to that
computer.

There is a problem with the model in Figure 11, however, because the names
that are associated with each computer on the network would not be suitable for
uniquely identifying them if their numbers would be increased into the hundreds
or thousands. Beyond this, the cloud on the right side of the figure represents
the Internet and the millions of computers (which are also called hosts) that are
currently attached to it. Messages can also be sent to these computers and
received from them, but only if each computer on the Internet is uniquely
identified in some way. Beyond this, rules for how the messages are to be
exchanged must also exist.

 13.1.2 The TCP/IP protocol suite
Two problems that needed to be solved before the Internet could be created
were 1) each computer needed to be uniquely identified and 2) communications
rules (also called protocols) needed to be developed which determined how the

Drawing 13.1: A Local Area Network (LAN)

Switch
Gateway Internet

DHCP
Server DNS

Server
PC #1

Sage Server A

Local Area Network (LAN)

Copper
Ethernet
Cable

PC #2

PC #3 PC #4

Sage Server B

Sage Server C

3370
3371
3372

3373
3374
3375
3376
3377

3378
3379
3380
3381
3382
3383
3384
3385
3386

3387
3388
3389

v1.23 - 02/17/08 SAGE For Newbies 138/150

messages were to be exchanged. With respect to the Internet, a protocol can be
defined as "a set of rules that define an exact format for communication
between systems." (www.unitedyellowpages.com/internet/terminology.html).
When a number of protocols are used together, they are called a protocol suite.

The protocol suite that was developed for the Internet is called TCP/IP and its
name is a combination of the names of the two most heavily used protocols in the
suite (TCP stands for Transmission Control Protocol and IP stands for
Internet Protocol). The Internet Protocol defines a way to uniquely identify
computers on the Internet using an addressing system. IP version 4 (IPv4),
which is currently the most widely used version of the IP protocol, consists of 4
numbers between 0 and 255 separated from each other by a dot.
Examples of IP address include 207.21.94.50, 54.3.59.2, and 204.74.99.100. All
the IPv4 addresses from 0.0.0.0 to 255.255.255.255 create an address space
which contains 4,294,967,296 addresses.

IP version 6 (IPv6) is the newest version of the IP protocol and it has an address
space which contains 340,282,366,920,938,463,463,374,607,431,768,211,456
addresses! The transition from IPv4 to IPv6 has begun, but it is moving slowly.
Most hosts on the Internet will continue to use the IPv4 protocol for a long time
and therefore IPv4 is what we will use in this document.

Drawing 13.2 contains the same model of a network that was shown in Drawing
13.1 but with IPv4 addresses assigned to each computer:

Drawing 13.2: IP Addresses.

Switch
Gateway Internet

DHCP
Server DNS

Server
PC #1

Sage Server A

Local Area Network (LAN) with IPv4 addresses

Copper
Ethernet
Cable

PC #2

PC #3 PC #4

207.21.94.1

207.21.94.2
207.21.94.4

207.21.94.100

207.21.94.127

207.21.94.72 207.21.94.214

207.21.94.182

Sage Server B

Sage Server C

147.15.50.2

98.1.200.129

3390
3391
3392
3393

3394
3395
3396
3397
3398
3399
3400
3401
3402
3403

3404
3405
3406
3407
3408

3409
3410

http://www.unitedyellowpages.com/internet/terminology.html

v1.23 - 02/17/08 SAGE For Newbies 139/150

If PC #3 needed to send a message to PC #4, the IP address of PC #4 (which is
207.21.94.214) would be placed into the message. The IP address of the sender
(207.21.94.72) is also placed into the message in case PC #4 needs to send a
reply (this is similar to placing a return address on a letter). PC #3 will then
send the message to the switch, the switch will look at the message's destination
address and then pass the message to PC #4.

If one of the computers on this local network needs to send a message to a
computer which is not on the LAN, then the message is sent to the gateway
computer and the gateway will then route the message to the Internet.

 13.1.3 Clients and servers
On LANs and on the Internet, there are a number of ways for communications
between computers to be organized and these organizations are often called
architectures. One architecture is called Peer-to-Peer (P2P) and it treats
computers on the network as equals that exchange information with each other.
An example of a P2P application is instant messaging.

Another architecture that is used with networked computers is called Client-
Server. With a Client-Server architecture, a server is a computer that accept
requests from other computers on the network, performs the work that was
requested, and returns the results of the work to the requester. A client is a
computer that sends a request to a server, receives a response, and then makes
use of the information that was contained in the response.

In the LAN shown in Figure 11, there are 3 servers (a DHCP server, a DNS
server, and a SAGE server) and 4 clients. The DHCP and DNS servers will be
discussed in the next two sections.

 13.1.4 DHCP
DHCP stands for Dynamic Host Configuration Protocol and its purpose is to
allow computers on a LAN to automatically be configured when they are booted
up with the information they need to access the network. This information
includes an IP address, the address of the gateway, and the address of a
DNS server. We have already discussed what an IP address is and what a
gateway is. DNS servers will be covered in the next section.

What you might be wondering at this point is how a computer that doesn't have
an IP address yet (because it is booting up) is able to use the network to contact
the DHCP server to obtain an IP address. This problem is solved by having the
booting computer send a DHCP broadcast message to the LAN. Broadcast
messages are not sent to any specific machine on a LAN. Instead, broadcast
messages are sent to the LAN as a whole and all the computers that are on the
LAN receive the message.

3411
3412
3413
3414
3415
3416

3417
3418
3419

3420
3421
3422
3423
3424

3425
3426
3427
3428
3429
3430

3431
3432
3433

3434
3435
3436
3437
3438
3439

3440
3441
3442
3443
3444
3445
3446

v1.23 - 02/17/08 SAGE For Newbies 140/150

If a DHCP request message is broadcast to the LAN, the DHCP server will
receive the request at the same time that the rest of the computers do. The
other computers will read the contents of the message, see that it contains a
DHCP request, and then they will ignore it. The DHCP server, however, will read
the contents of the message, see that the message was meant for it, and send
DHCP configuration information back to the sender.

 13.1.5 DNS
Each of the millions of computers on the Internet can be accessed using their IP
addresses. For example, the IP address the server that contains the
sagemath.org website is 128.208.160.192. You can access this website directly
by launching a web browser and then entering http://128.208.160.192/sage in
the URL bar.

It is difficult for humans to remember numerous numbers, however, so a system
for associating names with IP address numbers was created for the
Internet. The name of the system is DNS and it stands for Domain Name
System. A name that is associated with one or more IP address is called a
domain name and a domain name that has a given machine's hostname at its
beginning (and a period at its end) is called a fully qualified domain name.
Examples of domain names are:

gentoo.org
yahoo.com
sourceforge.net
google.com
sagemath.org
wikipedia.com

Examples of fully qualified domain names are:

kiwi.gentoo.org.
loon.gentoo.org.
wren.gentoo.org.

DNS is implemented as a large database that is distributed across the whole
Internet. Domain names need to be registered with a domain name registry
organization before they will be entered into the DNS system. Examples of
domain name registry companies include godaddy.com, networksolutions.com,
and register.com.

The DNS server on the LAN in Figure 12 has three functions. The first function
is to accept messages that contain domain names from clients and to return the
IP address that are associated with these names. When a user types in a

3447
3448
3449
3450
3451
3452

3453
3454
3455
3456
3457

3458
3459
3460
3461
3462
3463
3464

3465
3466
3467
3468
3469
3470

3471

3472
3473
3474

3475
3476
3477
3478
3479

3480
3481
3482

http://register.com/
http://networksolutions.com/
http://godaddy.com/

v1.23 - 02/17/08 SAGE For Newbies 141/150

domain name like sagemath.org into a browser's URL bar, the browser cannot
contact the SAGE website server yet because it does not know its IP address.
The operating system that the browser is running on will therefore send the
domain name to the DNS server (using the DNS server's IP address that it
obtained through DHCP) and the DNS server will respond with one or more IP
address that are associated with the sagemath.org domain name. The system
will then use one of these IP address to contact the server that the SAGE website
is on.

The second function that a local DNS server has is to define the domain name
to IP address mappings for the machines on the local network. If a remote
computer on the Internet wants to know the IP address for a machine on the
local network, and its DNS server does not know the mapping, the remote DNS
server will contact the local authoritative DNS server to ask what the mapping
is. The remote DNS server will then remember this mapping for a certain time
in case machines on the remote network need to know the mapping in the future.

The third function that a DNS server has is to take messages that contain IP
addresses and return the domain names that are associated with these
addresses.

 13.1.6 Processes and ports
Now that we have discussed some of the more important technologies that are
related to the Internet, it is time talk about what happens when IP messages
(referred to as messages from now on) arrive at a computer and what generates
messages before they are sent from a computer.

Almost all modern personal computers can have multiple programs running on
them concurrently. Here is a list of programs that may be running concurrently
on a typical user's computer:

- Web browser.
- Instant message client.
- Word processor.
- File download utility.
- Audio file player.
- Computer game.

In most computers operating systems running programs are called processes.
In Windows, a list of all the processes that are currently running can be seen by
running the Task Manager, which is launched by pressing the
<ctrl><alt>and<delete> keys simultaneously. On UNIX-based systems like
Linux, a list of the running processes can be obtained by executing a ps -e
command. Here is the list of process that were running on a Linux system which
I ha

3483
3484
3485
3486
3487
3488
3489
3490

3491
3492
3493
3494
3495
3496
3497

3498
3499
3500

3501
3502
3503
3504

3505
3506
3507

3508
3509
3510
3511
3512
3513

3514
3515
3516
3517
3518
3519
3520

v1.23 - 02/17/08 SAGE For Newbies 142/150

manage@sage:~$ ps -e
 PID TTY TIME CMD
 1 ? 00:00:00 init
 2 ? 00:00:00 ksoftirqd/0
 3 ? 00:00:00 watchdog/0
 4 ? 00:00:00 events/0
 5 ? 00:00:00 khelper
 6 ? 00:00:00 kthread
 8 ? 00:00:00 kblockd/0
 9 ? 00:00:00 kacpid
 10 ? 00:00:00 kacpi_notify
 67 ? 00:00:00 kseriod
 100 ? 00:00:00 pdflush
 101 ? 00:00:00 pdflush
 102 ? 00:00:00 kswapd0
 103 ? 00:00:00 aio/0
 1545 ? 00:00:00 scsi_eh_0
 1547 ? 00:00:00 scsi_eh_1
 1728 ? 00:00:02 kjournald
 1796 ? 00:00:00 logd
 1914 ? 00:00:01 udevd
 2611 ? 00:00:00 shpchpd
 2620 ? 00:00:00 kpsmoused
 3208 tty2 00:00:00 getty
 3209 tty3 00:00:00 getty
 3210 tty4 00:00:00 getty
 3211 tty5 00:00:00 getty
 3212 tty6 00:00:00 getty
 3263 ? 00:00:00 dd
 3265 ? 00:00:00 klogd
 3345 ? 00:00:14 vmware-guestd
 3381 ? 00:00:00 sshd
 3404 ? 00:00:00 atd
 3414 ? 00:00:00 cron
 3959 ? 00:00:00 dhclient3
 4140 tty1 00:00:00 login
 4141 tty1 00:00:00 bash
 4429 ? 00:00:00 syslogd
 4507 ? 00:00:00 sshd
 4508 pts/1 00:00:00 bash
 4538 tty1 00:00:00 sage
 4541 tty1 00:00:00 sage-sage
 4554 tty1 00:00:00 python
 4555 tty1 00:00:05 sage-ipython
 4573 tty1 00:00:00 sh
 4574 tty1 00:00:00 sage

3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566

v1.23 - 02/17/08 SAGE For Newbies 143/150

 4580 tty1 00:00:00 sage-sage
 4591 tty1 00:00:02 python
 4592 pts/2 00:00:00 sage
 4600 pts/2 00:00:00 sage-sage
 4611 pts/2 00:00:06 python
 4611 pts/1 00:00:00 ps

If you look towards the bottom of this list you can see SAGE running along with
the SAGE Notebook server. Notice that the ps command included itself in the
list because it was running at the moment that the list was created.

There are four columns in this listing. Each process is given a unique Process
ID (PID) number when the process is created and these numbers are listed in the
PID column. The TTY column indicates whether or not a process is attached to
a terminal and if it is, what terminal it is attached to. The TIME column
indicates how much CPU time the process has used so far in hours, minutes and
seconds .

When a message arrives at a computer from the network, the computer must
decide which process to give the message to. The way that the TCP/IP protocol
solves this problem is with software-based communications ports.

Drawing 13.3: Communications ports.

Port 0

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Port 7

Port 8

Port 9

Port 10

Communications
ports

Process 2348

Process 2023

Process 2568

Communications
cable

Data
Port: 5

Inside
computer
206.21.94.132

Outside
computer

IP: 206.21.94.132

Incoming
message

3567
3568
3569
3570
3571
3572

3573
3574
3575

3576
3577
3578
3579
3580
3581
3582
3583
3584
3585

v1.23 - 02/17/08 SAGE For Newbies 144/150

Drawing 13.3 shows the inside and the outside of a computer that is connected
to a network and which has an IP address of 206.21.94.132. The
communications ports are placed between the processes that are running on the
left and the network connection on the right. Each port is given a unique
number with the lowest port number being 0 and the highest port number being
65535. Each message that arrives from the network has a port number included
in it so that the system knows which port to send the message to.

In Drawing 13.3, a message which has port 5 as its destination port has arrived
from the network and therefore the system will place this message into port 5.
Process 2023 has been bound to port 5 and, when the system sends the
message to this port, process 2023 will take the message and then do
something with the information it contains.

Drawing 13.4 shows a message from process 2023 being sent to another
computer on the network which has an IP address of 65.22.8.3. When this
messages arrives at the destination computer, it will place the message into it's
port 8 and hopefully there is a process at that computer which is bound to port
8.

Drawing 13.4: An outgoing message.

Port 0

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Port 7

Port 8

Port 9

Port 10

Communications
ports

Process 2348

Process 2023

Process 2568

Communications
cable

Data
Port: 8

Inside
computer
206.21.94.132

Outside
computer

IP: 65.22.8.3

Outgoing
message

3586
3587
3588
3589
3590
3591
3592

3593
3594
3595
3596
3597

3598
3599
3600
3601
3602

v1.23 - 02/17/08 SAGE For Newbies 145/150

 13.1.7 Well known ports, registered ports, and dynamic ports
Now that you know what ports are and how processes are bound to them, you
may be wondering how people determine which processes should be bound to
which ports. An organization called IANA (Internet Assigned Numbers
Authority) is responsible for various number schemes associated with the
Internet and one of them is the TCP/IP port scheme. IANA has divided the 0 -
65535 port range into the following three address blocks:

0 - 1023 -> Well Known Ports.

1024 - 49151 -> Registered Ports.

49152 - 65535 -> Dynamic and or Private Ports.

 13.1.7.1 Well known ports (0 - 1023)
A list is maintained by IANA which indicates which kinds of programs are usually
bound to specific port numbers in this range. For example, web servers are
bound to port 80, SSH (secure shell) servers are bound to port 22, FTP (File
Transfer Protocol servers are bound to port 20, and DNS servers are bound
to port 53. Here is a list of the first 25 well known ports and the full list can be
obtained at http://www.iana.org/assignments/port-numbers:

Keyword Decimal Description References
------- ------- ----------- ----------
 0/tcp Reserved
 0/udp Reserved
Jon Postel <postel@isi.edu>
tcpmux 1/tcp TCP Port Service Multiplexer
tcpmux 1/udp TCP Port Service Multiplexer
Mark Lottor <MKL@nisc.sri.com>
compressnet 2/tcp Management Utility
compressnet 2/udp Management Utility
compressnet 3/tcp Compression Process
compressnet 3/udp Compression Process
Bernie Volz <volz@cisco.com>
4/tcp Unassigned
4/udp Unassigned
rje 5/tcp Remote Job Entry
rje 5/udp Remote Job Entry
Jon Postel <postel@isi.edu>
6/tcp Unassigned
6/udp Unassigned

3603
3604
3605
3606
3607
3608

3609

3610

3611

3612

3613
3614
3615
3616
3617
3618

3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

v1.23 - 02/17/08 SAGE For Newbies 146/150

echo 7/tcp Echo
echo 7/udp Echo
Jon Postel <postel@isi.edu>
8/tcp Unassigned
8/udp Unassigned
discard 9/tcp Discard
discard 9/udp Discard
Jon Postel <postel@isi.edu>
discard 9/dccp Discard SC:DISC
IETF dccp WG, Eddie Kohler
<kohler@cs.ucla.edu>, [RFC4340]
10/tcp Unassigned
10/udp Unassigned
systat 11/tcp Active Users
systat 11/udp Active Users
Jon Postel <postel@isi.edu>
12/tcp Unassigned
12/udp Unassigned
daytime 13/tcp Daytime (RFC 867)
daytime 13/udp Daytime (RFC 867)
Jon Postel <postel@isi.edu>
14/tcp Unassigned
14/udp Unassigned
15/tcp Unassigned [was netstat]
15/udp Unassigned
16/tcp Unassigned
16/udp Unassigned
qotd 17/tcp Quote of the Day
qotd 17/udp Quote of the Day
Jon Postel <postel@isi.edu>
msp 18/tcp Message Send Protocol
msp 18/udp Message Send Protocol
Rina Nethaniel <---none--->
chargen 19/tcp Character Generator
chargen 19/udp Character Generator
ftp-data 20/tcp File Transfer [Default Data]
ftp-data 20/udp File Transfer [Default Data]
ftp 21/tcp File Transfer [Control]
ftp 21/udp File Transfer [Control]
Jon Postel <postel@isi.edu>
ssh 22/tcp SSH Remote Login Protocol
ssh 22/udp SSH Remote Login Protocol
Tatu Ylonen <ylo@cs.hut.fi>
telnet 23/tcp Telnet
telnet 23/udp Telnet
Jon Postel <postel@isi.edu>
 24/tcp any private mail system

3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685

v1.23 - 02/17/08 SAGE For Newbies 147/150

 24/udp any private mail system
Rick Adams <rick@UUNET.UU.NET>
smtp 25/tcp Simple Mail Transfer
smtp 25/udp Simple Mail Transfer

When one computer on the network wants to make use of a specific service that
is running on another computer on the network, the first computer creates a
message, places the port number of the desired service into the message, and
then sends it to the destination computer. If a process that implements the well
known service for that port is bound to the port, then this process will receive
the message and perform the requested work.

The main restriction on processes that are bound to ports in the well known
ports range is that they must be running with super user privileges.

 13.1.7.2 Registered ports (1024 - 49151)
Registered ports work similarly to well known ports except that the
processes that are bound to them do not need to be running with super user
privileges. The list of registered ports is included in the same IANA
document that contains the list of well known ports.

 13.1.7.3 Dynamic/private ports (49152 - 65535)
These ports are used as needed and they do not have any specific type of process
associated with them. A typical use of the ports in this range is for a web
browser to make an outgoing connection with a web server.

 13.1.8 The SSH (Secure SHell) service
An example of a service that makes itself available through a well known port is
the SSH (Secure SHell) service and it is usually bound to port 22. The SSH
service allows a person to log into one computer on a network from another
computer on the network. The person must know the username and password
for an account on the remote machine before logging into it and the remote
machine must have a SSH service (in the form of a process) running and bound
to port 22. SSH is able to provide a secure connection between the machines by
encrypting the data that is passed between them.

On UNIX-based systems, the SSH client program is simply called SSH and on
Windows systems you can download and install a program called putty.exe that
will allow you to remotely log into a machine that is running the ssh service. The
putty.exe program can be downloaded from (
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html).

When the ssh client program is asked to log into a remote machine for the first
time, it tells the user that it does not currently have encryption information for

3686
3687
3688
3689

3690
3691
3692
3693
3694
3695

3696
3697

3698

3699
3700
3701
3702

3703

3704
3705
3706

3707
3708
3709
3710
3711
3712
3713
3714

3715
3716
3717
3718
3719

3720
3721

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

v1.23 - 02/17/08 SAGE For Newbies 148/150

this host and asks if it should continue. Answer by typing the word "yes". The
program then indicates that it added information about this host to a known
hosts list and it will not ask the question again in the future.

 13.1.9 Using scp to copy files between machines on the
network

The SSH service is not only able to allow a user to log into a remote machine, it
can also be used to copy files between machines on the network. The Linux
client program for copying files is called scp (Secure Copy) and a popular
Windows scp client, called pscp.exe, can be obtained from the same url that
putty.exe was.

 13.2 SAGE's Architecture (in development)

3722
3723
3724

3725
3726
3727
3728
3729

3730

v1.23 - 02/17/08 SAGE For Newbies 149/150

Drawing 13.5: SAGE's architecture.

Parts of Sage which are
implemented with
pseudo tty-based

screen scraping connections
to various applications

“Expect”
Screen

scraping
pseudo tty
connection

Maxima

“Expect”
Screen

scraping
pseudo tty
connection

Gap

“Expect”
Screen

scraping
pseudo tty
connection

etc.

Sage preprocessor
(x^2 converted to x**2, etc)

Sage notebook server

Parts of Sage which are implemented in Python
by the core Sage developers

Parts of Sage which are
implemented with

math-oriented
python modules

scipy mathplotlib

Standard
Python
Environment

etc.

“Expect”
Screen

scraping
pseudo tty
connection

v1.23 - 02/17/08 SAGE For Newbies 150/150

 13.3 Linux-Based SAGE Distributions
(In development...)

 13.4 The VMware Virtual Machine Distribution Of SAGE
(Mostly For Windows Users)

(In development...)

3731

3732

3732
3733

3734

	 1 Preface
	 1.1 Dedication
	 1.1 Acknowledgments
	 1.2 Support Group

	 2 Introduction
	 2.1 What Is A Mathematics Computing Environment?
	 2.2 What Is SAGE?
	 2.3 Accessing SAGE As A Web Service
	 2.3.1 Accessing SAGE As A Web Service Using Scenario 1

	 2.4 Entering Source Code Into A SAGE Cell

	 3 SAGE Programming Fundamentals
	 3.1 Objects, Values, And Expressions
	 3.2 Operators
	 3.3 Operator Precedence
	 3.4 Changing The Order Of Operations In An Expression
	 3.5 Variables
	 3.6 Statements
	 3.6.1 The print Statement
	 3.7 Strings
	 3.8 Comments
	 3.9 Conditional Operators
	 3.10 Making Decisions With The if Statement
	 3.11 The and, or, And not Boolean Operators
	 3.12 Looping With The while Statement
	 3.13 Long-Running Loops, Infinite Loops, And Interrupting Execution
	 3.14 Inserting And Deleting Worksheet Cells
	 3.15 Introduction To More Advanced Object Types
	 3.15.1 Rational Numbers
	 3.15.2 Real Numbers
	 3.15.3 Objects That Hold Sequences Of Other Objects: Lists And Tuples
	 3.15.3.1 Tuple Packing And Unpacking

	 3.16 Using while Loops With Lists And Tuples
	 3.17 The in Operator
	 3.18 Looping With The for Statement
	 3.19 Functions
	 3.20 Functions Are Defined Using the def Statement
	 3.21 A Subset Of Functions Included In SAGE
	 3.22 Obtaining Information On SAGE Functions
	 3.23 Information Is Also Available On User-Entered Functions
	 3.24 Examples Which Use Functions Included With SAGE
	 3.25 Using srange() And zip() With The for Statement
	 3.26 List Comprehensions

	 4 Object Oriented Programming
	 4.1 Object Oriented Mind Re-wiring
	 4.2 Attributes And Behaviors
	 4.3 Classes (Blueprints That Are Used To Create Objects)
	 4.4 Object Oriented Programs Create And Destroy Objects As Needed
	 4.5 Object Oriented Program Example
	 4.5.1 Hellos Object Oriented Program Example (No Comments)

	 4.5.2 Hellos Object Oriented Program Example (With Comments)
	 4.6 SAGE Classes And Objects
	 4.7 Obtaining Information On SAGE Objects
	 4.8 The List Object's Methods
	 4.9 Extending Classes With Inheritence
	 4.10 The object Class, The dir() Function, And Built-in Methods
	 4.11 The Inheritance Hierarchy Of The sage.rings.integer.Integer Class
	 4.12 The "Is A" Relationship
	 4.13 Confused?

	 5 Miscellaneous Topics
	 5.1 Referencing The Result Of The Previous Operation
	 5.2 Exceptions
	 5.3 Obtaining Numeric Results
	 5.4 Style Guide For Expressions
	 5.5 Built-in Constants
	 5.6 Roots
	 5.7 Symbolic Variables
	 5.8 Symbolic Expressions
	 5.9 Expanding And Factoring
	 5.10 Miscellaneous Symbolic Expression Examples
	 5.11 Passing Values To Symbolic Expressions

	 5.12 Symbolic Equations and The solve() Function
	 5.13 Symbolic Mathematical Functions
	 5.14 Finding Roots Graphically And Numerically With The find_root() Method
	 5.15 Displaying Mathematical Objects In Traditional Form
	 5.15.1 LaTeX Is Used To Display Objects In Traditional Mathematics Form

	 5.16 Sets

	 6 2D Plotting
	 6.1 The plot() And show() Functions
	 6.1.1 Combining Plots And Changing The Plotting Color
	 6.1.2 Combining Graphics With A Graphics Object

	 6.2 Advanced Plotting With matplotlib
	 6.2.1 Plotting Data From Lists With Grid Lines And Axes Labels
	 6.2.2 Plotting With A Logarithmic Y Axis
	 6.2.3 Two Plots With Labels Inside Of The Plot

	 7 SAGE Usage Styles
	 7.1 The Speed Usage Style
	 7.2 The OpenOffice Presentation Usage Style

	 8 High School Math Problems (most of the problems are still in development)
	 8.1 Pre-Algebra
	 8.1.1 Equations
	 8.1.2 Expressions
	 8.1.3 Geometry
	 8.1.4 Inequalities
	 8.1.5 Linear Functions
	 8.1.6 Measurement
	 8.1.7 Nonlinear Functions
	 8.1.8 Number Sense And Operations
	 8.1.8.1 Express an integer fraction in lowest terms

	 8.1.9 Polynomial Functions

	 8.2 Algebra
	 8.2.1 Absolute Value Functions
	 8.2.2 Complex Numbers
	 8.2.3 Composite Functions
	 8.2.4 Conics
	 8.2.5 Data Analysis
	 9 Discrete Mathematics: Elementary Number And Graph Theory
	 9.1.1 Equations
	 9.1.1.1 Express a symbolic fraction in lowest terms
	 9.1.1.2 Determine the product of two symbolic fractions
	 9.1.1.3 Solve a linear equation for x
	 9.1.1.4 Solve a linear equation which has fractions

	 9.1.2 Exponential Functions
	 9.1.3 Exponents
	 9.1.4 Expressions
	 9.1.5 Inequalities
	 9.1.6 Inverse Functions
	 9.1.7 Linear Equations And Functions
	 9.1.8 Linear Programming
	 9.1.9 Logarithmic Functions
	 9.1.10 Logistic Functions
	 9.1.11 Matrices
	 9.1.12 Parametric Equations
	 9.1.13 Piecewise Functions
	 9.1.14 Polynomial Functions
	 9.1.15 Power Functions
	 9.1.16 Quadratic Functions
	 9.1.17 Radical Functions
	 9.1.18 Rational Functions
	 9.1.19 Sequences
	 9.1.20 Series
	 9.1.21 Systems of Equations
	 9.1.22 Transformations
	 9.1.23 Trigonometric Functions

	 9.2 Precalculus And Trigonometry
	 9.2.1 Binomial Theorem
	 9.2.2 Complex Numbers
	 9.2.3 Composite Functions
	 9.2.4 Conics
	 9.2.5 Data Analysis
	 10 Discrete Mathematics: Elementary Number And Graph Theory
	 10.1.1 Equations
	 10.1.2 Exponential Functions
	 10.1.3 Inverse Functions
	 10.1.4 Logarithmic Functions
	 10.1.5 Logistic Functions
	 10.1.6 Matrices And Matrix Algebra
	 10.1.7 Mathematical Analysis
	 10.1.8 Parametric Equations
	 10.1.9 Piecewise Functions
	 10.1.10 Polar Equations
	 10.1.11 Polynomial Functions
	 10.1.12 Power Functions
	 10.1.13 Quadratic Functions
	 10.1.14 Radical Functions
	 10.1.15 Rational Functions
	 10.1.16 Real Numbers
	 10.1.17 Sequences
	 10.1.18 Series
	 10.1.19 Sets
	 10.1.20 Systems of Equations
	 10.1.21 Transformations
	 10.1.22 Trigonometric Functions
	 10.1.23 Vectors

	 10.2 Calculus
	 10.2.1 Derivatives
	 10.2.2 Integrals
	 10.2.3 Limits
	 10.2.4 Polynomial Approximations And Series

	 10.3 Statistics
	 10.3.1 Data Analysis
	 10.3.2 Inferential Statistics
	 10.3.3 Normal Distributions
	 10.3.4 One Variable Analysis
	 10.3.5 Probability And Simulation
	 10.3.6 Two Variable Analysis

	 11 High School Science Problems
	 11.1 Physics
	 11.1.1 Atomic Physics
	 11.1.2 Circular Motion
	 11.1.3 Dynamics
	 11.1.4 Electricity And Magnetism
	 11.1.5 Fluids
	 11.1.6 Kinematics
	 11.1.7 Light
	 11.1.8 Optics
	 11.1.9 Relativity
	 11.1.10 Rotational Motion
	 11.1.11 Sound
	 11.1.12 Waves
	 11.1.13 Thermodynamics
	 11.1.14 Work
	 11.1.15 Energy
	 11.1.16 Momentum
	 11.1.17 Boiling
	 11.1.18 Buoyancy
	 11.1.19 Convection
	 11.1.20 Density
	 11.1.21 Diffusion
	 11.1.22 Freezing
	 11.1.23 Friction
	 11.1.24 Heat Transfer
	 11.1.25 Insulation
	 11.1.26 Newton's Laws
	 11.1.27 Pressure
	 11.1.28 Pulleys

	 12 Fundamentals Of Computation
	 12.1 What Is A Computer?
	 12.2 What Is A Symbol?
	 12.3 Computers Use Bit Patterns As Symbols
	 12.4 Contextual Meaning
	 12.5 Variables
	 12.6 Models
	 12.7 Machine Language
	 12.8 Compilers And Interpreters
	 12.9 Algorithms
	 12.10 Computation
	 12.11 Diagrams Can Be Used To Record Algorithms
	 12.12 Calculating The Sum Of The Numbers Between 1 And 10

	 12.13 The Mathematics Part Of Mathematics Computing Systems

	 13 Setting Up A SAGE Server
	 13.1 An Introduction To Internet-based Technologies
	 13.1.1 How do multiple computers communicate with each other?
	 13.1.2 The TCP/IP protocol suite
	 13.1.3 Clients and servers
	 13.1.4 DHCP
	 13.1.5 DNS
	 13.1.6 Processes and ports
	 13.1.7 Well known ports, registered ports, and dynamic ports
	 13.1.7.1 Well known ports (0 - 1023)
	 13.1.7.2 Registered ports (1024 - 49151)
	 13.1.7.3 Dynamic/private ports (49152 - 65535)

	 13.1.8 The SSH (Secure SHell) service
	 13.1.9 Using scp to copy files between machines on the network
	 13.2 SAGE's Architecture (in development)
	 13.3 Linux-Based SAGE Distributions
	 13.4 The VMware Virtual Machine Distribution Of SAGE (Mostly For Windows Users)

