## Hill ciphers

Hill cipher and affine cipher are alike. Both of them employ a function $f(x)=a x+b$ to encrypt. the difference is the dimension. Affine cipher are one-dimensional, take one character each time. Hill ciphers act on blocks of $k$ characters. It forces to consider $x=\vec{x}$ and $b=\vec{b}$ with $\vec{x}$ and $\vec{b}$ two $k$-dimensional vectors and $a=A$ a $k \times k$ matrix.

In the following program we take

$$
A=\left(\begin{array}{ll}
\text { key11 } & \text { key12 } \\
\text { key21 } & \text { key22 }
\end{array}\right)=\left(\begin{array}{ll}
9 & 5 \\
7 & 4
\end{array}\right) \quad \text { and } \quad \vec{b}=\binom{\text { key1 }}{\text { key2 }}=\binom{0}{0} .
$$

The blocks are of dimension 2. The variable digraph runs over the block of two consecutive characters.

```
def encrypt_hill(message, key11, key12, key21, key22, key1, key2):
    alph = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
    encrypted = ',
    for i in range(0,len(message), 2):
        digraph = message[i:i+2]
        encrypted += alph[Mod(key11*alph.find(digraph[0])
            +key12*alph.find(digraph[1]) + key1,26)]
        encrypted += alph[Mod(key21*alph.find(digraph[0])
            +key22*alph.find(digraph[1]) + key2,26)]
    print message,'->',encrypted
```

Encrypting WHATEVER

```
# encrypt using the matrix [9, 5; 7, 4] and b=0
encrypt_hill('WHATEVER', 9,5,7,4, 0,0)
```

we get ZARYLIRS.
To decrypt this message we have to employ the inverse function $A^{-1}(\vec{x}-\vec{b})=A^{-1} \vec{x}-A^{-1} \vec{b}$. The inverse should be computed $(\bmod 26)$. In this case it does not matter because $A^{-1}$ is an integral matrix.

$$
A^{-1}=\left(\begin{array}{ll}
9 & 5 \\
7 & 4
\end{array}\right)^{-1}=\left(\begin{array}{cc}
4 & -5 \\
-7 & 9
\end{array}\right) \quad \text { and } \quad A^{-1} \vec{b}=\binom{0}{0}
$$

Consequently

$$
\begin{aligned}
& \text { \# decrypt using its inverse }[4,-5 ;-7,9] \text { and } b=0 \\
& \text { encrypt_hill('ZARYLIRS', } 4,-5,-7,9,0,0)
\end{aligned}
$$

gives WHATEVER.
Let us practice with a non-zero vector $\vec{b}$ take for instance

$$
A=\left(\begin{array}{ll}
\text { key11 } & \text { key12 } \\
\text { key21 } & \text { key22 }
\end{array}\right)=\left(\begin{array}{ll}
3 & 5 \\
7 & 2
\end{array}\right) \quad \text { and } \quad \vec{b}=\binom{\text { key1 }}{\text { key2 }}=\binom{1}{1} .
$$

```
# encrypt using the matrix A=[3, 5; 7, 2] and b=[1,1]
encrypt_hill('SECRET', 3,5,7,2, 1,1)
```

We obtain XFOXEP.
To decrypt we have to compute

$$
A^{-1}=\left(\begin{array}{ll}
3 & 5 \\
7 & 2
\end{array}\right)^{-1}=-\frac{1}{29}\left(\begin{array}{cc}
2 & -5 \\
-7 & 3
\end{array}\right) \equiv\left(\begin{array}{cc}
8 & 19 \\
11 & 25
\end{array}\right) \quad \text { and } \quad A^{-1} \vec{b} \equiv\binom{25}{16}
$$

Then we recover SECRET with

$$
\begin{align*}
& \text { \# decrypt using } A^{\wedge}-1=[8,19 ; 11,25] \text { and }-A^{\wedge}-1 b=[25,16]  \tag{26}\\
& \text { encrypt_hill('XFOXEP', } 8,19,11,25,25,16)
\end{align*}
$$

