
Cryptography. UAM 2010-2011 1

The group law in elliptic curves

Elliptic curves. A first not very general definition of elliptic curve over a field K, char(K) 6=
2, 3 is an algebraic curve of the form

E : y2 = x3 + ax + b with a, b ∈ K , such that 4a3 + 27b2 6= 0

and the ‘point at infinity’ conventionally denoted by O. It makes sense in the framework of
projective geometry.

In Sage there are several forms of introducing an elliptic curve. We consider here the easiest
one matching the previous definition: EllipticCurve(K,[a,b])

If K is a finite field you can see the points running a for loop. For instance

E = EllipticCurve(GF(5),[-6,5])
for P in E:

print P

produces the following list of points

(0 : 0 : 1)

(0 : 1 : 0)

(1 : 0 : 1)

(2 : 1 : 1)

(2 : 4 : 1)

(3 : 2 : 1)

(3 : 3 : 1)

(4 : 0 : 1)

These are the points of E : y2 = x3 − 6x + 5 belonging to F5, often denoted by E(F5). They
are in projective notation (a : b : c) means (a/c, b/c) when c 6= 0 and the only instance with
vanishing last coordinate corresponds to the point at infinity.

Changing the first line to

E = EllipticCurve(GF(5^2,’a’),[-6,5])

we obtain the result as before plus new points. Remember that F5 ↪→ F52 .
An error is raisen trying to replace F5 or F52 by F7 or F72 because in these fields the

condition 4a3 + 27b2 6= 0 does not hold.
The effect of show(E) is displaying the equation of E. This is useless with our presentation

of elliptic curves but it is not with others.

The group law. Given P and Q in an elliptic curve over R we define P + Q as the mirror
image respect to the X-axis of the third intersection of the straight line passing through P
and Q.

The following code shows it in a picture

Cryptography. UAM 2010-2011 2

var(’x,y’)
graph = implicit_plot(x^3-6*x+5-y^2, (x, -5,5), (y, -5,5))
graph += plot(x-1, x, -3,4)
graph += plot(x-1, x, -2,2, thickness =2)
graph += point ([1,0], size =30) + point ([2,1], size =30)
graph += point([-2,-3],size =30) + point ([-2,3],size =30)
graph += line([(-2,3),(-2,-3)], linestyle = ’--’, thickness =2)
graph += text("P" ,(2.3,0.4), fontsize =20)
graph += text("Q" ,(1.3,-0.7), fontsize =20)
graph += text("R" ,(-2,-3.8), fontsize =20)
graph += text("P+Q" ,(-2.4,4), fontsize =20)

show(graph)

If P = Q we consider that the straight line is the tangent line. If P = (x, y) we define
P = (x,−y) and P + (−P) = O (there is not third intersection, it is at infinity). We complete
these formulas with P + O = P and O + P = P .

It turns out that an elliptic curve E endowed with the operation + is an abelian group.
Using the previous geometric interpretation if P,Q 6= O and Q 6= −P the explicit formula

to add P = (x1, y1) and Q = (x2, y2) is

P + Q = (x3, m(x1 − x3)− y1) with m =
y2 − y1

x2 − x1
and x3 = m2 − x1 − x2.

If P = Q m has to be replaced by m = (3x2
1 + a)/2y1 which is the slope of the tangent line.

These formulas can be extended to any K (losing the geometrical interpretation) and
completed with the trivial cases.

Therefore the following function computes P + Q (the group law)

#
Group law in the elliptic curve y^2= x^3+a*x+b
(’a’ has to be defined in advance)
#
def g_l(P, Q):

if P == ’O’:
return Q

if Q == ’O’:
return P

if (P[0] == Q[0]) and (P[1] == -Q[1]):
return ’O’

if (P[0] == Q[0]) and (P[1] == Q[1]):
m = (3*P[0]^2+a)/2/P[1]

else:
m = (Q[1]-P[1])/(Q[0]-P[0])

x3 = m^2-P[0]-Q[0]
return [x3 ,m*(P[0]-x3)-P[1]]

Taking a=Mod(-6,13) and b=Mod(5,13) (the last one is not necessary) the output of

Cryptography. UAM 2010-2011 3

print g_l([2,1], [2,-1])
print g_l([2,1], [1,0])
print g_l([2,1], [2,1])
print g_l([5,-10], [5,-10])
print g_l(’O’, [5,-10])
print g_l(g_l(g_l(g_l([5,-10],[5,-10]),[5,-10]),[5,-10]),[5,-10])

is

O

[-2, 3]

[5, 3]

[2, 12]

[5, -10]

O

For instance, the last line means that P + P + P + P + P = O. We abbreviate this as 5P = O.
According to the notation of group theory, we say that P has order 5.
In general the following function gives the order of a point P

def ord_p(P):
k=1
Q=P
while Q!=’O’:

k += 1
Q = g_l(P,Q)

return k

but this is not very efficient if the order is large. There are some shortcuts (not discussed here)
using for instance the baby-step giant step algorithm.

The command E.abelian_group() computes the structure of the abelian group. For in-
stance

E = EllipticCurve(GF(5),[-6,5])
print E.abelian_group ()

inform us that for E : y2 = x3 − 6x + 5 over F5 the group is isomorphic (i.e. the same up to
changing names) to Z/4Z× Z/2Z. The exact output is

(Multiplicative Abelian Group isomorphic to C4 x C2, ((3 : 2 : 1), (4 : 0 : 1)))

The las part of the output indicates the generators. With

a = Mod(-6,5)
b = Mod(5,5)
print ord_p ([3 ,2])
print ord_p ([4 ,0])

we check that really the points (3, 2) and (4, 0) have order 4 and 2, respectively.

Cryptography. UAM 2010-2011 4

Built-in functions in Sage. Actually the functions introduced above in connection to group
law are already implemented in Sage.

The point (x, y) ∈ E in Sage is indicated by E([x,y]) except the point at infinity that has
the special notation E(0).

The sum and the multiplication by an integer is written as usual. For instance the com-
putations that we performed before on the elliptic curve E : y2 = x3 − 6x + 5 over F13 are
shortened now with a lighter notation simply as

E = EllipticCurve(GF(13),[-6 ,5])
P = E([2 ,1])
Q = E([5, -10])

print P+(-P)
print P+E([1 ,0])
print 2*P
print 2*Q
print E(0)+P
print 5*P

Giving the expected result

(0 : 1 : 0)

(11 : 3 : 1)

(5 : 3 : 1)

(2 : 12 : 1)

(2 : 1 : 1)

(0 : 1 : 0)

The order of P is computed with P.additive_order(). Note the new notation with respect
to the multiplicative_order() that we employed for the group of units of Z/NZ.

E = EllipticCurve(GF(5),[-6,5])
P = E([3 ,2])
print P.additive_order ()
Q = E([4 ,0])
print Q.additive_order ()

Gives 4 and 2 as before.

