Cryptography 2011

Instructor: Fernando Chamizo.
Office: Faculty of Sciences M-17 (formerly C-XV) 307.
Email: fernando.chamizo@uam.es.
Web: www.uam.es/fernando.chamizo
Contents: We intend to cover the most of the topics in 1-4 and perhaps some of the topics in 5 .

1. Historical introduction. Motivation and examples. Elementary group theory and number theory. Finite fields. Simple encryption algorithms.
2. The discrete logarithm problem. Statement and examples. Basic attacks. Diffie-Hellman key exchange. The ElGamal cryptosystem.
3. The RSA cryptosystem. Algorithm, examples and cautions. Primality tests and factorization algorithms. Introduction to the number field sieve.
4. Elliptic curve cryptography. Elliptic curves and group law. Elliptic curves and factorization. The elliptic version of the discrete logarithm problem.
5. Complementary topics. Digital signatures. The algorithm DES. Knapsack cryptosystems. Lattices and cryptography.

Schedule of the lectures: Tuesday and Thursday from 5:30 pm to 7:00 pm. The classroom is 320 in the Math Department (M17).

Biblography: The main topics are based on the chapters 1, 2, 3 and 5 of
[1] Hoffstein, J.; Pipher, J.; Silverman, J.H. An introduction to mathematical cryptography. Undergraduate Texts in Mathematics. Springer, New York, 2008.

The complementary topics cover some other parts of this monography. Other recommended texts are
[2] Stein, W. Elementary number theory: primes, congruences, and secrets. A computational approach. Undergraduate Texts in Mathematics. Springer, New York, 2009.
[3] Blake, I. F.; Seroussi, G.; Smart, N.P. Elliptic curves in cryptography. Reprint of the 1999 original. London Mathematical Society Lecture Note Series, 265. Cambridge University Press, Cambridge, 2000.
[4] Koblitz, N. A course in number theory and cryptography. Second edition. Graduate Texts in Mathematics, 114. Springer-Verlag, New York, 1994.
[5] Buchmann, J. Introduction to cryptography. Second edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 2004.

Grading:

1. Final exam or final project: 40%.
2. Exercises and homework assignments: 40%.
3. Quizzes, in-class exercises, participation : 20%.
