
Cryptography. UAM 2010-2011 1

Factorization algorithms

We consider the problem of getting a nontrivial factor of a composite number. Factorization
algorithms appeal recursively to the solution of this problem and combined with primality tests
give the full prime factorization of a number.

Fermat’s factorization. It is an extremely simple method essentially based on the relation
x2 − y2 = (x− y)(x + y). If we can find y such that n + y2 = x2 then (x− y)|n.

The following program uses this technique to obtain a nontrivial factor. Some lines at the
beginning are included to detect primes and even numbers.

def fermat_factor(n):
if Mod(n ,2)==0:

return 2
if is_prime(n):

return n
y = 0
while(is_square(n+y^2)== False):

y += 1
return sqrt(n+y^2)-y

If n = pq with p and q odd primes, as in RSA, then n = x2 − y2 with x = (p + q)/2,
y = (p − q)/2. If p and q are very close then y is small and this simple method gives the
factorization even for gigantic numbers.

For instance

p = random_prime (10^101 , True)
q = next_prime(p)
n = p*q
print ’The number is’, n
print ’It has’, n.ndigits(), ’digits ’

print ’\nA factor is ’, fermat_factor(p*q)

can factor in no time a 200 digits number of this form. The moral of the story is that in RSA
close prime numbers has to be avoided.

The number is
659230925587256723667156710893739926206106725832901190192513650209261568\
920507606065172489394540316660737278499039707243803129856565681278595584\
2884851162188556539495554272669866793569293859644799976733
It has 202 digits

A factor is
811930369913120520211362870245508687326172438342983987822130172511668081\
44382954024225441452897752819

Cryptography. UAM 2010-2011 2

Pollard’s p−1 algorithm. It is not useful for all numbers but it allows to factorize some ex-
tremely large special numbers. It computes P (B) = gcd(aB!− 1, n) for increasing values of B.
Of course, if 1 < P (B) < n for some B, we have got a nontrivial factor. Actually B! is a simpli-
cation of the original algorithm, a slightly better choice of the exponent is lcm(1, 2, 3, . . . , B).
We shall take initially a = 2.

The theory suggests that this is a good algorithm if there are prime factors p such that
the prime factorization of p− 1 only contains small prime powers. Here ‘good’ means that the
value of B is reasonably small.

This function computes the values of P (B) for B < b and return a nontrivial factor if it
finds it.

def pollard_p(n,b):
a = 2
for i in range(1,b+1):

a = Mod(a,n)^i
d = gcd (a-1,n)
if (d!=1) and (d!=n):

return d

Note that aB = aB! is computed by the recurrence aB = (aB−1)B and, of course, we work
modulo n, otherwise the size of aB would be unmanageable for a computer.

With pollard_p(10403,10) we get the factor 101 and None if 10 is substituted by a
smaller number.

A slight variation tries bigger and bigger values of B up to getting a nontrivial factor

def pollard_p_auto(n):
a = 2
i = 0
d = n
if is_prime(n):

return d
while (d==1) or (d==n):

i += 1
a = Mod(a,n)^i
d = gcd (a-1,n)

return d

One has to be careful with this program because for instance pollard_p_auto(65) enters
into an infinite loop because 2B! = 212k for B > 3 and 212 ≡ 1 (mod 65).

We avoid this problem changing the basis and starting up if at some point aB! becomes 1
modulo n.

Cryptography. UAM 2010-2011 3

def pollard_p_auto2(n):
aa =2
a = aa
i = 0
d = n
if is_prime(n):

return d
while (d==1) or (d==n):

i += 1
a = Mod(a,n)^i
d = gcd (a-1,n)
if a == 1:

aa += 1
a = aa
i = 0

return d

It is interesting to check numerically the performance of the algorithm for n = pq in terms
of the factorization of the p − 1 where p is the output of pollard_p_auto2(n). To this end
we consider

k = 7
for i in range (20):

p = random_prime (10^k, True)
q = random_prime (10^k, True)
t = cputime ()
f = pollard_p_auto2(p*q)
dt = cputime(t)
print factor(f-1), ’ Time:’, dt

that prints the factorization of p − 1 and the interval of time dt required by pollard_p_
auto2(n) to get p.

2^2 * 3^2 * 139 * 347 Time: 0.043994
2^2 * 3 * 245261 Time: 30.766322
2^2 * 3^7 * 5 * 109 Time: 0.014998
2 * 17 * 19 * 8923 Time: 1.134828
2^4 * 3^2 * 23 * 1423 Time: 0.173974
2^4 * 5 * 157 * 503 Time: 0.061991
2^2 * 5 * 13 * 43 * 401 Time: 0.049991
2 * 7 * 11 * 4597 Time: 0.555916
2 * 3^2 * 31 * 4451 Time: 0.563914
2 * 3^2 * 13^2 * 19 * 79 Time: 0.010998
2 * 17^2 * 17159 Time: 2.112679
2^2 * 3 * 7 * 101149 Time: 12.303129
2^3 * 3^2 * 19 * 37 * 41 Time: 0.00699899999995
2^3 * 11 * 19 * 1993 Time: 0.241964
2 * 3 * 7 * 11 * 15199 Time: 1.845719
2 * 3^3 * 5 * 27743 Time: 3.366488

Cryptography. UAM 2010-2011 4

2 * 3 * 11 * 151 * 647 Time: 0.077988
2^2 * 31 * 157 * 199 Time: 0.024996
2^3 * 17 * 19 * 29 * 113 Time: 0.0149980000001
2 * 5 * 131113 Time: 16.300522

Note that the biggest number in this list corresponds to p − 1 = 22 · 3 · 245261 having
the unbalanced prime factor 245261. On the other hand, the best performance is for p − 1 =
2 · 32 · 132 · 19 · 79 with many small small prime power factors.

Running the program with higher values of k (this is typically like one half of the number
of digits) we realize that Pollard’s p − 1 algorithm is not convenient as a single method for
general numbers.

For instance a table for k=10 included some extreme values like

2^2 * 5 * 17 * 27685279 Time: 3471.164302
2 * 347 * 6327889 Time: 793.400386

