1) Write the calculations to get a nontrivial factor of 4221089 using $E: y^{2}=x^{3}+x+7$ and the starting point $P=(1,3) \in E$. Note: The program typed in class was specialized for $y^{2}=x^{3}+a x+1$ and $P=(0,1)$ but you can still use the function for adding points.
2) Guess the secret message | L_{1} | $\mathrm{~L}_{2}$ | $\mathrm{~L}_{3}$ | | $\mathrm{~L}_{4}$ | $\mathrm{~L}_{5}$ | $\mathrm{~L}_{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | where L_{i} is a letter with $\operatorname{ord}\left(\mathrm{L}_{i}\right)=$ Ai knowing that the output of the program
```
E = EllipticCurve(GF(6091541), [0,5622139])
G = E([3353686,4066380])
Ppub = E([5894715, 2653441])
k = floor( 10^6*random() )
print k*G, E([256`2*A1+256*A2+A3, 256^2*A4+256*A5+A6]) + k*Ppub
```

has been:
(3452962 : 2418876 : 1) (1041155 : $5388088: 1)$

