1) In class we made the fermat_fact(n) function returning a factor of n using Fermat factorization. Employ fermat_fact(n) and is_prime(n) to define the functions ${ }^{1}$:
a) (80%) fermat_factor_a (n) printing a (non-necessarily ordered) list of the prime factors of n repeated according multiplicities. For instance, for $n=630$ it could give $2,3,7,3,5$.
b) ($+20 \%$) fermat_factor_b(n) printing the factorization of n in the usual (ordered) way as in the function factor in Sage. For instance, for $n=630$ it has to give $2 * 3 \wedge 2 * 5 * 7$.
2) In a library the PIN is a string, say pin, of three characters encrypted in the magnetic stripe as a number given by the formula
```
Mod( 256^2*ord(pin[0]) + 256*ord(pin[1]) + ord(pin[2]) , 18121121)^7919
```

What is the PIN corresponding to 16479305 ?

[^0]
[^0]: ${ }^{1}$ Please send the answer to this challenge by email to fernando.chamizo@uam.es in a text file or in a Sage worksheet. The part b) requires some knowledge of Python. There is a Python cheat sheet in my web site.

