Deadline: May 5th

Name:

Exercises

1) Solve the equation $x^{2011} \equiv 1234(\bmod 1625)$. Note: It is not admitted to try all classes modulo 1625 with the computer.
2) Consider a RSA cryptosystem with an encryption key $k \neq \pm 1(\bmod n), n=p q$. Can the encrypting and the decrypting function coincide, i.e. $e_{k}\left(e_{k}(m)\right)=m, \forall m \in \mathcal{M}$? In the affirmative provide and example and in the negative provide a proof.
3) Find all bases for which 15 is a pseudoprime to the base a.
4) Given $n=p_{1} p_{2} \cdots p_{r}$ with p_{i} distinct primes, $r>1$, prove that if n is a Carmichael number then $p_{i}-1$ divides $n-1$ for every $1 \leq i \leq r$. Hint: Use primitive roots modulo p_{i}. Note: Recall that a Carmichael number n is a pseudoprime to every base coprime to n.
5) Describe the calculations to decide if $n=1+367 \cdot 10^{3}$ is prime using Pocklington primality test.
