Deadline: April 7th

Name:

Exercises

1) Write the scheme of the baby-step giant-step algorithm to solve $2^{x} \equiv 15(\bmod 19)$.
2) Suppose that a wise attacker A has invented a machine to solve Diffie-Hellman problem, i.e. A knows an efficiently computable function f such that $f\left(g^{a}, g^{b}\right)=g^{a b}$. Show that A can break the ElGamal cryptosystem using the public key.
3) Write the computations to get $5^{101}(\bmod 127)$ by the repeated squaring method (fast powering algorithm).
4) Suppose you know that a message has been encryted with the ElGamal cryptosystem using a random exponent less than 20 . How would you try to cryptanalyze it? Note: We assume that g, p and the public key are public domain.
5) Consider \mathbb{F}_{8} in the form $\mathbb{F}_{2}[X] /\left\langle X^{3}+X+1\right\rangle$. Check that X is a generator of \mathbb{F}_{8}^{*} and write the complete table of logarithms of the elements of \mathbb{F}_{8}^{*} to base X.
