CONJUNTOS Y NÚMEROS. Curso 2011-2012. **HOJA DE REPASO**

- 1. Demostrar por inducción que para todo $n \ge 2$, $(1 + \frac{1}{2^2})(1 + \frac{1}{3^2})\dots(1 + \frac{1}{n^2}) < 3(1 \frac{1}{n})$.
- 2. La sucesión de Lucas está formada por los naturales L_n definidos de este modo:

$$L_1 = 1, L_2 = 3; L_n = L_{n-1} + L_{n-2} \text{ si } n > 2.$$

Observar varios de sus restos (mod 5), formular una conjetura para todos ellos, y probarla por inducción. ¿Podría <u>no</u> formarse una secuencia repetida, como la que vemos, si cambiamos los valores iniciales?

- 3. Llamemos $p_d(n)$ al número de puntos $(k_1, \ldots, k_d) \in \mathbb{N}^d$ cuyas coordenadas cumplen: $\sum_j k_j = n$.
 - (a) Probar que: $p_d(0) = 1$, $p_{d+1}(n) = \sum_{m=0}^{n} p_d(m)$. Sugerencia: k_{d+1} toma algún valor $\in [0, n]$.
 - (b) Deducir que $p_{d+1}(n) p_{d+1}(n-1) = p_d(n)$, y hallar fórmulas para cada $p_d(n)$,
 - (c) Probar, por inducción sobre d, que $p_d(X)$ es un polinomio $\in \mathbb{Q}[X]$, con grado d-1. Idea: los coeficientes de p(X) - p(X-1) son una función lineal de los de p(X) ¿con qué Ker?
- 4. Dados conjuntos A, B, C, con $B \subset A \subset C$, hallar qué conjunto X cumple las ecuaciones: $\begin{cases} A \setminus X = B \\ A \cup X = C \end{cases}$
- 5. Probar para conjuntos cualesquiera A_1, \dots, A_n , o demostrar que es falsa, la siguiente identidad:

$$\bigcup_{k=1}^n A_k \ \setminus \ \bigcap_{k=1}^n A_k = (A_n \setminus A_1) \cup (A_1 \setminus A_2) \cup (A_2 \setminus A_3) \cup \ldots \cup (A_{n-1} \setminus A_n)$$
 Escribir alguna expresión, usando sólo las operaciones \cap , \setminus , \cup , para el conjunto de aquellos elementos

que pertenecen a uno solo de los A_k .

6. Probar para conjuntos cualesquiera S, T, U, V, o mostrar que son falsas, las siguientes igualdades:

$$(S \times U) \cup (T \times V) = (S \cup T) \times (U \cup V) \quad ; \quad (S \times T) \setminus (U \times V) = \big((S \setminus U) \times T \big) \cup \big(S \times (T \setminus V) \big).$$

7. Sean $f: X \to Y$, $g: Y \to Z$ functiones arbitrarias.

Decir si son ciertas las siguientes afirmaciones, (probarlas o dar contraejemplos):

- (a) Si $g \circ f$ es invectiva, entonces f es invectiva;
- (b) Si $g \circ f$ es inyectiva, entonces g es inyectiva;
- (c) Si $g \circ f$ es sobreyectiva, entonces f es sobreyectiva;
- (d) Si $g \circ f$ es sobreyectiva, entonces g es sobreyectiva.
- 8. Sean B un conjunto y $f: \mathbb{N} \to B$ una función tal que se tiene f(A) = B para cada subconjunto $A \subset \mathbb{N}$ que tenga 5 elementos. ¿Cuántos elementos puede tener el conjunto B?
- 9. Estudiar si es inyectiva o sobreyectiva alguna de las siguientes funciones $f_m: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

$$f_1(i,j,k) = 2^i 3^j 5^k$$
, $f_2(i,j,k) = 2^i 3^j 6^k$, $f_3(i,j,k) = i^2 j^3 k$.

- 10. Dada una relación $\mathcal{R} \subset A \times A$ sobre un conjunto A, ¿cuántos pares hay en \mathcal{R} si es un orden total y A tiene n elementos? Y si se trata de una relación de equivalencia, ¿cuántos pares habrá como mínimo?
- 11. Suponer dada en un conjunto A una relación $x\mathcal{R}y$ que tiene las propiedades reflexiva y transitiva, pero que ni es simétrica, ni antisimétrica. Probar las siguientes afirmaciones:
 - (a) la relación \mathcal{E} definida por: $x\mathcal{E}y \iff x\mathcal{R}y \land y\mathcal{R}x$, es de equivalencia;
 - (b) en el conjunto cociente A/\mathcal{E} , la relación \mathcal{E} definida por: $\bar{x}\mathcal{E}\bar{y} \iff x\mathcal{R}y$, es de orden;
 - (c) en el anillo de polinomios $\mathbb{K}[X]$, la relación: Q(X) divide a P(X) tiene las propiedades postuladas para \mathcal{R} , y en cada clase $\bar{P} \in \mathbb{K}[X]/\mathcal{E}$, con $P \neq 0$, de la relación definida en (a), hay exactamente un polinomio mónico, si K es un cuerpo.
- 12. Sea (a,b,c) una terna pitagórica, esto es, una solución de la ecuación $a^2+b^2=c^2$ con $a,b,c\in\mathbb{Z}$. Demostrar que: (i) alguno de los valores a, b ó c, es múltiplo de 3; (ii) alguno de ellos es múltiplo de 5; (iii) abc es múltiplo de 4. <u>Indicación</u>: Estudiar qué números son cuadrados en \mathbb{Z}_3 , \mathbb{Z}_4 y \mathbb{Z}_5 .
- 13. Calcular los últimos dos dígitos de 2012 ²⁰¹². Indicación: Calcular primero su resto módulo 25.

14. Sea \mathcal{F} el conjunto de funciones de \mathbb{N} a $\mathbb{N} \setminus \{0,1\}$. Se define la siguiente relación en \mathcal{F} :

$$f\mathcal{R}g \iff \text{para todo } n \in \mathbb{N}, f(n)|g(n).$$

- (a) Demostrar que es una relación de orden. ¿Se trata de un orden total?
- (b) ¿Existen elementos minimales? ¿Y elementos maximales?
- 15. Sea X el conjunto de ternas formadas por las permutaciones de 1, 2, 3. Por ejemplo, $(1,2,3), (3,1,2) \in X$. Decimos que $(a,b,c) \mathcal{R}(d,e,f)$ si las dos expresiones $F(x_a,x_b,x_c)$, $F(x_d,x_e,x_f)$, donde F es la función:

$$F(x, y, z) = (x - y)(z - x)(y - z),$$

dan la misma función de las variables x_1, x_2, x_3 . Demostrar que \mathcal{R} define una relación de equivalencia en X y hallar el número de clases de equivalencia.

- 16. Hallar el conjunto de soluciones:
 - (a) de cada uno de los siguientes sistemas, para $x, y \in \mathbb{Z}_{10}$: $\begin{cases} x+y=5 \\ 2x+9y=1 \end{cases}; \quad \begin{array}{c} x+3y=1 \\ 3x-y=3 \end{array} \}$
 - (b) de los siguientes sistemas de congruencias: $\begin{array}{c} x \equiv 3 \pmod{13} \\ x \equiv -1 \pmod{17} \end{array} \right\} \qquad \begin{array}{c} x \equiv -5 \pmod{77} \\ x \equiv 17 \pmod{143} \end{array}$
- 17. Demostrar que $n(n^5-1)(n^5+1)$ es divisible por 22 para todo $n \in \mathbb{Z}$.
- 18. ¿Cuántas unidades hay en \mathbb{Z}_{2310} ? ¿y en \mathbb{Z}_{1764} ?
- 19. Verificar que si $z, w \in \mathbb{C}$ entonces $|z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2)$. Explicar el significado geométrico de esa igualdad, dibujando un par de puntos z, w en el plano complejo.
- 20. Para un entero positivo n, sea $z \in \mathbb{C}$ una solución de la ecuación: $(z+1)^n + (z-1)^n = 0$.
 - (i) Probar que: $z = \frac{1+w}{1-w}$ para algún $w \in \mathbb{C}$ tal que $w^n = -1$.
 - (ii) Deducir que $w\bar{w} = 1$ y que z es imaginario puro.
- 21. Sean $m, n \in \mathbb{Z}_+$ dos números primos entre sí. Llamemos $r = \exp(2\pi i/m)$, $s = \exp(2\pi i/n)$. Recordemos que $1, r, r^2, \ldots, r^{(m-1)}$ son todas las raíces m-ésimas de 1. (i) Demostrar que los números $1, r^n, r^{2n}, \ldots, r^{(m-1)n}$ también son todas las raíces m-ésimas de 1 (escritas
 - (i) Demostrar que los números $1, r^n, r^{2n}, \ldots, r^{(m-1)n}$ también son todas las raíces m-ésimas de 1 (escritas en otro orden);
 - (ii) Demostrar que $\prod_{j=0}^{m-1} \prod_{k=0}^{n-1} \left(r^j + s^k\right)$ es igual a 2 o a 0, dependiendo de los valores de n y m. Decidir en qué casos vale 0 y en qué casos vale 2.

<u>Idea:</u> Probar primero la igualdad $\prod_{k=0}^{n-1} (z+s^k) = z^n - (-1)^n$. Usar esta igualdad y el apartado (i).

- 22. Descomponer los siguientes polinomios en factores irreducibles en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $\mathbb{Z}_2[X]$: $15X^2 19X 8$, $X^2 + 6X + 25$, $X^3 + 6X^2 + 6X 8$, $5X^3 + 9X^2 + 13X 3$, $3X^3 + 2X^2 4X + 1$.
- 23. Calcular el máximo común divisor $\Delta(X)$ de los polinomios

$$P(X) = 2X^3 - 7X^2 + 10X - 6, Q(X) = X^4 + 4.$$

Encontrar dos polinomios A(X) y B(X) tales que $A(X)P(X) + B(X)Q(X) = \Delta(X)$.

- 24. Sea $P \in \mathbb{R}[X]$ de grado 5 tal que el máximo común divisor de P(X) y P(X+1) es de grado 4.
 - (a) Dar un ejemplo de un polinomio P(X) que cumpla esta condición.

<u>Indicación</u>: Observar la relación que hay entre los ceros de P(X) y los de P(X+1).

- (b) Probar que si $P, Q \in \mathbb{R}[X]$ son ambos de este tipo, hay constantes $a, b \in \mathbb{R}$ tales que Q(X) = a P(X+b).
- 25. Se considera el conjunto $A \subset \mathbb{C}$ formado por todas las sumas finitas $\sum_k a_k e^{\pi i r_k}$, con $a_k \in \mathbb{Z}$, $r_k \in \mathbb{Q}$.
 - (a) Demostrar que A es un anillo.
 - (b) Demostrar que $\sqrt{2}$, $\sqrt{3} \in A$.
 - (c) Calcular los cardinales de los siguientes conjuntos: $A, A[X], \mathbb{C} \setminus A$.

Decidir si son anillos (respecto de la operaciones usuales de la suma y el producto en \mathbb{C}).