Física

ÁLGEBRA II

Hoja 1. Espacios euclídeos y unitarios (espacios vectoriales sobre $\mathbb R$ y sobre $\mathbb C$).

- **1.** Decide de manera razonada si las siguientes funciones $\varphi: V \times V \to \mathbb{K}$ son formas bilineales o sesquilineales en los espacios vectoriales V sobre \mathbb{K} con $\mathbb{K} = \mathbb{R}, \mathbb{C}$.
 - a) $V = \mathbb{M}_{2\times 2}(\mathbb{K})$, con $\varphi(A, B) = \operatorname{traza}(A + \overline{B})$;
 - **b)** $V = \mathbb{M}_{2\times 2}(\mathbb{K})$, con $\varphi(A, B) = \operatorname{traza}(A\overline{B})$;
 - c) $V = \mathbb{M}_{2\times 2}(\mathbb{R})$, con $\varphi(A, B) = \operatorname{traza}(A\overline{B}) \operatorname{traza}(A)\operatorname{traza}(\overline{B})$;
 - d) $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ es diferenciable}\}, \text{ con } \varphi(f,g) = \int_0^1 f'(t)g(t)dt;$
 - e) $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ es continua}\}, \text{ con } \varphi(f,g) = \int_0^1 f(x)g(x)(x^2+1)dx;$
 - f) $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ es continua}\}, \text{ con } \varphi(f,g) = \int_0^1 f(x)g(x-1)dx;$
 - g) $V = \mathbb{K}^2$, con $\varphi((x_1, y_1), (x_2, y_2)) = (x_1 + y_1)^2 x_2 y_2$.

Nota: Siguiendo la bibliografía, en este curso las formas sesquilineales son lineales en la primera variable pero en la literatura física y también en parte de la matemática, se consideran formas lineales en la segunda variable.

- **2.** Considera la base estándar $B = \{e_1, e_2, e_3\}$ de \mathbb{R}^3 . Escribe la matriz $M_B(\varphi)$ de las siguientes formas bilineales:
 - a) $\varphi((x_1, x_2, x_3), (y_1, y_2, y_3)) = 2x_1y_1 3x_1y_3 + 2x_2y_2 5x_2y_3 + 4x_3y_1;$
 - **b)** $\varphi((x_1, x_2, x_3), (y_1, y_2, y_3) = 3x_1y_1 + 2x_2y_2 + x_3y_3.$
- **3.** Considera ahora la base $B' = \{(1,2,3), (-1,1,2), (1,2,1)\}$ de \mathbb{R}^3 y denotamos por $(x'_1, y'_1, z'_1), (x'_2, y'_2, z'_2)$ las coordenadas de dos vectores de \mathbb{R}^3 respecto a la base B'. Escribe la expresión en términos de las coordenadas anteriores de las formas bilineales del ejercicio 2.
- 4. Decide de manera razonada cuáles de las funciones del ejercicio 1 son formas bilineales simétricas, o sesquilineales hermíticas, según corresponda.
- **5.** Se dice que una forma bilineal (respectivamente, sesquilineal) $\varphi: V \times V \to \mathbb{K}$ es antisimétrica si para todo par de vectores $u, v \in V$ se tiene que $\varphi(u, v) = -\varphi(v, u)$.
 - a) Encuentra una forma bilineal antisimétrica $\varphi : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$;
- b) Sea $B = \{v_1, \ldots, v_n\}$ una base de V y sea φ una forma bilineal en V. Da una condición necesaria y suficiente sobre $M_B(\varphi)$ para que φ sea antisimétrica;
- c) Demuestra que toda forma bilineal (respectivamente, sesquilineal) φ en V se puede escribir como la suma de una forma bilineal simétrica (respectivamente, hermítica) y una antisimétrica.
- **6.** Sea V un espacio vectorial sobre \mathbb{K} , sea $\varphi:V\times V\to\mathbb{K}$ una forma bilineal simétrica (o hermítica) y sea $W\subset V$ un subespacio vectorial. Demuestra que el conjunto:

$$W' := \{ v \in V : \varphi(v, w) = 0, \forall w \in W \}$$

es un subespacio vectorial de V. Se dice que W' es el subespacio ortogonal a W.

7. Considera la aplicación $\phi: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ dada por

$$((x_1, x_2, x_3), (y_1, y_2, y_3)) \rightarrow (2x_1 - 2x_2 + 4x_3)y_1 + (-2x_1 - 2x_3)y_2 + (6x_3 + 4x_1 - 2x_2)y_3.$$

- a) Demuestra que ϕ es una forma bilineal simétrica.
- b) Calcula el subespacio ortogonal al generado por el vector (1, -1, -1) respecto a ϕ .
- c) Describe geométricamente el conjunto de rectas de \mathbb{R}^3 que pasan por el origen y son ortogonales a sí mismas respecto a la forma ϕ .
- 8. Para cada $\alpha \in \mathbb{R}$ considera en \mathbb{R}^3 la aplicación bilineal

$$\phi_{\alpha}((x_1, x_2, x_3), (y_1, y_2, y_3)) = (x_1, x_2, x_3) \begin{pmatrix} 1 & -1 & 0 \\ -1 & \alpha & 1 \\ 0 & 1 & \alpha \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

- a) Calcula los valores de α para los que ϕ_{α} es un producto escalar.
- b) Sea M_{α} el plano ortogonal a (1,1,1) respecto a ϕ_{α} . Demuestra que el conjunto $\{M_{\alpha}: \alpha \in \mathbb{R}\}$ es un haz de planos que pasa por una recta. Describe la recta.
- 9. Para cada $\alpha, \beta \in \mathbb{R}$ considera en \mathbb{R}^3 la aplicación bilineal

$$\phi_{\alpha,\beta}((x_1, x_2, x_3), (y_1, y_2, y_3)) = (x_1, x_2, x_3) \begin{pmatrix} \beta & \alpha & 0 \\ \alpha & 1 & 0 \\ 0 & 0 & \alpha \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

- a) Describe el subconjunto de \mathbb{R}^2 determinado por los pares (α, β) para los que $\phi_{\alpha,\beta}$ es un producto escalar.
- **b)** Determina los valores de α y β para que el plano de ecuación x+y+z=0 sea ortogonal al vector (1,0,1) respecto al producto escalar $\phi_{\alpha,\beta}$.
- **10.** Considera la aplicación $\phi: \mathbb{M}_{3\times 3}(\mathbb{R}) \times \mathbb{M}_{3\times 3}(\mathbb{R}) \to \mathbb{R}$ dada por $\phi(A, B) = \text{traza } (AB^T)$.
 - a) Demuestra que ϕ es un producto escalar en $\mathbb{M}_{3\times 3}(\mathbb{R})$.
 - **b)** ¿Cuál sería el producto escalar análogo en $\mathbb{M}_{3\times 3}(\mathbb{C})$?
- **11.** Sea $V=\mathbb{C}^3$ y sea $B=\{e_1,e_2,e_3\}$ la base estándar. Sea $\varphi:V\times V\to\mathbb{C}$ la forma sesquilineal cuya matriz asociada respecto a B es:

$$\left(\begin{array}{ccc}
1 & i & 0 \\
-i & 2 & 1+i \\
0 & 1-i & 3
\end{array}\right)$$

Demuestra que φ es un producto escalar.

- 12. Sea V un espacio vectorial unitario.
 - a) Demuestra la Identidad del paralelogramo: Para todo par de vectores $u, v \in V$,

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$

b) Demuestra la Identidad de polarización: Para todo par de vectores $u, v \in V$,

$$4\varphi(u,v) = \|u+v\|^2 - \|u-v\|^2 + i\|u+iv\|^2 - i\|u-iv\|^2.$$

- \mathbf{c}) ¿Cuál es el análogo de la identidad anterior si V es un espacio vectorial euclídeo?
- 13. Sea $||x|| = |x_1| + |x_2|$ definida en \mathbb{R}^2 . Demuestra que $||\cdot||$ es una norma en \mathbb{R}^2 , que no proviene de ningún producto escalar porque no satisface la ley del paralelogramo.

- **14.** Sea V un espacio vectorial euclídeo con un producto escalar φ y sea $\|\cdot\|:V\to\mathbb{R}$ la norma inducida por φ . Sean $u,v\in V$. Demuestra que los vectores u+v y u-v son ortogonales si y sólo si $\|u\|=\|v\|$. ¿Vale la equivalencia si V es unitario?
- 15. Sea V un espacio euclídeo o unitario. Demuestra la siguiente generalización del teorema de Pitágoras:

$$||v_1 + v_2 + \dots + v_n||^2 = ||v_1||^2 + ||v_2||^2 + \dots + ||v_n||^2$$

si los vectores $v_1, v_2, \dots, v_n \in V$ son ortogonales dos a dos.

16. Sea $V_n = \{p(x) \in \mathbb{R}[x] : \operatorname{grado}(p(x)) \leq n\}$ para un cierto $n \in \mathbb{N}$. En $V_n \times V_n$ considera la aplicación

$$\phi(p(x), q(x)) = \int_{-1}^{1} p(t)q(t)dt.$$

- a) Demuestra que ϕ es un producto escalar.
- b) Describe el subespacio de polinomios ortogonales al polinomio x.
- c) Para n=3 calcula una base ortogonal de V_3 .
- d) ¿Cómo definirías el producto escalar análogo en $W_n := \{p(x) \in \mathbb{C}[x] : \operatorname{grado}(p(x)) \leq n\}$ para un cierto $n \in \mathbb{N}$?

Nota: Salvo normalizaciones, la familia que se obtiene al aplicar el proceso de Gram-Schmidt a $\{1, x, \dots, x^n\}$, la base natural de V_n , son los *polinomios de Legendre* que se introdujeron inicialmente para cuestiones de gravitación y tienen múltiples aplicaciones en física y matemáticas.

17. Considera la forma bilineal $\psi: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ dada por:

$$\psi((x_1, x_2, x_3), (y_1, y_2, y_3)) = (x_1, x_2, x_3) \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

- a) Decide de manera razonada si ψ es un producto escalar.
- b) Encuentra una base de \mathbb{R}^3 respecto a la que la matriz de ψ sea diagonal.

18. Sea $V=\mathbb{C}^3$ y sea $B=\{e_1,e_2,e_3\}$ la base estándar. Sea $\varphi:V\times V\to\mathbb{C}$ la forma sesquilineal cuya matriz asociada respecto a B es:

$$\left(\begin{array}{ccc}
1 & -i & i \\
i & 2 & -1 \\
-i & -1 & 7
\end{array}\right)$$

- a) Demuestra que φ es un producto escalar.
- b) Calcula una base ortonormal de V respecto al producto escalar definido por φ .
- **19.** Sean $u_1 = (-2, -1, 1), u_2 = (0, -1, 0)$ y $u_3 = (1, -1, 0)$ vectores de \mathbb{R}^3 .
 - a) Demuestra que $B' = \{u_1, u_2, u_3\}$ es una base de \mathbb{R}^3 .
- b) Demuestra que existe un producto escalar ϕ respecto al cual B' es una base ortogonal. Decide de manera razonada si ϕ es único con esta propiedad.
- c) Demuestra que existe un producto escalar ψ respecto al cual B' es una base ortonormal. Decide de manera razonada si ψ es único con esta propiedad. Describe la matriz de ψ respecto a la base canónica de \mathbb{R}^3 .

20. Calcula el complemento ortogonal de la recta

$$L := \{(x_1, x_2, x_3) : x_1 = x_2 = x_3\}$$

respecto al producto escalar

$$\phi((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1 y_1 + (x_1 + x_2)(y_1 + y_2) + (x_1 + x_2 + x_3)(y_1 + y_2 + y_3),$$

y respecto al producto escalar usual.

21. En \mathbb{R}^3 encuentra un producto escalar para el cual el complemento ortogonal del plano x=0 sea la recta $\{x=y,z=0\}$. ¿Es único ese producto escalar?