1) [4 puntos] Determina todos los $a,b\in\mathbb{R}$ tales que la siguiente matriz **no** sea diagonalizable sobre \mathbb{C}

$$\begin{pmatrix} a+b & b \\ 2-2a-b & 2-a-b \end{pmatrix}.$$

Ayuda: El polinomio característico es $\lambda^2 - 2\lambda + 2a - a^2$.

2) [5 puntos] Calcula $\exp(B)$ donde B = tA con $t \in \mathbb{R}$ y $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. El resultado debe estar simplificado a una matriz real lo más sencilla posible.

Comentario/ayuda: En física cuántica a esto se le llama operador de rotación. Dependiendo de tus habilidades, quizá te sea más sencillo usar $A^2 = -I$ en la definición de exp en vez del método habitual.

3) [1 punto] Sea $Q: \mathbb{R}^4 \longrightarrow \mathbb{R}$ una forma cuadrática definida negativa con matriz (por supuesto simétrica) $A = (a_{ij})_{i,j=1}^4$. Demuestra que $a_{22}a_{44} > (a_{24})^2$.