- 1) Sea V el espacio vectorial formado por las matrices complejas 2×2 hermíticas $(A = \overline{A}^t)$.
- a) [1.5 puntos] Explica por qué se tiene

$$V = \left\{ \begin{pmatrix} a & b+ic \\ b-ic & d \end{pmatrix} & \text{con} \quad a, b, c, d \in \mathbb{R} \right\}$$

y por qué es un espacio vectorial sobre $\mathbb{K}=\mathbb{R}$ y no sobre $\mathbb{K}=\mathbb{C}.$

- b) [1.5 puntos] Comprueba que $\langle A, B \rangle = \text{Traza}(AB)$ es una aplicación $V \times V \longrightarrow \mathbb{R}$, es decir, que toma valores reales y comprueba también que es definida positiva. Es fácil ver que es bilineal (no hace falta que lo escribas), por tanto define un producto escalar en V.
 - c) [3.5 puntos] Calcula

$$P_W\left(\begin{pmatrix} 2 & 3i \\ -3i & -2 \end{pmatrix}\right)$$
 con W generado por $\left\{\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right\}$,

donde P_W indica la proyección ortogonal sobre W con el producto escalar antes definido.

d) [3.5 puntos] Ortogonaliza la base

$$\left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1-i \\ 1+i & 0 \end{pmatrix} \right\}.$$

Ayuda: Los dos primeros elementos ya son ortogonales con lo cual se puede resolver en "un paso".

Solución

1) a) Sea una matriz arbitraria compleja 2×2

$$A = \begin{pmatrix} z_1 & z_2 \\ z_3 & z_4 \end{pmatrix} \quad \text{entonces} \quad A = \overline{A}^t \quad \Leftrightarrow \quad \begin{cases} z_1 = \overline{z}_1, \ z_4 = \overline{z}_4, \\ z_3 = \overline{z}_2, \ z_2 = \overline{z}_3. \end{cases}$$

Las primeras dos condiciones dicen que $z_1, z_4 \in \mathbb{R}$ y la última es redundante. Llamando $z_1 = a$, $z_4 = d$, $z_2 = b + ic$, se tiene la igualdad del enunciado.

No es un espacio vectorial sobre $\mathbb C$ por ejemplo porque $I \in V$ pero $iI \notin V$. Lo es sobre $\mathbb R$ por ser subespacio del espacio de matrices 2×2 , ya que $\overline{(\lambda A + \mu B)}^t = \lambda \overline{A}^t + \mu \overline{B}^t$ para $\lambda, \mu \in \mathbb R$ y esto es $\lambda A + \mu B$ cuando $A, B \in V$.

b) Para dos matrices genéricas de V,

$$A = \begin{pmatrix} a & b+ic \\ b-ic & d \end{pmatrix} \quad \text{y} \quad B = \begin{pmatrix} a' & b'+ic' \\ b'-ic' & d' \end{pmatrix} \quad \text{se tiene} \quad AB = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}$$

con
$$p_{11} = aa' + (b + ic)(b' - ic')$$
 y $p_{22} = \overline{(b + ic)(b' - ic')} + dd'$. Por tanto (1) $\langle A, B \rangle = aa' + 2(bb' + cc') + dd'$.

Entonces se tiene $\langle A, B \rangle \in \mathbb{R}$. Esta fórmula implica $\langle A, A \rangle = a^2 + 2b^2 + 2c^2 + d^2$ y así $\langle A, A \rangle \geq 0$, ya que los cuadrados son no negativos, y $\langle A, A \rangle = 0$ si y solo si a = b = c = d = 0, es decir, para la matriz nula.

c) Llamemos M a la matriz dada en el enunciado que queremos proyectar y W_1 , W_2 a las que generan el subespacio. Por definición, sabemos que la proyección es de la forma $\lambda W_1 + \mu W_2$ con $M - (\lambda W_1 + \mu W_2) \in W^{\perp}$. Tomando productos escalares con W_1 y con W_2 ,

$$\begin{cases} \langle M, W_1 \rangle - (\lambda \langle W_1, W_1 \rangle + \mu \langle W_2, W_1 \rangle) = 0, \\ \langle M, W_2 \rangle - (\lambda \langle W_1, W_2 \rangle + \mu \langle W_2, W_2 \rangle) = 0. \end{cases}$$

La fórmula (1) da $\langle M, W_1 \rangle = \langle W_1, W_1 \rangle = 4$, $\langle M, W_2 \rangle = 0$, $\langle W_2, W_2 \rangle = \langle W_1, W_2 \rangle = 2$. Entonces $4 = 4\lambda + 2\mu$ y $0 = 2\lambda + 2\mu$ que implica $\lambda = -\mu = 2$ y produce la solución

$$P_W(M) = 2W_1 - 2W_2 = 2\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} - 2\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}.$$

d) Llamemos W_1 , W_2 y W_3 a las matrices del enunciado. Como dice la ayuda, $W_1 \perp W_2$ porque $\langle W_1, W_2 \rangle = 0$. Entonces solo hay que quitar a W_3 sus proyecciones sobre W_1 y W_2 (esto es lo mismo que Gram-Schmidt). Utilizando (1) se sigue

$$W_3 - \frac{\langle W_3, W_1 \rangle}{\langle W_1, W_1 \rangle} W_1 - \frac{\langle W_3, W_2 \rangle}{\langle W_2, W_2 \rangle} W_2 = W_3 - \frac{2}{2} W_1 - \frac{0}{2} W_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}.$$

Criterios de corrección y comentarios

- a) Hay una diferencia entre comprobar que las matrices del enunciado son hermíticas y comprobar que todas las matrices hermíticas son de esa forma. Por decir otro ejemplo, no es lo mismo decir que λI es diagonal que decir que todas las matrices diagonales son de esta forma (falso). Fallar en esto resta 0.25. La segunda parte de este aparatado contaba 0.75.
- b) Mostrar que es real cuenta 0.5 y que es definida positiva 1. Ser definida positiva no es lo mismo que ser mayor o igual que cero. Por ejemplo en \mathbb{R}^3 , $\varphi(\vec{x}, \vec{y}) = x_1y_1 + x_3y_3$ no es definida positiva a pesar de que $\varphi(\vec{x}, \vec{x}) = x_1^2 + x_3^2 \ge 0$ porque hay vectores no nulos que "miden" cero. No indicar que $\langle A, A \rangle = 0$ solo si A = O resta 0.25.
 - c) Aplicar la fórmula correcta cuenta 0.75 aunque no se lleven a buen puerto los cálculos.
- d) La base ortogonal hallada es base del subespacio de V de matrices de traza nula y constituyen las matrices de Pauli que aparecerán en el resto del grado.

La traza es un concepto de Álgebra I que también está en varios ejercicios de Álgebra II. Es un fallo serio no conocer su significado.