UNIVERSIDADE DE CABO VERDE

PROGRAMA REGIONAL DE DOUTORAMIENTO EM MATEMÁTICA

Bases in Banach spaces - 2024

Exercises. Deadline: May 15, 2024

- **1.A.** Let (X, || ||) be a normed vector space. Show the following:
- (i) $|||x|| ||y||| \le ||x y||$
- (ii) $\| \| : X \mapsto \mathbb{R}$ is continuous.
- **1.B.** Show that if $\{v_n\}_{n=1}^{\infty}$ is a Cauchy sequence in a normed vector space (X, || ||), there exists a subsequence $\{v_{n_k}\}_{n=1}^{\infty}$ such that $||v_{n_{k+1}} v_{n_k}|| \leq \frac{1}{2^k}$, k = 1, 2, 3, ...
 - **2.A.** Observe that if $a, b \ge 0$, then $\sqrt{ab} \le \frac{a+b}{2}$.
 - (a) Show that if $x_i, y_i \in \mathbb{R}, i = 1, ..., n$, then the following Cauchy-Schwarz inequality holds:

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le \left(\sum_{i=1}^{n} |x_i|^2 \right)^{1/2} \left(\sum_{i=1}^{n} |y_i|^2 \right)^{1/2}$$

(Hint: Let $A = \sum_{i=1}^{n} |x_i|^2$ and $B = \sum_{i=1}^{n} |y_i|^2$. Use the observation with $\frac{|x_i|^2}{A}$ and $\frac{|y_i|^2}{A}$.)

(b) If $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ show that

$$||x||_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$$

is a norm.

- **2.B.** Show that if X is a closed subspace or a Banach space $(\mathbb{B}, \| \|)$, then $(\mathbb{B}, \| \|)$ is also a Banach space.
 - **2.C.** Prove that $(L^{\infty}(X), \| \|_{\infty})$ is a Banach space.
- **2.D.** Let $1 \leq p < q < \infty$. Show that if $f(x) = x^{-1/q} \chi_{[0,1]}(x)$, then $f \in L^p(\mathbb{R}, dx)$, but $f \notin L^q(\mathbb{R}, dx)$.
- **2.E.** Let $1 \leq p < q < \infty$. Show that if $g(x) = x^{-1/p} \chi_{[1,\infty}(x)$, then $g \in L^q(\mathbb{R}, dx)$, but $g \notin L^p(\mathbb{R}, dx)$.
 - **2.F.** Let $1 \le p < q < \infty$ and $x = (x_i)_{i=1}^{\infty}$.
 - (1) If $||x||_p = 1$, show that $||x||_q \le 1$.
 - (2) Show that if $x \in \ell^p$, then $||x||_q \le ||x||_p$ (This shows that $\ell^p \subset \ell^q$.)
- **3.A.** Let $(X_1, || ||_1)$ and $(X_2, || ||_2)$ be two normed vector spaces. Let $\mathcal{B}(X_1, X_2)$ be the set of all linear bounded operators from X_1 into X_2 . The set $\mathcal{B}(X_1, X_2)$ is a vector spaces with the operations $(T_1 + T_2)(x) = T_1(x) + T_2(x)$ and $(\alpha T)(x) = \alpha(T(x))$. For $T \in \mathcal{B}(X_1, X_2)$ define

$$||T||_{op} := \sup_{x \neq 0, x \in X_1} \frac{||T(x)||_2}{||x||_2}.$$

Show that $\| \|_{op}$ is a norm in the vector space $\mathcal{B}(X_1, X_2)$.

4.A. Show that in a pre-Hilbert space, the map $(x,y) \mapsto \langle x,y \rangle$ is continuous, that is if $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then

$$\lim_{n \to \infty} \langle x_n, y_n \rangle = \langle x, y \rangle.$$

4.B. Show that C([0,1]) is not a Hilbert space with the inner product given by

$$\langle f, g \rangle = \int_0^1 f(x) \overline{g(x)} dx$$
.

Hint: Consider the sequence

$$f_n(x) = \sqrt{n(x-1/2)}\chi_{(\frac{1}{2},\frac{1}{2}+\frac{1}{n}]}(x) + \chi_{(\frac{1}{2}+\frac{1}{n},1]}(x).$$

- **4.C.** Let $(\mathbb{H}, \langle , \rangle)$ be a Hilbert space. Let $\mathcal{B} = \{e_n\}_{n=1}^{\infty}$ be an orthonormal system in \mathbb{H} . Show that the following two conditions are equivalent:
 - (i) \mathcal{B} is a basis for \mathbb{H} .
 - (ii) (Parseval's identity) For all $x, y \in \mathbb{H}$, $\langle x, y \rangle = \sum_{n=1}^{\infty} \langle x, e_n \rangle \overline{\langle y, e_n \rangle}$.

(Hint: Use Theorem 4.7 from class notes.)

4.D. Show that in $L^2([a,b])$ the set

$$\{e_n(x) = \frac{1}{\sqrt{T}}e^{2\pi i \frac{n}{T}x} : n \in \mathbb{Z}\}, \qquad (T = b - a),$$

is an orthornormal system with the inner product given by

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx.$$

- **5.A.** Prove that if $\{y_n\}_{n=1}^{\infty}$ satisfies $\lim_{n\to\infty} ||y_n y|| = 0$, then $\lim_{n\to\infty} ||y_n|| = ||y||$.
- **5.B.** Assume that $\mathcal{B} = \{x_n\}_{n=1}^{\infty}$ is a basis for a Banach space $(\mathbb{B}, \| \|)$. Show that for every sequence of scalars $\{\alpha_n\}_{n=1}^{\infty}$ and all positive integers m, n such that m > n, it holds

$$\left\| \sum_{k=1}^{m} \alpha_n x_n \right\| \le K_b \left\| \sum_{k=1}^{n} \alpha_n x_n \right\| ,$$

where K_b denotes the basis constant given in definition 5.5

5.C. (Sum basis in c_0) Let $\mathcal{C} = \{\delta_n\}_{n=1}^{\infty}$ be the canonical basis of $(c_0, \| \|_{\infty})$. Define

$$f_n := \delta_1 + \delta_2 + \dots + \delta_n, \quad n \in \mathbb{N}.$$

Show that $S := \{f_n\}_{n=1}^{\infty}$ is a basis for $(c_0, || \|_{\infty})$. Find its basis constant.

(Hint: Show that for
$$z = \{z_n\}_{n=1}^{\infty} \in c_0$$
, $z = \sum_{n=1}^{\infty} (z_n - z_{n+1}) f_n$ with convergence in $\| \cdot \|_{\infty}$.)

5.D. (Difference basis in ℓ^1) Let $\mathcal{C} = \{\delta_n\}_{n=1}^{\infty}$ be the canonical basis of ℓ^1 . Define

$$x_1 := \delta_1 \qquad x_n = \delta_n - \delta_{n-1}, \quad n = 2, 3, \dots$$

Show that $\mathcal{D} := \{x_n\}_{n=1}^{\infty}$ is a monotone basis of $(\ell^1, || \|_1)$.

(Hint: Start showing that for $\{b_n\}_{n=1}^M$ scalars, then

$$\left\| \sum_{n=1}^{M} b_n x_n \right\|_{1} = \sum_{n=1}^{M} |b_n - b_{n+1}| + |b_M|,$$

and use Proposition 5.9.)

- **6.A.** Assume that $\mathcal{B} = \{x_n\}_{n=1}^{\infty}$ is a basis for a Banach space $(\mathbb{B}, \| \|)$. Show that the following are equivalent:
 - 1. \mathcal{B} is unconditional
 - 2. There exists $K, 1 \leq K < \infty$, such that for all $N \in \mathbb{N}$

$$\left\| \sum_{k=1}^{N} \epsilon_n a_n x_n \right\| \le K \left\| \sum_{k=1}^{N} a_n x_n \right\|,$$

for all scalars a_1, \ldots, a_N and all $\epsilon_n = \pm 1$ for all $n = 1, 2, \ldots, N$.

3. There exists $K, 1 \leq K < \infty$, such that for all $N \in \mathbb{N}$

$$\left\| \sum_{k=1}^{N} \beta_n a_n x_n \right\| \le K \left\| \sum_{k=1}^{N} a_n x_n \right\|,$$

for all scalars a_1, \ldots, a_N and all $\beta_n = 0$ or 1 for all $n = 1, 2, \ldots, N$.

- **6.B.** Show that $C = \{\delta_n\}_{n=1}^{\infty}$ is an unconditional basis of $(c_0, || \|_{\infty})$ and find is unconditional constant $K_u(C)$.
- **6.C.** Show that an orthonormal basis $\mathcal{B} = \{e_n\}_{n=1}^{\infty}$ in a Hilbert spaces $(\mathbb{H}, \langle , \rangle)$ is unconditional and find its unconditional constant $K_u(\mathcal{B})$.

7.A. Define
$$S_N f(x) = \sum_{k=-N}^N \widehat{f}(k) e^{2\pi i k x}$$
, $x \in \mathbb{R}$. Prove that $S_N f(x) = \int_0^1 f(t) D_N(x-t) dt$,

where

$$D_N(t) = \sum_{k=-N}^{N} e^{2\pi i k t} = \left\{ \begin{array}{ll} 2N+1 & \text{if } t = 0\\ \frac{\sin(2N+1)\pi t}{\sin \pi t} & \text{if } t \neq 0 \end{array} \right\},$$

is called the Dirichlet kernel.

7.B. Recall that the Fejér kernel is defined as $F_N(t) = \frac{1}{N} \sum_{k=0}^{N-1} D_k(t)$, where $D_k(t)$ is the Dirichlet kernel of problem **7.A.** Show that the Fejér kernel is given by

$$F_N(t) = \left\{ \begin{array}{ll} \frac{1}{N} \left(\frac{\sin \pi N t}{\sin \pi t} \right)^2 & \text{if } t \in \mathbb{R} \setminus \mathbb{Z} \\ N & \text{if } t \in \mathbb{Z} \end{array} \right\},$$

- **7.C.** Show that for every $0 < \delta < \frac{1}{2}$, $\lim_{N \to \infty} \int_{\delta < |t| \le \frac{1}{2}} |F_N(t)| dt = 0$, where $F_N(t)$ is the Dirichlet kernel of exercise **7.B.**
- **7.D.** Show that the Fourier series does not converge for all functions in $(C(\mathbb{T}), \| \|_{\infty})$, that is, show that there exists $f \in C(\mathbb{T})$ such that $\lim_{N\to\infty} \|S_N f f\|_{\infty} \neq 0$.
- **8.A.** Show that for $1 \le p < \infty$, and $n = 2^j + k$, $||h_n||_p = 2^{-j/p}$, where h_n denotes the Haar function.
 - **8.B.** Write $\chi_{[0,1/4)}$ and $\chi_{[1/2,3/4)}$ as linear combination of elements of the Haar system.
 - **8.C.** Show that if $x, y \in \mathbb{R}, x \geq 0, y \geq 0$, and for all $1 \leq p < \infty$,

$$(x+y)^p \le 2^{p-1}(x^p + y^p).$$

(Hint: Show that $\varphi(x) = \frac{2^{p-1}(x^p+1)}{(x+1)^p} \ge 1, x \ge 0.$)

- **8.D.** Show that for p=2, the set $\mathcal{H}^{(2)}=\{h_n^{(2)}\}_{n=1}^{\infty}$ is and orthonormal system of $L^2([0,1])$.
- **8.E.** For $n=2^j+k, j=0,1,2,\ldots,k=1,2,\ldots,2^j$, define $\varphi_n(x)=2^{j+1}\int_0^x h_n(t)dt$, where h_n denote the Haar functions. Show that

$$\varphi_n(x) = \left\{ \begin{array}{ll} 2^{j+1}x - (2k-2) & \text{if } \frac{2k-2}{2^{j+1}} \le x \le \frac{2k-1}{2^{j+1}} \\ -2^{j+1}x + 2k & \text{if } \frac{2k-1}{2^{j+1}} \le x \le \frac{2k}{2^{j+1}} \\ 0 & \text{otherwise} \end{array} \right\},$$

- **9.A.** For $\psi \in L^2(\mathbb{R})$ define $\psi_{j,k}(x) = 2^{j/2}\psi(2^jx k), j, k \in \mathbb{Z}$. Show that for all $j, k \in \mathbb{Z}$, $\|\psi_{j,k}\|_2 = \|\psi\|_2$.
- **9.B.** Show that if $g: \mathbb{R} \to \mathbb{C}$ has a radial decreasing L^1 -majorant (RDM), then $g \in L^p(\mathbb{R}), 1 \leq p \leq \infty$.
- **9.C.** Let $\beta = \{\beta_{j,k}\}_{j,k\in\mathbb{Z}}$ where $\beta_{j,k} = 1$ for a finite number of indices and $\beta_{j,k} = 0$ for the rest. For $f \in L^p(\mathbb{R})$, define

$$T_{\beta}f = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \beta_{j,k} \langle f, \psi_{j,k} \rangle \psi_{j,k},$$

where the functions $\psi_{j,k}$ are defined in **9.A.** Writing $\langle f, \psi_{j,k} \rangle$ as an integral and interchanging the sum and the integral, show that

$$(T_{\beta}f)(x) = \int_{\mathbb{R}} K_{\beta}(x, y) f(y) dy,$$

where

$$K_{\beta}(x,y) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \beta_{j,k} \psi_{j,k}(x) \overline{\psi_{j,k}(y)}$$
.