HOJA DE EJERCICIOS 6

Análisis Matemático (Grupo 130)

CURSO 2021-2022.

Problema 1. Consideramos la función $f(x,y): \mathbb{R}^2 \to \mathbb{R}^2$ dada por la siguiente fórmula:

$$f(x,y) \equiv \left(\begin{array}{c} x + e^x \\ y^2 + \operatorname{sen}(x-1) \end{array}\right).$$

- (a) Demuestra que existe una inversa local $g \equiv (g_1, g_2)$ de f tal que el dominio de g es un abierto $V \ni (1+e, 1)$ y g(1+e, 1) = (1, 1).
- (b) Demuestra que en el abierto V se verifica la siguiente identidad:

$$Dg \equiv \begin{bmatrix} \frac{1}{1+e^{g_1}} & 0\\ -\cos(g_1-1) & \frac{1}{2q_2 \cdot (1+e^{g_1})} & \frac{1}{2q_2} \end{bmatrix}.$$

(c) Derivando esa identidad, obtén identidades:

$$g_{2xx} \equiv \text{fórmula}_1(g_1, g_2),$$
 (1)

$$g_{2xy} \equiv \text{fórmula}_2(g_1, g_2),$$
 (2)

$$g_{2yx} \equiv \text{f\'ormula}_3(g_1, g_2),$$
 (3)

$$g_{2yy} \equiv \text{fórmula}_4(g_1, g_2),$$
 (4)

entre las derivadas segundas de g_2 y expresiones concretas en g_1 y g_2 . Comprueba que (2) y (3) dan el mismo resultado, aunque se llega a ellas por caminos diferentes.

- (d) Calcula explícitamente la matriz hessiana de g_2 en el punto (1 + e, 1).
- (e) Repite el proceso con g_1 .

Problema 2. (a) Prueba que la ecuación

$$xy = \log \frac{x}{y}$$

admite una única solución y = f(x) definida en un entorno de $a = \sqrt{e}$ y verificando $f(\sqrt{e}) = 1/\sqrt{e}$.

(b) Calcula explícitamente los números f'(a) y f''(a).

Problema 3. Dibuja los abiertos

$$U_1 = \left\{ (x,y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4 , \ y > -\frac{1}{2} |x| \right\}, \qquad U_2 = \left\{ (x,y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4 , \ y < \frac{1}{2} |x| \right\}.$$

Halla una inversa del cambio a polares definida en U_1 y otra definida en U_2 . Demuestra que, sin embargo, no hay ninguna inversa local continua en $U_1 \cup U_2$.

Indicaci'on: halla todas las inversas en U_1 y todas las inversas en U_2 , y comprueba que no se las puede casar.

Problema 4. Sea

$$\begin{cases} u(x,y) = x^2 - 4y^2 \\ v(x,y) = 4xy \end{cases}$$

- a) Demuestra que la aplicación $(x,y) \mapsto (u,v)$ es localmente invertible en todo punto distinto del origen.
- b) Calcula la matriz de la diferencial de la función inversa de f(x,y) = (u(x,y),v(x,y)) en x = 1/2, y = 1.
- c) Prueba que en ningún disco abierto conteniendo al origen existe una inversa de f, ni siquiera una no diferenciable.

Indicación: estudia la inyectividad.

<u>Problema</u> 5. Demuestra que existe una única función $f: U \to \mathbb{R}$, de clase \mathcal{C}^1 en un entorno U de (0,0), tal que

$$f(0,0) = 0$$
 y $e^{f(x,y)} \equiv (1 + x e^{f(x,y)}) (1 + y e^{f(x,y)})$.

Calcula explícitamente $\nabla f(0,0)$.

Problema 6. Demuestra que la ecuación

$$\cos x - y^3 = 0 \,,$$

define una única función implícita y(x) para todo $x \in \mathbb{R}$ y dibuja el grafo $\{y = y(x)\}$. Esta y(x) es función \mathcal{C}^{∞} de x en un entorno de $x_0 = 0$ (ahí se cumple la condición del teorema de las funciones implícitas), pero encuentra valores de x, alejados del valor x = 0, en los que y(x) ni siquiera es diferenciable.

<u>Problema</u> 7. Dada $f \in C^1(\mathbb{R})$, definimos una función vectorial $F(x,y) \equiv (u(x,y),v(x,y))$ por las siguientes identidades:

$$\begin{cases} u(x,y) \equiv f(x) \\ v(x,y) \equiv -y + x f(x) \end{cases}$$

Demuestra que si f' no se anula entonces F tiene una inversa **global** (es decir, F es biyectiva de \mathbb{R}^2 a un abierto $V \subseteq \mathbb{R}^2$, por lo cual existe $F^{-1}: V \to \mathbb{R}^2$). Si además f(0) = 0 y f'(0) = 1, halla explícitamente las derivadas parciales de F^{-1} en el origen.

Problema 8. Dada $f \in C^1(\mathbb{R})$ y $\varepsilon > 0$, definimos

$$F_{\varepsilon}(x,y) = (-y + \varepsilon f(x), x + \varepsilon f(y)).$$

Fijado $(x_0, y_0) \in \mathbb{R}^2$ demuestra que, para ε suficientemente reducido, existe un r > 0 tal que en el disco $B((x_0, y_0), r)$ la función F_{ε} es invertible con inversa C^1 .

Problema 9. Estudia si es posible despejar u(x, y, z) y v(x, y, z) en las ecuaciones

$$\begin{cases} x y^2 + x z u + y v^2 = 3 \\ x y u^3 + 2 x v - u^2 v^2 = 2 \end{cases}$$

en un entorno de (x, y, z) = (1, 1, 1) y (u, v) = (1, 1). En caso afirmativo, calcula $\partial u/\partial x$, $\partial v/\partial x$ y $\partial v/\partial z$ en el punto (x, y, z) = (1, 1, 1).

Problema 10.

Decimos que una aplicación f es ${f cerrada}$ si la imagen directa por f de cualquier cerrado es un cerrado.

- a) Demuestra que si $f: \mathbb{R}^n \to \mathbb{R}^m$ es coerciva y continua entonces es cerrada.
- b) Demuestra que la función $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = e^x$ es abierta pero no cerrada.
- c) Demuestra que la función $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$ es cerrada. ¿Es f abierta?