HOJA DE EJERCICIOS 3 (Grupo 130) Análisis Matemático. CURSO 2021-2022.

<u>Problema</u> 1. De las siguientes fórmulas dí, razonadamente, cuáles son verdad y cuáles falsas (cerca del origen en \mathbb{R} o en \mathbb{R}^2).

$$sen y = O(|y|) \qquad x sen y = O(x^2 + y^2) \qquad sen x = o(|x|)$$

$$1 - \cos x = O(x^2) \qquad \frac{x}{\log|x|} = o(|x|) \qquad \frac{x}{\log|x|} = O(|x|^{0'99})$$

Problema 2. Considera la función vectorial $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por

$$f(x,y) \equiv \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix} \equiv \begin{pmatrix} x^2 + y^3 \\ 2x + 7y^2 \end{pmatrix}.$$

- a) Para cada vector v = (a, b), calcula la derivada direccional $(D_v f)_{(1,1)}$ por el siguiente método: calcula el camino $t \mapsto f((1,1) + tv)$ como una función explícita de t y derívalo en t = 0.
- b) Calcula las siguientes matrices

$$M_{1} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\ \frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} \end{bmatrix}_{(x,y)=(1,1)}, \qquad M_{2} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x} & \frac{\partial f_{2}}{\partial x} \\ \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{2}}{\partial y} \end{bmatrix}_{(x,y)=(1,1)},$$

y evalúa los producto matriciales M_1v y M_2v ¿Cuál de ellos es igual a $(D_vf)_{(1,1)}$?

c) ¿Cuál de las dos matrices M_1 , M_2 es la jacobiana de f en (1,1)? Da una explicación.

<u>Problema</u> 3. Utiliza la regla de la cadena para calcular las derivadas parciales de las siguientes funciones, siendo $f, g : \mathbb{R}^2 \to \mathbb{R}$ y $h : \mathbb{R} \to \mathbb{R}$ diferenciables en todo punto.

- a) F(x,y) = f(h(x), g(x,y)),
- b) G(x,y) = g(f(x,y)h(x), y),
- c) H(x,y) = g(f(x,h(y)), xy),

<u>Problema</u> 4. Es sabido que si en un entorno de x_0 existen las funciones f_{x_1}, \ldots, f_{x_n} y son continuas, entorces $f(x_1, \ldots, x_n)$ es diferenciable en x_0 . Veamos que esta condición suficiente no es necesaria.

a) Dada la función

$$f(x,y) = \begin{cases} (x^2 + y^2) \operatorname{sen} \frac{1}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Comprueba que las funciones f_x, f_y están definidas en todo \mathbb{R}^2 pero no son continuas en (0,0).

b) Demuestra que, de todas maneras, la función f es diferenciable en (0,0).

<u>Problema</u> 5. Analícese, para cada una de las funciones siguientes, la continuidad, la existencia de derivadas parciales primeras y la diferenciabilidad en el punto (0,0).

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & \text{si} \quad (x,y) \neq (0,0), \\ 0 & \text{si} \quad (x,y) = (0,0). \end{cases}$$

$$g(x,y) = \begin{cases} \frac{x^4 e^{-|x|}}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0), \\ 0 & \text{si} \quad (x,y) = (0,0). \end{cases}$$

$$h(x,y) = \begin{cases} \frac{x^3}{x^2 + 7y^2} & \text{si} \quad (x,y) \neq (0,0), \\ 0 & \text{si} \quad (x,y) = (0,0). \end{cases}$$

Problema 6. Sea E un espacio vectorial de dimensión finita, dotado de un producto escalar $\langle \cdot, \cdot \rangle$ con norma asociada $||\cdot||$.

a) Demuestra que la función $f: E \to \mathbb{R}$ dada por $f(x) = ||x||^2$ es diferenciable en todo $x \in E$, y que

$$(df)_x(u) = 2 < x, u >$$
para cada $u \in E$.

b) Dados un intervalo $I \subseteq \mathbb{R}$ y un camino diferenciable $\alpha: I \to \mathbb{R}^N$, demuestra que $\|\alpha(t)\|$ es constante si y sólo si los vectores $\alpha(t)$ y $\alpha'(t)$ son ortogonales para todo $t \in I$.

Problema 7. Sean $U \subseteq \mathbb{R}^n$ un abierto conexo por caminos y $f: U \to \mathbb{R}^k$ una función diferenciable, tal que $(df)_x = 0$ para todo $x \in U$. Demuestra que f es constante. Sugerencia: es válido suponer que cada dos puntos de U se pueden conectar por un camino diferenciable.

<u>Problema</u> 8. Sean m > 0 y $f : \mathbb{R}^N \to \mathbb{R}$ una función homogénea de grado m, es decir que cumple lo siguiente:

$$f(tx) \ = \ t^m \, f(x) \quad \text{para cualesquiera} \ \ x \in \mathbb{R}^N \ \ , \ \ t \in \mathbb{R} \setminus \{0\} \ .$$

Demuestra que $\langle \nabla f(x), x \rangle \equiv m f(x)$.

Problema 9. Sean $g_1, g_2 : \mathbb{R}^2 \to \mathbb{R}$ funciones continuas. Se define $f : \mathbb{R}^2 \to \mathbb{R}$ mediante

$$f(x,y) = \int_0^x g_1(t,0) dt + \int_0^y g_2(x,t) dt$$
.

- a) Prueba que $\frac{\partial f(x,y)}{\partial y} = g_2(x,y)$.
- b) Ayudándote del resultado en a), halla una función $f:\mathbb{R}^2 \to \mathbb{R}$ tal que:

$$\frac{\partial f(x,y)}{\partial x} = x$$
 y $\frac{\partial f(x,y)}{\partial y} = y$.

c) Halla una función $f: \mathbb{R}^3 \to \mathbb{R}$ tal que:

$$\frac{\partial f(x,y,z)}{\partial x} = 2\,xy \quad , \quad \frac{\partial f(x,y,z)}{\partial y} = x^2 - 2 \quad , \quad \frac{\partial f(x,y,z)}{\partial z} = e^z \, .$$

Problema 10. Sea $(V, ||\cdot||)$ un espacio normado.

- a) Dados $x_0 \in V$ y r > 0, prueba que el *cierre* de la bola abierta $B_{\|\cdot\|}(x_0, r)$ es la bola cerrada $\overline{B}_{\|\cdot\|}(x_0, r)$.
- b) Demuestra que $d(x,y) = \min\{||x-y||, 1\}$ es una función de distancia en V.
- c) Considerando sucesiones de puntos de V, demuestra que $||\cdot||$ y d definen la misma noción de convergencia y el mismo límite para cada sucesión convergente (por lo tanto, definen el mismo concepto de cierre para cada subconjunto de V).
- d) Demuestra que $\|\cdot\|$ y d definen la misma bola unidad abierta con centro $\mathbf{0}$, pero que $\overline{B}_d(\mathbf{0},1)$ no coincide con $\overline{B}_{\|\cdot\|}(\mathbf{0},1)$. Luego $\overline{B}_d(\mathbf{0},1)$ no es el cierre de $B_d(\mathbf{0},1)$.

Problema 11. Sea $(V, ||\cdot||)$ un espacio normado, y sean $A, B \subset V$. Se define

$$A + B = \{a + b \mid a \in A, b \in B\}$$

- a) Demostrar que si A es compacto y B cerrado, entonces A + B es cerrado.
- b) Poner un ejemplo de un espacio V y dos cerrados A, B tales que A + B no es cerrado.

Problema 12. Dado un producto escalar en \mathbb{R}^N , lo consideramos como una función

$$F: \mathbb{R}^{2N} \longrightarrow \mathbb{R} \quad , \quad F(x,y) = \langle x, y \rangle .$$

- a) Halla $(dF)_{(a,b)}$.
- b) Si $f, g : \mathbb{R} \to \mathbb{R}^N$ son diferenciables y $h : \mathbb{R} \to \mathbb{R}$ se define por $h(t) \equiv F(f(t), g(t))$, calcula h'(t).

Problema 13. a) Calcular las diferenciales de

$$f_1(x) = \langle a, x \rangle$$
 , $f_2(x) = \langle x, L(x) \rangle$, $f_3(x, y) = \langle x, L(y) \rangle$,

donde $a \in \mathbb{R}^N$ es fijo, $x, y \in \mathbb{R}^N$ son variables y $L : \mathbb{R}^N \to \mathbb{R}^N$ es una aplicación lineal.

- b) Sea $B: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ una aplicación bilineal. Calcular la aplicación lineal $(dB)_{(x,y)}$.
- c) Definiendo $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ mediante $f(x,y) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$, hallar la aplicación lineal $(df)_{(x,y)}$.