

N. 1	N. 2	N. 3	TOTAL

1. (7 points) Let
$$J = [-2, -\frac{3}{2}] \cup [\frac{3}{2}, 2].$$

- (a) Give the definition of the Fourier transform $\mathcal{F}(f)$ of a function f in $L^1(\mathbb{R})$ and compute $\mathcal{F}(\chi_J)$, where χ_J denotes the characteristic function of J.
- (b) Prove that the collection $\left\{e^{-2\pi i k x}\chi_J\right\}_{k\in\mathbb{Z}}$ is and orthonormal system for $L^2(J)$.

2. (6 points)

- (a) Give the definition of the Discrete Fourier Transform (DFT) of a discrete signal f of size N.
- (b) Let g = (g(0), g(1), g(2), g(3)) = (1, -1, 1, -1) be a discrete signal of size 4. Compute the Discrete Fourier Transform (DFT) of g.

3. (7 points) For k = 1, 2, ..., N and n = 0, 1, ..., N - 1 define

$$S_k(n) = \mu_k \sqrt{\frac{2}{N}} \sin \frac{k\pi}{N} (n + \frac{1}{2}),$$

where $\mu_k = 1$ if k = 1, 2, ..., N - 1 and $\mu_N = 1/\sqrt{2}$. Let $S_k = (S_k(n))_{n=0}^{N-1}$ be a discrete signal of size N.

- (a) Show that $||S_N|| = 1$ and that $||S_k|| = 1$ for all k = 1, 2, ..., N 1.
- (b) Prove that if $1 \le k < \ell \le N$ then $\langle S_k, S_\ell \rangle = 0$.

TIME: 90 minutes